3. Das Auslastungsspiel

Größe: px
Ab Seite anzeigen:

Download "3. Das Auslastungsspiel"

Transkript

1 Literatur: 3. Das Auslastungsspiel R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, pp D. S. Johnson, Chr. H. Papadimitriou, M. Yannakakis. How easy is local search? Proceedings of the 26th IEEE FOCS, pp A. Fabrikant, Chr. H. Papadimitriou, K. Talwar. The Complexity of Pure Nash Equilibria. Proceedings of the 36th ACM STOC D. Fotakis, S. Kontogiannis, P. Spirakis. Selfish Unsplittable Flows. Proceedings of the ICALP Awerbuch, Azar, Epstein. The Price of Routing Unsplittable Flow. Proceedings of the 37th ACM STOC Christodoulou, Koutsoupias. The Price of Anarchy of Finite Congestion Games. Proceedings of the 37th ACM STOC Schwerpunkte: allgemeines Auslastungsspiel (z.b. Netzwerkauslastung in allgemeinen Netzwerken) Koordinationsfaktor: Leistungsverlust durch fehlende Koordination Existenz von reinen Nash Equilibrien / Berechnung reiner Nash Equilibrien PLS-Vollständigkeit Universität Paderborn Algorithmische Spieltheorie WS 2007/

2 Auslastungsspiel: n Spieler 1,..., n, E endliche Menge von Betriebsmitteln, Strategiemenge S i Pot(E) für jeden Spieler i, 1 i n, Verzögerungsfunktion d e : {1,..., n} N für jedes e E, d e (j) nicht-fallend in j. Private Kosten bei Strategiewahl s = (s 1,..., s n ) S 1... S n : f s (e) = {i; e s i } ist Zahl der Spieler die Betriebsmittel e benutzen, d e (f s (e)) ist Verzögerung durch Betriebsmittel e, c i (s) = e si d e (f s (e)) sind private Kosten von Spieler i. Reines Nash Equilibrium s = (s 1,..., s n ) S 1... S n : Für jeden Spieler i gilt c i (s 1,..., s i,..., s n ) c i (s 1,..., s i,..., s n) für alle s i S i. Universität Paderborn Algorithmische Spieltheorie WS 2007/

3 Netzwerk-Auslastungsspiel: G = (V, E) gerichteter Graph, n Spieler 1,..., n, a i V, b i V sind Start- und Zielknoten für Spieler i, 1 i n, S i Pot(E) ist Menge der Wege von a i nach b i für jedes i, 1 i n, Verzögerungsfunktion d e : {1,..., n} N für jedes e E, d e (j) nicht-fallend in j. Netzwerk-Auslastungsspiel ist genau dann symmetrisch, wenn a 1 =... = a n und b 1 =... = b n. Universität Paderborn Algorithmische Spieltheorie WS 2007/

4 Satz 3.1: Sei I = (n, E, S 1,..., S n, {d e } e E ) eine Instanz des Auslastungsspiels. I besitzt mindestens ein reines Nash Equilibrium. Beweis: Definiere Potentialfunktion h : (S 1... S n ) N durch h(s) = e E fs(e) j=1 d e (j). Wenn s = (s 1,..., s i,..., s n ) und s = (s 1,..., s i,..., s n), dann gilt: h(s) h(s ) = d e (f s (e)) e s i s i = c i (s) c i (s ). e s i s i d e (f s (e)) Hieraus folgt: h(s) minimal s ist Nash Equilibrium. Universität Paderborn Algorithmische Spieltheorie WS 2007/

5 Folgerung 1: Sei I = (n, E, S 1,..., S n, {d e } e E ) eine Instanz des Auslastungsspiels. Ein reines Nash Equilibrium für I kann in Zeit 0 n d e (j) e E j=1 berechnet werden. Folgerung 2: Wenn die Funktionen {d e } e E Polynomzeit berechnet werden. alle Polynome sind, dann kann ein reines Nash Equilibrium in Universität Paderborn Algorithmische Spieltheorie WS 2007/

6 Auslastungsspiel mit Gewichten: n Spieler mit Gewichten w 1,..., w n ; W = n i=1 w i, E endliche Menge von Betriebsmitteln, Strategiemenge S i Pot(E) für jeden Spieler i, 1 i n, Verzögerungsfunktion d e : {1,..., W } N für jedes e E, d e (j) nicht-fallend in j. Private Kosten bei Strategiewahl s = (s 1,..., s n ) S 1... S n : f s (e) = e si w i ist Gewicht der Spieler die Betriebsmittel e benutzen, d e (f s (e)) ist Verzögerung durch Betriebsmittel e, c i (s) = e si d e (f s (e)) sind private Kosten von Spieler i. Reines Nash Equilibrium s = (s 1,..., s n ) S 1... S n : Für jeden Spieler i gilt c i (s 1,..., s i,..., s n ) c i (s 1,..., s i,..., s n) für alle s i S i. Universität Paderborn Algorithmische Spieltheorie WS 2007/

7 Ein Auslastungsspiel mit Gewichten besitzt im Allgemeinen kein reines Nash Equilibrium! Beispiel: Universität Paderborn Algorithmische Spieltheorie WS 2007/

8 Instanz ohne Potentialfunktion: (w 1 = 2, w 2 = 1) s 9/18/27 6/13/21 a c b d 2/10/20 2/4/16 e 20/40/60 t user 1 s path user 2 s path user 1 s latency user 2 s latency a, d e = a, d b, d = = 18 b, c b, d = = 22 b, c e = a, d e = Universität Paderborn Algorithmische Spieltheorie WS 2007/

9 Satz 3.4: Sei I = (w 1,..., w n, E, S 1,..., S n, {d e } e E ) eine Instanz des gewichteten Auslastungsspiels mit S i E für alle i. Dann besitzt I mindestens ein reines Nash Equilibrium. Satz 3.5: Sei I = (w 1,..., w n, E, S 1,..., S n, {d e } e E ) eine Instanz des gewichteten Auslastungsspiels mit d e (x) = a e + b e x, a e, b e N, für alle e E. Dann besitzt I mindestens ein reines Nash Equilibrium. Universität Paderborn Algorithmische Spieltheorie WS 2007/

10 Beweis von Satz 3.5 Angabe einer Potentialfunktion h(s) = i [n] e s i w i [d e (f s (e)) + d e (w i )] = e E f s (e) d e (f s (e)) + i [n] e s i w i d e (w i ) Mit dieser Potentialfunktion h gilt: Wenn s S und s = (s i, s i ) für ein i [n] und s i S i, dann h(s) h(s ) = 2 w i [c i (s) c i (s )] Universität Paderborn Algorithmische Spieltheorie WS 2007/

11 h ist Spezialfall von h Sei w i = 1 für alle i und d e (x) = a e + b e x e E h(s) = = = h(s) = = e E e E e E e E e E f s (e) d e (f s (e)) + (a e + b e f s (e)) f s (e) + i [n] e s i w i d e (w i ) e E (2a e + b e ) f s (e) + b e f s (e) 2 fs(e) j=1 (a e + b e j) a e f s (e) + b e fs(e) (f s (e) + 1) 2 (a e + b e ) f s (e) = 1 2 h(s) Universität Paderborn Algorithmische Spieltheorie WS 2007/

12 Folgerung: Sei I = (w 1,..., w n, E, S 1,..., S n, {d e } e E ) eine Instanz des gewichteten Auslastungsspiels mit d e (x) = a e + b e x, a e, b e N, für alle e E. Ein reines Nash Equilibrium für I kann in pseudopolynomieller Zeit berechnet werden. Universität Paderborn Algorithmische Spieltheorie WS 2007/

13 Auslastungsspiel: Preis der Anarchie Literatur: G. Christodoulou, E. Koutsoupias. The Price of Anarchy of Finite Congestion Games. Proceedings of the 37th ACM STOC, B. Awerbuch, Y. Azar, A. Epstein. The Price of Routing Unsplittable Flow. Proceedings of the 37th ACM STOC, S. Aland, D. Dumrauf, M. Gairing, B. Monien, F. Schoppmann. Exact Price of Anarchy for Polynomial Congestion Games. Proceedings of the 23rd STACS, Bemerkung: Wir betrachten zuerst reine Nash Equilibrien. Universität Paderborn Algorithmische Spieltheorie WS 2007/

14 Private Kosten bei Strategiewahl s = (s 1,..., s n ) S 1... S n : f s (e) = i:e si w i ist die Summe der Gewichte der Spieler die Betriebsmittel e benutzen. d e (f s (e)) ist Verzögerung durch Betriebsmittel e, c i (s) = e si d e (f s (e)) sind private Kosten von Spieler i. Soziale Kosten bei Strategiewahl s = (s 1,..., s n ) S 1... S n : Summe der Privaten Kosten SUM(s) = i [n] w i c i (s) = e E f s (e) d e (f s (e)) (In der Literatur wurden auch andere soziale Kostenmaße untersucht.) Preis der Anarchie/Koodinationsrate OP T = min s S SUM(s) ist optimale Zuweisung P oa pure = sup s ist NE SUM(s) OP T Universität Paderborn Algorithmische Spieltheorie WS 2007/

15 Übersicht: P oa pure für ungewichtete Auslastungsspiele P oa pure symmetrisch Lineare Latenzfunktionen de(x) = ae x + be mit ae, be 0 e E Latenzfunktionen: Polynome vom Grad d de(x) = d i=0 a e(i)x i mit ae(i) 0 i {0,..., d}, e E 5n 2 2n+1 d Θ(d) asymmetrisch 5 2 P P := (k+1) 2d+1 k d+1 (k+2) d (k+1) d+1 (k+2) d +(k+1) d k d+1 k := Φ d und Φ d ist die positive reelle Lösung von (Φ d + 1) d = Φ d+1 d. Bemerkung: Ein Auslastungsspiel ohne Gewichte ist genau dann symmetrisch, wenn S i = S j für alle i {1,..., n}, j {1,..., n}. Universität Paderborn Algorithmische Spieltheorie WS 2007/

16 Hilfssätze Satz 3.6: Es seien α, β 0 nicht negative ganze Zahlen. Dann ist β (α + 1) 1 3 α β2. Satz 3.7: Es seien α, β 0 nicht negative reelle Zahlen, und Φ = Φ 1 = 1 2 (1 + 5). Dann ist β (α + β) 1 2Φ α2 + (Φ 2 Φ 2 ) β2. Universität Paderborn Algorithmische Spieltheorie WS 2007/

17 P oa pure für ungewichtete Auslastungsspiele mit linearen Latenzfunktionen Satz 3.8: Für ungewichtete Auslastungsspiele mit linearen Latenzfunktionen ist der Preis der Anarchie höchstens 5 2. Satz 3.9: Es gibt ungewichtete Auslastungsspiele mit linearen Latenzfunktionen und 3 oder mehr Spielern, für die der Preis der Anarchie gleich 5 2 ist. Universität Paderborn Algorithmische Spieltheorie WS 2007/

18 Übersicht: P oa pure für gewichtete Auslastungsspiele P oa pure asymmetrisch Lineare Latenzfunktionen de(x) = ae x + be mit ae, be 0 e E Latenzfunktionen: Polynome vom Grad d de(x) = d i=0 a e(i)x i mit ae(i) 0 i {0,..., d}, e E Φ d+1 d Φ d ist die positive reelle Lösung von (Φ d + 1) d = Φ d+1 d. Universität Paderborn Algorithmische Spieltheorie WS 2007/

19 P oa pure für gewichtete Auslastungsspiele Satz 3.10: Für gewichtete Auslastungspiele mit linearen Latenzfunktionen ist der Preis der Anarchie höchstens Satz 3.11: Es gibt gewichtete Auslastungsspiele mit linearen Latenzfunktionen für die der Preis der Anarchie gleich ist. Bemerkung: Für d = 1 ist Φ d+1 d = Φ 2 1 = Universität Paderborn Algorithmische Spieltheorie WS 2007/

20 P oa mixed : Preis der Anarchie für gemischte NE Private Kosten von Spieler i bei Strategiewahl π = (π 1,..., π n ) S S 1... S S n : c i (π) = s=(s 1,...,sn) S 1... Sn n k=1 π k (s k ) c i (s) Soziale Kosten bei Strategiewahl π = (π 1,..., π n ) S S 1... S S n : SUM(π) = i [n] w i c i (π) (gewichtete Summe der privaten Kosten) Preis der Anarchie/Koodinationsrate OP T = min π S S 1... S Sn SUM(π) ist optimale Zuweisung P oa mixed = sup π ist gemischtes NE SUM(π) OP T Universität Paderborn Algorithmische Spieltheorie WS 2007/

21 P oa mixed : Preis der Anarchie für gemischte NE Satz 3.12: Sätze gelten auch für P oa mixed : Für ungewichtete Auslastungsspiele mit linearen Latenzfunktionen ist P oa mixed 5 2 (3.8). Es gibt ungewichtete Auslastungsspiele mit linearen Latenzfunktionen und 3 oder mehr Spielern, für die P oa mixed = 5 2 (3.9). Für gewichtete Auslastungspiele mit linearen Latenzfunktionen ist P oa mixed (3.10). Es gibt gewichtete Auslastungsspiele mit linearen Latenzfunktionen für die P oa mixed = (3.11). Universität Paderborn Algorithmische Spieltheorie WS 2007/

Preis der Anarchie für Auslastungsspiele mit polynomiellen Latenzfunktionen

Preis der Anarchie für Auslastungsspiele mit polynomiellen Latenzfunktionen Preis er Anarchie für Auslastungsspiele mit polynomiellen Latenzfunktionen Diplomarbeit Florian Schoppmann Betreuer: MSc/Dipl-Ing Martin Gairing Fachgruppe Effiziente Nutzung paralleler Systeme Prof Dr

Mehr

Auslastungspiele Smoothness Dichte Spiele Intuition und Grenzen. Preis der Anarchie. Algorithmische Spieltheorie. Sommer 2017

Auslastungspiele Smoothness Dichte Spiele Intuition und Grenzen. Preis der Anarchie. Algorithmische Spieltheorie. Sommer 2017 Algorithmische Spieltheorie Sommer 2017 Erinnerung: für reine Nash-Gleichgewichte: Strategisches Spiel Γ, soziale Kosten cost(s) für Zustand s von Γ Betrachte Σ RNG als die Menge der reinen Nash-Gleichgewichte

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29 1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Braess-Paradoxon und der Preis der Anarchie

Braess-Paradoxon und der Preis der Anarchie Algorithmische Spieltheorie Sommer 207 Wardropspiele Existenz und Eindeutigkeit von Wardrop-Gleichgewichten Verkehrsmodell von Wardrop Ein Wardropspiel ist gegeben durch einen gerichteten Graphen G = (V,

Mehr

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory 01.12.2010 Arno Mittelbach 1 Spieltheorie Einführung Evolutionary Game Theory Spieltheorie in Netzwerken Erstens

Mehr

Seminar Algorithmische Spieltheorie WS 2007/08. Martin Sauerhoff

Seminar Algorithmische Spieltheorie WS 2007/08. Martin Sauerhoff Seminar Algorithmische Spieltheorie WS 2007/08 Martin Sauerhoff Worum geht es? Internet/WWW: Interaktion zwischen Parteien ( Spielern ), die private, egoistische Interessen verfolgen; Erreichen von globalen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Braess-Paradoxon und der Preis der Anarchie

Braess-Paradoxon und der Preis der Anarchie Algorithmische Spieltheorie Sommer 208 Wardropspiele Existenz und Eindeutigkeit von Wardrop-Gleichgewichten Verkehrsmodell von Wardrop Ein Wardropspiel ist gegeben durch einen gerichteten Graphen G = (V,

Mehr

How to do? Projekte - Zeiterfassung

How to do? Projekte - Zeiterfassung How to do? Projekte - Zeiterfassung Stand: Version 4.0.1, 18.03.2009 1. EINLEITUNG...3 2. PROJEKTE UND STAMMDATEN...4 2.1 Projekte... 4 2.2 Projektmitarbeiter... 5 2.3 Tätigkeiten... 6 2.4 Unterprojekte...

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Spieltheoretischer Ansatz für selbstorganisierende Systeme

Spieltheoretischer Ansatz für selbstorganisierende Systeme Spieltheoretischer Ansatz für selbstorganisierende Systeme Institut für Informatik 27. Juni 2006 Inhaltsverzeichnis 1 Ziel des Aufsatz 2 Geschichte 3 Einführung 4 Das Spiel Experiment 5 Konzepte zur Lösung

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt? Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Public-Key-Algorithmen WS2015/2016

Public-Key-Algorithmen WS2015/2016 Public-Key-Algorithmen WS2015/2016 Lernkontrollfragen Michael Braun Was bedeuten die kryptographischen Schutzziele Vertraulichkeit, Integrität, Nachrichtenauthentizität, Teilnehmerauthentizität, Verbindlichkeit?

Mehr

Information Systems Engineering Seminar

Information Systems Engineering Seminar Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Diskrete Modellierung

Diskrete Modellierung Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 8, 4.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Am Dienstag, 11.11., fällt die

Mehr

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat Logik-Programme Definition: Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat die Form {P }. Eine Prozedurklausel ist eine Klausel der Form {P, Q 1, Q 2,..., Q k } mit k 1. P

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Algorithmische Spieltheorie. Martin Gairing

Algorithmische Spieltheorie. Martin Gairing Algorithmische Spieltheorie Martin Gairing Folien zur Vorlesung vom 26.04.2004 Organisatorisches: Vorlesung Montags, 14:15-15:45 Uhr Übungen Montags, 16:00-17:00 Uhr Folien zur Vorlesung unter http://www.upb.de/cs/ag-monien/lehre/ss04/spieltheo/

Mehr

Print2CAD 2017, 8th Generation. Netzwerkversionen

Print2CAD 2017, 8th Generation. Netzwerkversionen Installation der Netzwerkversion Kazmierczak Software Print2CAD 2017, 8th Generation Print2CAD 2017, 8th Generation Netzwerkversionen Einführung Installationshinweise Die Programme von Kazmierczak Software

Mehr

Fit in Mathe. Juni 2014 Klassenstufe 9. Lineare Funktionen

Fit in Mathe. Juni 2014 Klassenstufe 9. Lineare Funktionen Thema Musterlösungen Juni 0 Klassenstufe 9 Lineare Funktionen a) Vervollständige die Tabelle mit den Funktionswerten: x 6 8 0 6 0 x 5 6 7 8 9 0 b) Gib die Funktionsgleichung an x 6 8 0 6 0 8 x,5,75,5 0,5-0,5

Mehr

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick

Mehr

Jedes Jahr mehr Zinsen!

Jedes Jahr mehr Zinsen! Aufgabe 21 Zinsen erhält man für gewöhnlich nur für ein Jahr. Wenn man aber schon vorher an Erspartes möchte, muss man die Tageszinsen ermitteln. Erstelle eine Tabelle, die nach der Eingabe von Kapital,

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Groß mdgrosse@sbox.tugraz.at 20. Januar 2003 0-0 Matrixspiel Matrix Game, Strategic Game, Spiel in strategischer Form.

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Elliptische Kurven in der Kryptographie

Elliptische Kurven in der Kryptographie Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Zeit- und Feriensaldoberechnung TimeSafe Leistungserfassung

Zeit- und Feriensaldoberechnung TimeSafe Leistungserfassung Keep your time safe. Zeit- und Feriensaldoberechnung TimeSafe Leistungserfassung Infotech AG T +423 380 00 00 Im alten Riet 125 F +423 380 00 05 9494 Schaan info@infotech.li Liechtenstein www.infotech.li

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Gabor Wiese Universität Regensburg Kryptographie mit elliptischen Kurven p. 1 Problemstellung Kryptographie mit elliptischen Kurven p. 2 Problemstellung Caesar Kryptographie

Mehr

Einführung in die Energie- und Umweltökonomik

Einführung in die Energie- und Umweltökonomik Otto-Friedrich-Universität Bamberg Lehrstuhl für Volkswirtschaftslehre insb. Wirtschaftspolitik Dr. Felix Stübben Klausur Einführung in die Energie- und Umweltökonomik im WS 2013/14 HINWEIS: Es sind sämtliche

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Tutorial Moodle 2 Rollenzuweisung

Tutorial Moodle 2 Rollenzuweisung Tutorial Moodle 2 Rollenzuweisung Im folgenden Tutorial geht es um die Zuweisung von Rollen. Dies ist möglich für: Die ganze Instanz Die globale Zuweisung von Rollen (in diesem Fall nur Kursersteller/in

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Kapitel 1: Einführung. Was ist Informatik? Begriff und Grundprobleme der Informatik. Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik

Kapitel 1: Einführung. Was ist Informatik? Begriff und Grundprobleme der Informatik. Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik Was ist Informatik? Begriff und Grundprobleme der Informatik Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik Was ist Informatik? Informatik = computer science? Nach R. Manthey, Vorlesung Informatik

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Regeln für das Qualitäts-Siegel

Regeln für das Qualitäts-Siegel Regeln für das Qualitäts-Siegel 1 Inhalt: Die Qualitäts-Regeln vom Netzwerk Leichte Sprache 3 Die Übersetzung in Leichte Sprache 5 Die Prüfung auf Leichte Sprache 6 Wir beantworten jede Anfrage 7 Wir schreiben

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr