3. Das Auslastungsspiel

Größe: px
Ab Seite anzeigen:

Download "3. Das Auslastungsspiel"

Transkript

1 Literatur: 3. Das Auslastungsspiel R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, pp D. S. Johnson, Chr. H. Papadimitriou, M. Yannakakis. How easy is local search? Proceedings of the 26th IEEE FOCS, pp A. Fabrikant, Chr. H. Papadimitriou, K. Talwar. The Complexity of Pure Nash Equilibria. Proceedings of the 36th ACM STOC D. Fotakis, S. Kontogiannis, P. Spirakis. Selfish Unsplittable Flows. Proceedings of the ICALP Awerbuch, Azar, Epstein. The Price of Routing Unsplittable Flow. Proceedings of the 37th ACM STOC Christodoulou, Koutsoupias. The Price of Anarchy of Finite Congestion Games. Proceedings of the 37th ACM STOC Schwerpunkte: allgemeines Auslastungsspiel (z.b. Netzwerkauslastung in allgemeinen Netzwerken) Koordinationsfaktor: Leistungsverlust durch fehlende Koordination Existenz von reinen Nash Equilibrien / Berechnung reiner Nash Equilibrien PLS-Vollständigkeit Universität Paderborn Algorithmische Spieltheorie WS 2007/

2 Auslastungsspiel: n Spieler 1,..., n, E endliche Menge von Betriebsmitteln, Strategiemenge S i Pot(E) für jeden Spieler i, 1 i n, Verzögerungsfunktion d e : {1,..., n} N für jedes e E, d e (j) nicht-fallend in j. Private Kosten bei Strategiewahl s = (s 1,..., s n ) S 1... S n : f s (e) = {i; e s i } ist Zahl der Spieler die Betriebsmittel e benutzen, d e (f s (e)) ist Verzögerung durch Betriebsmittel e, c i (s) = e si d e (f s (e)) sind private Kosten von Spieler i. Reines Nash Equilibrium s = (s 1,..., s n ) S 1... S n : Für jeden Spieler i gilt c i (s 1,..., s i,..., s n ) c i (s 1,..., s i,..., s n) für alle s i S i. Universität Paderborn Algorithmische Spieltheorie WS 2007/

3 Netzwerk-Auslastungsspiel: G = (V, E) gerichteter Graph, n Spieler 1,..., n, a i V, b i V sind Start- und Zielknoten für Spieler i, 1 i n, S i Pot(E) ist Menge der Wege von a i nach b i für jedes i, 1 i n, Verzögerungsfunktion d e : {1,..., n} N für jedes e E, d e (j) nicht-fallend in j. Netzwerk-Auslastungsspiel ist genau dann symmetrisch, wenn a 1 =... = a n und b 1 =... = b n. Universität Paderborn Algorithmische Spieltheorie WS 2007/

4 Satz 3.1: Sei I = (n, E, S 1,..., S n, {d e } e E ) eine Instanz des Auslastungsspiels. I besitzt mindestens ein reines Nash Equilibrium. Beweis: Definiere Potentialfunktion h : (S 1... S n ) N durch h(s) = e E fs(e) j=1 d e (j). Wenn s = (s 1,..., s i,..., s n ) und s = (s 1,..., s i,..., s n), dann gilt: h(s) h(s ) = d e (f s (e)) e s i s i = c i (s) c i (s ). e s i s i d e (f s (e)) Hieraus folgt: h(s) minimal s ist Nash Equilibrium. Universität Paderborn Algorithmische Spieltheorie WS 2007/

5 Folgerung 1: Sei I = (n, E, S 1,..., S n, {d e } e E ) eine Instanz des Auslastungsspiels. Ein reines Nash Equilibrium für I kann in Zeit 0 n d e (j) e E j=1 berechnet werden. Folgerung 2: Wenn die Funktionen {d e } e E Polynomzeit berechnet werden. alle Polynome sind, dann kann ein reines Nash Equilibrium in Universität Paderborn Algorithmische Spieltheorie WS 2007/

6 Auslastungsspiel mit Gewichten: n Spieler mit Gewichten w 1,..., w n ; W = n i=1 w i, E endliche Menge von Betriebsmitteln, Strategiemenge S i Pot(E) für jeden Spieler i, 1 i n, Verzögerungsfunktion d e : {1,..., W } N für jedes e E, d e (j) nicht-fallend in j. Private Kosten bei Strategiewahl s = (s 1,..., s n ) S 1... S n : f s (e) = e si w i ist Gewicht der Spieler die Betriebsmittel e benutzen, d e (f s (e)) ist Verzögerung durch Betriebsmittel e, c i (s) = e si d e (f s (e)) sind private Kosten von Spieler i. Reines Nash Equilibrium s = (s 1,..., s n ) S 1... S n : Für jeden Spieler i gilt c i (s 1,..., s i,..., s n ) c i (s 1,..., s i,..., s n) für alle s i S i. Universität Paderborn Algorithmische Spieltheorie WS 2007/

7 Ein Auslastungsspiel mit Gewichten besitzt im Allgemeinen kein reines Nash Equilibrium! Beispiel: Universität Paderborn Algorithmische Spieltheorie WS 2007/

8 Instanz ohne Potentialfunktion: (w 1 = 2, w 2 = 1) s 9/18/27 6/13/21 a c b d 2/10/20 2/4/16 e 20/40/60 t user 1 s path user 2 s path user 1 s latency user 2 s latency a, d e = a, d b, d = = 18 b, c b, d = = 22 b, c e = a, d e = Universität Paderborn Algorithmische Spieltheorie WS 2007/

9 Satz 3.4: Sei I = (w 1,..., w n, E, S 1,..., S n, {d e } e E ) eine Instanz des gewichteten Auslastungsspiels mit S i E für alle i. Dann besitzt I mindestens ein reines Nash Equilibrium. Satz 3.5: Sei I = (w 1,..., w n, E, S 1,..., S n, {d e } e E ) eine Instanz des gewichteten Auslastungsspiels mit d e (x) = a e + b e x, a e, b e N, für alle e E. Dann besitzt I mindestens ein reines Nash Equilibrium. Universität Paderborn Algorithmische Spieltheorie WS 2007/

10 Beweis von Satz 3.5 Angabe einer Potentialfunktion h(s) = i [n] e s i w i [d e (f s (e)) + d e (w i )] = e E f s (e) d e (f s (e)) + i [n] e s i w i d e (w i ) Mit dieser Potentialfunktion h gilt: Wenn s S und s = (s i, s i ) für ein i [n] und s i S i, dann h(s) h(s ) = 2 w i [c i (s) c i (s )] Universität Paderborn Algorithmische Spieltheorie WS 2007/

11 h ist Spezialfall von h Sei w i = 1 für alle i und d e (x) = a e + b e x e E h(s) = = = h(s) = = e E e E e E e E e E f s (e) d e (f s (e)) + (a e + b e f s (e)) f s (e) + i [n] e s i w i d e (w i ) e E (2a e + b e ) f s (e) + b e f s (e) 2 fs(e) j=1 (a e + b e j) a e f s (e) + b e fs(e) (f s (e) + 1) 2 (a e + b e ) f s (e) = 1 2 h(s) Universität Paderborn Algorithmische Spieltheorie WS 2007/

12 Folgerung: Sei I = (w 1,..., w n, E, S 1,..., S n, {d e } e E ) eine Instanz des gewichteten Auslastungsspiels mit d e (x) = a e + b e x, a e, b e N, für alle e E. Ein reines Nash Equilibrium für I kann in pseudopolynomieller Zeit berechnet werden. Universität Paderborn Algorithmische Spieltheorie WS 2007/

13 Auslastungsspiel: Preis der Anarchie Literatur: G. Christodoulou, E. Koutsoupias. The Price of Anarchy of Finite Congestion Games. Proceedings of the 37th ACM STOC, B. Awerbuch, Y. Azar, A. Epstein. The Price of Routing Unsplittable Flow. Proceedings of the 37th ACM STOC, S. Aland, D. Dumrauf, M. Gairing, B. Monien, F. Schoppmann. Exact Price of Anarchy for Polynomial Congestion Games. Proceedings of the 23rd STACS, Bemerkung: Wir betrachten zuerst reine Nash Equilibrien. Universität Paderborn Algorithmische Spieltheorie WS 2007/

14 Private Kosten bei Strategiewahl s = (s 1,..., s n ) S 1... S n : f s (e) = i:e si w i ist die Summe der Gewichte der Spieler die Betriebsmittel e benutzen. d e (f s (e)) ist Verzögerung durch Betriebsmittel e, c i (s) = e si d e (f s (e)) sind private Kosten von Spieler i. Soziale Kosten bei Strategiewahl s = (s 1,..., s n ) S 1... S n : Summe der Privaten Kosten SUM(s) = i [n] w i c i (s) = e E f s (e) d e (f s (e)) (In der Literatur wurden auch andere soziale Kostenmaße untersucht.) Preis der Anarchie/Koodinationsrate OP T = min s S SUM(s) ist optimale Zuweisung P oa pure = sup s ist NE SUM(s) OP T Universität Paderborn Algorithmische Spieltheorie WS 2007/

15 Übersicht: P oa pure für ungewichtete Auslastungsspiele P oa pure symmetrisch Lineare Latenzfunktionen de(x) = ae x + be mit ae, be 0 e E Latenzfunktionen: Polynome vom Grad d de(x) = d i=0 a e(i)x i mit ae(i) 0 i {0,..., d}, e E 5n 2 2n+1 d Θ(d) asymmetrisch 5 2 P P := (k+1) 2d+1 k d+1 (k+2) d (k+1) d+1 (k+2) d +(k+1) d k d+1 k := Φ d und Φ d ist die positive reelle Lösung von (Φ d + 1) d = Φ d+1 d. Bemerkung: Ein Auslastungsspiel ohne Gewichte ist genau dann symmetrisch, wenn S i = S j für alle i {1,..., n}, j {1,..., n}. Universität Paderborn Algorithmische Spieltheorie WS 2007/

16 Hilfssätze Satz 3.6: Es seien α, β 0 nicht negative ganze Zahlen. Dann ist β (α + 1) 1 3 α β2. Satz 3.7: Es seien α, β 0 nicht negative reelle Zahlen, und Φ = Φ 1 = 1 2 (1 + 5). Dann ist β (α + β) 1 2Φ α2 + (Φ 2 Φ 2 ) β2. Universität Paderborn Algorithmische Spieltheorie WS 2007/

17 P oa pure für ungewichtete Auslastungsspiele mit linearen Latenzfunktionen Satz 3.8: Für ungewichtete Auslastungsspiele mit linearen Latenzfunktionen ist der Preis der Anarchie höchstens 5 2. Satz 3.9: Es gibt ungewichtete Auslastungsspiele mit linearen Latenzfunktionen und 3 oder mehr Spielern, für die der Preis der Anarchie gleich 5 2 ist. Universität Paderborn Algorithmische Spieltheorie WS 2007/

18 Übersicht: P oa pure für gewichtete Auslastungsspiele P oa pure asymmetrisch Lineare Latenzfunktionen de(x) = ae x + be mit ae, be 0 e E Latenzfunktionen: Polynome vom Grad d de(x) = d i=0 a e(i)x i mit ae(i) 0 i {0,..., d}, e E Φ d+1 d Φ d ist die positive reelle Lösung von (Φ d + 1) d = Φ d+1 d. Universität Paderborn Algorithmische Spieltheorie WS 2007/

19 P oa pure für gewichtete Auslastungsspiele Satz 3.10: Für gewichtete Auslastungspiele mit linearen Latenzfunktionen ist der Preis der Anarchie höchstens Satz 3.11: Es gibt gewichtete Auslastungsspiele mit linearen Latenzfunktionen für die der Preis der Anarchie gleich ist. Bemerkung: Für d = 1 ist Φ d+1 d = Φ 2 1 = Universität Paderborn Algorithmische Spieltheorie WS 2007/

20 P oa mixed : Preis der Anarchie für gemischte NE Private Kosten von Spieler i bei Strategiewahl π = (π 1,..., π n ) S S 1... S S n : c i (π) = s=(s 1,...,sn) S 1... Sn n k=1 π k (s k ) c i (s) Soziale Kosten bei Strategiewahl π = (π 1,..., π n ) S S 1... S S n : SUM(π) = i [n] w i c i (π) (gewichtete Summe der privaten Kosten) Preis der Anarchie/Koodinationsrate OP T = min π S S 1... S Sn SUM(π) ist optimale Zuweisung P oa mixed = sup π ist gemischtes NE SUM(π) OP T Universität Paderborn Algorithmische Spieltheorie WS 2007/

21 P oa mixed : Preis der Anarchie für gemischte NE Satz 3.12: Sätze gelten auch für P oa mixed : Für ungewichtete Auslastungsspiele mit linearen Latenzfunktionen ist P oa mixed 5 2 (3.8). Es gibt ungewichtete Auslastungsspiele mit linearen Latenzfunktionen und 3 oder mehr Spielern, für die P oa mixed = 5 2 (3.9). Für gewichtete Auslastungspiele mit linearen Latenzfunktionen ist P oa mixed (3.10). Es gibt gewichtete Auslastungsspiele mit linearen Latenzfunktionen für die P oa mixed = (3.11). Universität Paderborn Algorithmische Spieltheorie WS 2007/

Quantifizierung der Ineffizienz von Equilibria

Quantifizierung der Ineffizienz von Equilibria Quantifizierung der Ineffizienz von Equilibria Marcus Juli 2010 INSTITUT FÜR THEORETISCHE INFORMATIK KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:

Mehr

Seminar Algorithmische Spieltheorie WS 2007/08. Martin Sauerhoff

Seminar Algorithmische Spieltheorie WS 2007/08. Martin Sauerhoff Seminar Algorithmische Spieltheorie WS 2007/08 Martin Sauerhoff Worum geht es? Internet/WWW: Interaktion zwischen Parteien ( Spielern ), die private, egoistische Interessen verfolgen; Erreichen von globalen

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Groß mdgrosse@sbox.tugraz.at 20. Januar 2003 0-0 Matrixspiel Matrix Game, Strategic Game, Spiel in strategischer Form.

Mehr

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n 4. Bayes Spiele Definition eines Bayes Spiels G B (n, S 1,..., S n, T 1,..., T n, p, u 1,..., u n ) n Spieler 1,..., n S i Strategiemenge für Spieler i, S S 1... S n T i Typmenge für Spieler i, T T 1...

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch 2. Nash Equilibria Situation: n Spieler 1,..., n spielen ein (einzügiges) Spiel. S i 1 i n ist die Menge der Strategien (= Aktionen) von Spieler i. u i : S 1... S n ist die Nutzenfunktion für Spieler i.

Mehr

Proseminar. Spieltheorie. Sommersemester 2015

Proseminar. Spieltheorie. Sommersemester 2015 Proseminar Spieltheorie Sommersemester 2015 Informationen bei: Prof. Dr. Martin Möhle Eberhard Karls Universität Tübingen Mathematisches Institut Tel.: 07071/29-78581 Vortragsübersicht Teil I: Allgemeine

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Komplexität. Matthias Sax. 9. Juli Humboldt-Universität zu Berlin. Institut für Informatik

Komplexität. Matthias Sax. 9. Juli Humboldt-Universität zu Berlin. Institut für Informatik Komplexität Matthias Sax Humboldt-Universität zu Berlin Institut für Informatik 9. Juli 2007 Matthias Sax Komplexität 1 / 21 1 Problemstellung 2 Polynomiale Fälle Ungleichheit Anfragen in der Logik der

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14.

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Spieltheorie Nash-Gleichgewichts-Berechnung Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel,

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory 01.12.2010 Arno Mittelbach 1 Spieltheorie Einführung Evolutionary Game Theory Spieltheorie in Netzwerken Erstens

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele

Mehr

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung c by Rolf Haenni (2006) Seite 170 Teil I: Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie Neutrale Spiele Die Conway-Theorie Teil III: Spielalgorithmen in der

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Spieltheoretischer Ansatz für selbstorganisierende Systeme

Spieltheoretischer Ansatz für selbstorganisierende Systeme Spieltheoretischer Ansatz für selbstorganisierende Systeme Institut für Informatik 27. Juni 2006 Inhaltsverzeichnis 1 Ziel des Aufsatz 2 Geschichte 3 Einführung 4 Das Spiel Experiment 5 Konzepte zur Lösung

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr

Multiagent Interactions

Multiagent Interactions Veranstaltung: Agentensysteme SS0 Veranstalter: Alexa Breuing Julia Tolksdorf Vortragende: Florian Follmer Thomas Schöpping Übersicht Motivation Definitionen Spieltheoretische Ansätze Beispiel: Prisoner

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Das P versus N P - Problem

Das P versus N P - Problem Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick

Mehr

Spieltheorie I für VWL Midterm Name:... Matrikelnummer:...

Spieltheorie I für VWL Midterm Name:... Matrikelnummer:... Spieltheorie I für VWL Midterm 10.05.004 Name:... Matrikelnummer:... ACHTUNG!!!: Alle Antworten sind zu begründen. Unbegründete bzw. unleserliche Antworten werden nicht bewertet! (1) Betrachten Sie das

Mehr

Grundlegende Lösungskonzepte der Spieltheorie

Grundlegende Lösungskonzepte der Spieltheorie Universität Konstanz Fachbereich Informatik und Informationswissenschaften Lehrstuhl: Prof. Dr. Ulrik Brandes Seminar: Algorithmische Spieltheorie Betreuer: Bobo Nick Sommersemester 2009 Grundlegende Lösungskonzepte

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

2. Übungsblatt zu Algorithmen II im WS 2016/2017

2. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Data Management and Routing in General Networks

Data Management and Routing in General Networks Data Management and Routing in General Networks Harald Räcke Universität Paderborn 1 Einleitung Im Bereich des Hochleistungsrechnens ist in den vergangenen Jahren ein Trend weg von dem Einsatz dedizierter

Mehr

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29 1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c

Mehr

F r e i t a g, 3. J u n i

F r e i t a g, 3. J u n i F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt;

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt; Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt Referent Matthias Rost 1 Einleitung Definitionen Maximaler Dynamischer Fluss Algorithmus von Ford-Fulkerson Techniken zur

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS3 Slide 1 Wissensbasierte Systeme Sebastian Iwanowski FH Wedel Kap. 3: Algorithmische Grundlagen der KI WBS3 Slide 2 Suchstrategien Warum sind Suchstrategien so wichtig in Wissensbasierten Systemen?

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 8, 4.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Am Dienstag, 11.11., fällt die

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

12. Vorlesung. 19. Dezember 2006 Guido Schäfer

12. Vorlesung. 19. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Das Steinerbaumproblem

Das Steinerbaumproblem Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Nullstellen von Polynomen und Erweiterungskörper Vortrag im Modul Kommunikation über Mathematik

Nullstellen von Polynomen und Erweiterungskörper Vortrag im Modul Kommunikation über Mathematik Nullstellen von Polynomen und Erweiterungskörper Vortrag im Modul Kommunikation über Mathematik Alexander Steen, a.steen@fu-berlin.de 1 Polynome und ihre Nullstellen Als erstes betrachten wir Nullstellen

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

3.4 von Neumannsche Theorie kooperativer Spiele

3.4 von Neumannsche Theorie kooperativer Spiele 3.4 von Neumannsche Theorie kooperativer Spiele Gliederung Die charakteristische Funktion eines Spieles Der Wert eines Spieles und Strategische Äquivalenz Der von Neumannsche Lösungsbegriff Definition

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Spieltheorie Gemischte Strategien

Spieltheorie Gemischte Strategien Spieltheorie Gemischte Strategien Emanuel Kitzelmann Kognitive Systeme Universität Bamberg Übung KogSys I, WS 06/07 E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 1 /

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Diskrete Modellierung

Diskrete Modellierung Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

Spiele in der Informatik

Spiele in der Informatik Spiele in der Informatik Martin Lange Lehr- und Forschungseinheit Theoretische Informatik Informatik-Schnupperstudium an der LMU, 29.3.2010 Übersicht Teil 1 Schokoladenessen für Spieltheoretiker ein kleines

Mehr

Anwendungen der Spieltheorie

Anwendungen der Spieltheorie Mikroökonomie I Einführung in die Spieltheorie Universität Erfurt Wintersemester 08/09 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 1 / 28 Spieltheorie Die Spieltheorie modelliert strategisches

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Public-Key-Algorithmen WS2015/2016

Public-Key-Algorithmen WS2015/2016 Public-Key-Algorithmen WS2015/2016 Lernkontrollfragen Michael Braun Was bedeuten die kryptographischen Schutzziele Vertraulichkeit, Integrität, Nachrichtenauthentizität, Teilnehmerauthentizität, Verbindlichkeit?

Mehr

Logistik: Rundreisen und Touren

Logistik: Rundreisen und Touren Logistik: Rundreisen und Touren 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Von Universitätsprofessor Dr. Wolfgang

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

KAPITEL 4 FLÜSSE IN NETZWERKEN

KAPITEL 4 FLÜSSE IN NETZWERKEN KAPITEL 4 FLÜSSE IN NETZWERKEN F. VALLENTIN, A. GUNDERT 1. Das Max-Flow-Min-Cut Theorem Es sei D = (V, A) ein gerichteter Graph, s, t V zwei Knoten. Wir nennen s Quelle und t Senke. Definition 1.1. Eine

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Pflichtteil Aufgabe : Bilden Sie die erste Ableitung der Funktion mit +5 ( VP) Verwende Produkt- und Kettenregel

Mehr

Evolutionäre Spiele. Wolfgang Mulzer, Yannik Stein

Evolutionäre Spiele. Wolfgang Mulzer, Yannik Stein Seminar über Algorithmen 11.02.2014 Julian Ritter Evolutionäre Spiele Wolfgang Mulzer, Yannik Stein 1 Idee Motivation aus der Natur: Interesse der theoretischen Biologie an einer Bevölkerung, die um Ressourcen

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung

Tutorium Physik 1. Arbeit, Energie, Leistung 1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 3. ARBEIT, ENERGIE, LEISTUNG 3.1 Energie: Aufgabe (*) 4 a. Was ist Energie? b. Worin liegt der Unterschied zwischen

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

Algorithmische Methoden der Netzwerkanalyse

Algorithmische Methoden der Netzwerkanalyse Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr