Wärmeübertragung an einem Heizungsrohr

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wärmeübertragung an einem Heizungsrohr"

Transkript

1 HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen, Nusselt-Zahl, ärmedurchgang Kurzzusammenfassung Das Beispiel umfasst die Problematik einer nicht isolierten asserleitung in z.b. einem älteren ohnhaus mit einem nicht regulierbaren Koks-Heizkessel. Die assertemperatur beträgt im angeführten Beispiel 80 C. Die Umgebungstemperatur der Luft 0 C. Es soll der ärmeverlust der nichtisolierten Leitung demjenigen einer mit einer Polyurethanschicht isolierten Leitung gegenübergestellt werden. Aus den Ergebnissen kann und soll der Sinn einer Isolierung abgeleitet und veranschaulicht werden. eiters soll dem angehenden Absolventen die Anwendung der Nusselt-Zahl nähergebracht werden. Didaktische Überlegungen / Zeitaufwand: Die ärmelehre gehört zweifelsohne zu den in der Berechnung aufwendigsten (Iterationen) und im Gedankengang zu den am schwersten verständlichen Gebieten der Mechanik. MathCAD bietet hier eine fast einzigartige Möglichkeit auszuprobieren, was passiert, wenn man etwas an den bestimmenden Parametern ändert, ohne an den langen umständlichen händischen Rechnungen zu verzweifeln. Umso mehr kan dieses Stoffgebiet den Schülern wesentlich leichter nähergebracht werden, wenn die Aufgabenstellungen mit MathCAD bearbeitet werden. Lehrplanbezug (bzw. Gegenstand / Abteilung / Jahrgang): z.b: Angewandte Mathematik, 5.Jahrgang, alle Abteilungen Mathcad-Version: Mathcad 00 Literaturangaben: K. Langeheinecke "Thermodynamik für Ingenieure", ISBN , VIEEG Steger "Technische Mechanik 3", Lehrbuch Anmerkungen bzw. Sonstiges: Diese Aufgabe wurde vom Autor bereits als Reifeprüfungsaufgabe gestellt

2 HTBL ien 0 ärmeübertragung Seite von 7 asserabkühlung in einem Rohr mit Luft bar := 0 5 Pa Nm := N m kj := 0 3 J T0 := 73.5 K C := K In einer nicht isolierten horizontalen ½ Rohrleitung aus Kupfer ( D innen =.7mm, andstärke s = 0.5 mm, Länge L = 80 m) strömt asser mit einer Eintrittstemperatur von 80 C mit einer Geschwindigkeit von 0.35 m/s. Die Umgebungstemperatur t u beträgt 0 C. Die ärmeübergangszahl luftseitig α a beträgt 9 /m²k. Man berechne und zeichne: a) Skizzieren Sie das Temperatur Rohrlängen Diagramm mit allen Größen b) Die Nusselt-Zahl Nu i, α i, die ärmedurchgangszahl k c) Die Austrittstemperatur t a nach der Länge L, und den ärmeverlust Q & V d) elche Austrittstemperatur t a und ärmeverlust Q & stellt sich ein, wenn das Rohr mit einer mm V dicken Isolierschicht aus Polyurethan λ PU = 0.05/mK umhüllt wird? asser assertemperatur T asser := ( ) K Geschwindigkeit lt Angabe c asser := 0.35 m s Dichte ρ asser := 988 kg m 3 kinematische Viskosität ν asser m := s Prandtl Zahl Pr :=.3 ärmeleitzahl asser λ asser := spezif. ärmekapazität c passer := 480 J kg K Heizungsrohr Länge L Rohr := 80 m Innendurchmesser d innen :=.7mm andstärke s Rohr := 0.5 mm Aussendurchmesser d aussen := d innen s Rohr d aussen = 3.7 mm ärmeleitzahl Kupfer λ Kupfer := 393 Luft Temperatur T Luft := ( ) K ärmeübergangszahl aussen α a := 9 m K Berechnung der Radien des Rohres r i := d innen 0.5 r a := r i s Rohr r i = 6.35 mm r a = 6.85 mm

3 HTBL ien 0 ärmeübertragung Seite 3 von 7 ärmeübergangszahl innen hängt von der Reynoldszahl und von der Nusseltzahl ab. Gleichungen siehe (Gabernig, oder Langeheinecke " Thermodynamik für Ingenieure") Reynoldszahl Re := c asser d innen ν asser Re = 78 turbulente Strömung, da > 300! Nusselt - Zahl für turbulente Rohrströmungen lt. Langeheinecke ξ := (.8 log( Re).64) ~ Rohrreibungszahl Prandtl - Colebrook ξ = Nu Turbulent := ξ 8.7 ( Re 000) ξ 8 Pr 3 Pr d innen L Rohr 3 Nu Turbulent = ärmeübergangszahl innen Nu = α d λ Nu Turbulent λ asser α i := d innen α i = m K ärmedurchgangszahl (Grundlagenwissen, oder Steger "Technische Mechanik 3") k Rohr := α i r i π ln r a λ Kupfer r i α a r a k Rohr = Massenstrom asser (mit Kontinuitätsgleichung) d innen π A Rohr := 4 m Punkt := c asser ρ asser A Rohr m Punkt = kg h Berechnung der Austrittstemperatur des assers Das asser 80 kühlt sich an der Umgebung 0 ab. Ansatz: Die ärme, die durch ärmedurchgang an die Umgebung abgegeben wird, muss gleich der ärme sein, die das asser abgibt --> dadurch kühlt es sich ab. Die übertragene ärme muss hierbei wie bei einem ärmetauscher (Rohr an Luft ist einer, wobei die Luftseite eine konstante Temperatur aufweist) mit logarithmischer Temperaturdifferenz gerechnet werden. Dadurch ist gewährleistet, dass keine physikalisch sinnlose (z.b. Austrittstemperatur des assers liegt unter der Lufttemperatur) auftritt.

4 HTBL ien 0 ärmeübertragung Seite 4 von 7 Vom asser abgegebener ärmestrom Q = m Punkt c passer T asser T An die Luft durch ärmedurchgang übertragener ärmestrom Q = k Rohr L Rohr T M Logarithmische Temperaturdifferenz (lt. Steger 3) T E T A T M = ln T E T A ärmetauscher - Diagramm Eintrittstemperaturdifferenz T E = T asserein T Luft Austrittstemperaturdifferenz T A = T asseraus T Luft Berechnung der gesuchten Austrittstemperatur T Austritt des assers nach der Rohrlänge L Die Lösung erfolgt mit einem "Lösungsblock": Schätzwert für TAustritt --> Vorgabe --> Gleichung --> suchen () (Die beiden ärmeströme werden dabei gleich gesetzt) Schätzwert für Austrittstemperatur T Austritt := 73 K 54 K Vorgabe m Punkt c passer T asser T Austritt = k Rohr L Rohr T Austritt := Suchen( T Austritt ) T asser T Austritt ln T asser T Luft T Austritt T Luft Austrittstemperatur in [K] T Austritt = K

5 HTBL ien 0 ärmeübertragung Seite 5 von 7 Umrechnung auf C: Funktioniert nur über eine "Verschiebung" ( C werden aus K durch Subtraktion des absoluten Nullpunkts errechnet) Austrittstemperatur in [ C] t Austritt := T Austritt T0 t Austritt = C T asser T Austritt loagrithmische Temp.diff. T M := ln T T M = C asser T Luft T Austritt T Luft ärmestrom über Rohr Q Tauscher := k Rohr L Rohr T M Q Tauscher = 4.67 k vom asser abgegebeber ärmestrom Q asser := m Punkt c passer T Austritt T asser Q asser = 4.67 k Interpretation: Der abgebene ärmestrom (=ärmeverlust) ist sehr groß. Das asser kühlt sich sehr stark ab. Abhilfe: Das Rohr wird mit einer Polystyrolschicht isoliert (wärmegedämmt.) b) Mit Isolierschicht Polystyrol: Stärke der Isolierschicht s Polystyrol := mm r aps := r a s Polystyrol r aps = 8.85 mm ärmeleitzahl Polystyrol λ Polystyrol := 0.05 (In der ärmedurchgangszahl kommt ein Term dazu) k Rohr_isolier := α i r i ln r a λ Kupfer r i π ln r aps λ Polystyrol r a α a r a k Rohr_isolier = 0.07 Berechnung der asseraustrittstemperatur T Austritt_isoliert mit Isolierschicht Schätzwert T Austritt_isoliert := 300 K Vorgabe m Punkt c passer T asser T Austritt_isoliert = k Rohr_isolier L Rohr T Austritt_isoliert := Suchen( T Austritt_isoliert ) T asser T Austritt_isoliert ln T asser T Luft T Austritt_isoliert T Luft

6 HTBL ien 0 ärmeübertragung Seite 6 von 7 Austrittstemperatur in [K] T Austritt_isoliert = K Austrittstemperatur in [ C] t Austritt_isoliert := T Austritt_isoliert T0 t Austritt_isoliert = 7.75 C loagrithmische Temp.diff. T asser T Austritt_isoliert T M_neu := T asser T Luft ln T Austritt_isoliert T Luft T M_neu = C ärmestrom über Rohr mit Isolierschicht Q Tauscher_neu := k Rohr_isolier L Rohr T M_neu Q Tauscher_neu =.5 k ärmestrom über Rohr ohne Isolierschicht Q Tauscher = 4.67 k relative_ersparnis := Q Tauscher Q Tauscher_neu Q Tauscher relative_ersparnis = % Anmerkung: Mit der Isolierschicht aus Polystyrol kann man im obigen Beispiel den ärmeverlust um ca 68% reduzieren. Aufgabenstellung: Selbst ausprobieren, welche Parameter (ärmeleitzahl, Dicke der Isolierschicht. Länge des Rohres, Temperaturen des assers und der Luft...) auf den ärmeverlust den größten Einfluss haben.

7 HTBL ien 0 ärmeübertragung Seite 7 von 7 k

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

Modulpaket TANK Beispielausdruck

Modulpaket TANK Beispielausdruck Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 200 Versuch 0 ärmetransport durch ärmeleitung und Konvektion in einem Doppelrohrwärmeaustauscher Betreuer: olfgang Rüth (rueth@dechema.de,

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Kennlinie einer 2-stufigen Kreiselpumpe

Kennlinie einer 2-stufigen Kreiselpumpe HTBL Wien 1 Kennlinie einer -stuf. Kreiselpumpe Seite 1 von 1 DI Dr. techn. Klaus LEEB Kennlinie einer -stufigen Kreiselpumpe Mathematische / Fachliche Inhalte in Stichworten: Ermitteln einer Kennlinie.

Mehr

Exergie. Aufgabe 1: Berechnen Sie: a) die Eintrittstemperatur T Dampf,ein des gesättigten Dampfes, b) den Exergieverluststrom ĖV des Prozesses und

Exergie. Aufgabe 1: Berechnen Sie: a) die Eintrittstemperatur T Dampf,ein des gesättigten Dampfes, b) den Exergieverluststrom ĖV des Prozesses und Übung 1 Exergie Aufgabe 1: Flüssiges Wasser (15 C) wird durch Einmischen von Dampf in einer Mischkammer erwärmt. Das Wasser tritt mit einem Massenstrom von ṁ W asser = 1 kg/s in die Kammer ein, der Dampf

Mehr

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)?

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)? Übung 8 Aufgabe 5.3: Carnot-Schiff In der Region des Nordmeeres liegt die Wassertemperatur zumeist über der Temperatur der Umgebungsluft. Ein Schiff soll die Temperaturdifferenz zwischen diesen beiden

Mehr

Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen

Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite von 8 Schwarz Herwig herwig.schwarz@htl-apfenberg.ac.at Florian Grabner florian.grabner@gmx.at Drucverlust in Rohrleitungen Mathematische / Fachliche

Mehr

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung Institut für Energiesysteme und Energietechnik Vorlesungsübung 1 Musterlösung 3.1 Kohlekraftwerk Aufgabe 1 Gesucht: Aufgrund der Vernachlässigung des Temperaturunterschiedes des Luft-, Rauchgas- und Brennstoffstromes

Mehr

Windrad 2MW:Der Energieertrag (Windverteilung - cp-wert)

Windrad 2MW:Der Energieertrag (Windverteilung - cp-wert) HTL Wien Windrad - Energieertrag Seite von 6 DI Dr. techn. Klaus LEEB Windrad MW:Der Energieertrag (Windverteilung - cp-wert) Mathematische / Fachliche Inhalte in Stichworten: Analyse eines Windradstandortes.

Mehr

Dimensionieren eines Säulendrehkrans

Dimensionieren eines Säulendrehkrans HTB Wien 1 Dimensionieren eines Seite 1 von 5 DI Dr. techn. Klaus EEB klaus.leeb@surfeu.at Dimensionieren eines Säulendrehkrans Mathematische / Fachliche Inhalte in Stichworten: Numerische Integration,

Mehr

Kennlinien eines 4-Takt Dieselmotors

Kennlinien eines 4-Takt Dieselmotors HTBL Wien 1 Kennlinien eines Dieselmotors Seite 1 von 5 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at Kennlinien eines 4-Takt Dieselmotors Didaktische Inhalte: Kennfeld und Kennlinien eines Dieselmotors;

Mehr

"Hydrodynamik - Leistung einer Pumpe"

Hydrodynamik - Leistung einer Pumpe HTBL Wien 10 "Hydrodynamik" - Bernoulli-Gleichun Seite 1 von 6 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at "Hydrodynamik - Leistun einer Pumpe" Mathematische / Fachliche Inhalte in Stichworten: Lösen

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines

Mehr

Übungsaufgaben: Grundlagen der Wärmeübertragung

Übungsaufgaben: Grundlagen der Wärmeübertragung Übungsaufgaben: Grundlagen der Wärmeübertragung apl. Prof. Dr.-Ing. K. Spindler Dipl.-Ing. A. Frank Institut für Thermodynamik und Wärmetechnik Universität Stuttgart, Pfaffenwaldring 6, 70550 Stuttgart

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Thermodynamik Wärmeempfindung

Thermodynamik Wärmeempfindung Folie 1/17 Warum fühlt sich 4 warmes wesentlich heißer an als warme? Und weshalb empfinden wir kühles wiederum kälter als kühle? 7 6 5 4 2 - -2 32 32 Folie 2/17 Wir Menschen besitzen kein Sinnesorgan für

Mehr

Inhaltsverzeichnis. Aufgaben Druckverlust. Aufgaben Druckverlust 2 Aufgaben Dimensionierung 5 Aufgaben Ventile 10 Aufgaben hydraulischer Abgleich 12

Inhaltsverzeichnis. Aufgaben Druckverlust. Aufgaben Druckverlust 2 Aufgaben Dimensionierung 5 Aufgaben Ventile 10 Aufgaben hydraulischer Abgleich 12 Wärmeverteilung Inhaltsverzeichnis 2 Aufgaben Dimensionierung 5 Aufgaben Ventile 10 Aufgaben hydraulischer Abgleich 12 24.06.2015 Prof. Werner Betschart 1 Aufgabe 1: Druckverlust Lambda Durch ein Heizungsrohr

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320) 0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Sämtliche Rechenschritte müssen nachvollziehbar sein!

Sämtliche Rechenschritte müssen nachvollziehbar sein! und Bioverfahrenstechnik Seite 1 von 5 Name: Vorname: Matr. Nr.: Sämtliche Rechenschritte müssen nachvollziehbar sein! Aufgabe 1 (Wärmeleitung), ca. 32 Punkte: Eine L = 50 m lange zylindrische Dampfleitung

Mehr

DI Dr. techn. Klaus LEEB "Hydrovar" - Hauswasserversorgung

DI Dr. techn. Klaus LEEB Hydrovar - Hauswasserversorgung HTBL Wien 1 "Hydrovar" - drehzahlgeregelte Pumpe Seite 1 von 7 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at "Hydrovar" - Hauswasserversorgung Mathematische / Fachliche Inhalte in Stichworten: Ermitteln

Mehr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr 5 5 Wärmeübertrager Wärmeübertrager sind Apparate, in denen ein Fluid erwärmt oder abgekühlt wird Das Heiz- oder Kühlmedium ist in der Regel ein anderes Fluid Verdampft oder kondensiert ein Fluid dabei,

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

Tabelle el. Leistung P [W] = f (η, DN, l) Seite 1

Tabelle el. Leistung P [W] = f (η, DN, l) Seite 1 Tabelle el. Leistung P [W] = f (η, DN, l) Seite 1 Dokumentation Tabelle el. Leistung P [W] = f (η, DN, l) I) Spalten 1) Druckverlust Erdwärmesonde {B} {C} {D} Sondenfluid Konz: Konzentration in [Vol.-%]

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Der direkteste Weg zur richtigen Formel. Die Formelsammlung für HLKS-Fachpersonen

Der direkteste Weg zur richtigen Formel. Die Formelsammlung für HLKS-Fachpersonen Der direkteste Weg zur richtigen Formel Die Formelsammlung für HLKS-Fachpersonen 1 Der direkteste Weg für alle HLKS-Fachpersonen Gebäudetechnik ist die gute Wahl, wenn Sie Gebäude gestalten und funktionsfähig

Mehr

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3 Lösung 4.1 4.1/1 Gegeben: Rechteckkanal, von Diphyl durchströmt w = 0,2 m/s, t i = 400 o C Stoffdaten von Diphyl: λ = 0,083 /(m K), c p = 2,57 kj/(kg K), η = 1, 405 10 4 Pa s, ϱ = 717 kg/m 3 Modellkanal

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Das Wechselstromparadoxon

Das Wechselstromparadoxon HTL Saalfelden Das Wechselstromparadoxon Seite von 6 Wilfried Rohm wrohm@aon.at Das Wechselstromparadoxon Mathematische / Fachliche Inhalte in Stichworten: Ortskurven, Komplexe Widerstände, Differentialrechnung

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

1. Beispiel - Druckluftspeicher

1. Beispiel - Druckluftspeicher 1. Beispiel - Druckluftspeicher Gewebefilter mit Druckstoßabreinigung (für 180000 Nm³/h Abgas)- Druckluftspeicher Druckluftdruck Betrieb (max) p 0,6 MPa Erforderliches Speichervolumen V s 2 m³ Gesucht:

Mehr

Aufnahmeprüfung Physik Teil II. kj kg K. Viel Erfolg! Name:... Vorname:... Studiengang:... Wahlbereich. Aufgabe Total.

Aufnahmeprüfung Physik Teil II. kj kg K. Viel Erfolg! Name:... Vorname:... Studiengang:... Wahlbereich. Aufgabe Total. Aufnahmeprüfung 2011 Name:... Vorname:... Studiengang:... Wahlbereich 1 Wahlbereich 2 Aufgabe 4 5 6 7 6 7 Total Punkte Physik Teil II Zeit: Hilfsmittel: 90 Minuten für Teil I und Teil II Grafikfähiger

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

TankBspNov2016. Inhaltsverzeichnis. Inhalt Seiten

TankBspNov2016. Inhaltsverzeichnis. Inhalt Seiten Inhaltsverzeichnis Inhalt Seiten 1 Ermittlung der Wärmeverluste von Lagertanks 2 2 Stoffwerte Umgebungsluft 6 Stoffwerte von Luft 3 Wärmeübergang außen, Dach 7 Wärmeübertragung bei der Strömung längs einer

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Klausur zur Vorlesung. Wärme- und Stoffübertragung

Klausur zur Vorlesung. Wärme- und Stoffübertragung Institut für Thermodynamik 27. Juli 202 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

FEINSPRÜHLÖSCHANLAGE ZUM MASCHINENSCHUTZ: SPANPLATTENPRESSEN

FEINSPRÜHLÖSCHANLAGE ZUM MASCHINENSCHUTZ: SPANPLATTENPRESSEN Fachartikel FEINSPRÜHLÖSCHANLAGE ZUM MASCHINENSCHUTZ: Dr. Joachim Böke, Product Development Manager August 2006 Worldwide Fire Protection www.vikinggroupinc.com INHALTSVERZEICHNIS SCHUTZ VON UND VERGLEICHBAREN

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Physiklabor 4 Michel Kaltenrieder 10. Februar

Mehr

ÜTA: B - Schlauch für Cluster 1 (tw.) und 3

ÜTA: B - Schlauch für Cluster 1 (tw.) und 3 bernhard.nietrost@htl-steyr.ac.at Seite 1 von 9 ÜTA: B - Schlauch für Cluster 1 (tw.) und 3 Mathematische / Fachliche Inhalte in Stichworten: allgemeine Sinusfunktion, Winkelfunktionen im schiefwinkeligen

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 26. 30. April 2010 Physik für Bauingenieure Übungsblatt 2 Gruppenübungen 1. Springende Kugeln Die nebenstehende

Mehr

0tto-von-Guericke-Universität Magdeburg

0tto-von-Guericke-Universität Magdeburg 0tto-von-Guericke-Universität Magdeburg Institut für Strömungstechnik und Thermodynamik, Lehrstuhl Strömungsmechanik und Strömungstechnik Übungsaufgaben Fluidenergiemaschinen Aufgabe 1.01 In einer Bewässerungsanlage

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Klausur zu Physik1 für B_WIng(v201)

Klausur zu Physik1 für B_WIng(v201) M. Anders Wedel, den 13.08.07 Klausur zu Physik1 ür B_WIng(v201) Klausurdatum: 16.2.07, 14:00, Bearbeitungszeit: 90 Minuten Achtung! Es ird nur geertet, as Sie au diesen Blättern oder angeheteten Leerseiten

Mehr

14. Dezibel. 14.1 Definitionen

14. Dezibel. 14.1 Definitionen Dezibel 14-1 14. Dezibel 14.1 Definitionen Um Leistungs- und se über mehrere Dekaden hinweg sinnvoll darstellen zu können, hat man das Dezibel als logarithmische Maßeinheit eingeführt. Es können somit

Mehr

1. Aufgabe (15 Punkte)

1. Aufgabe (15 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Sommersemester 2009 24. September 2009 Teil II: Wärmetransportphänomene

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Kraft- und Arbeitsmaschinen. Klausur, 18. August 2014

Kraft- und Arbeitsmaschinen. Klausur, 18. August 2014 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur, 18. August 2014 Bearbeitungszeit: 120 Minuten

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr

Aufgabe 1 ( = 80)

Aufgabe 1 ( = 80) Aufgabe 1 (4 + 42 + 4 + 30 80) Ein rechtslaufender, reversibler, geschlossener Kreisprozess (KP) mit Luft ( 1.4, J 287 ) besteht aus folgenden Zustandsänderungen: K 1-2 Isentrope, wobei im Zustand 1 der

Mehr

W11. Energieumwandlung ( )

W11. Energieumwandlung ( ) W11 Energieumandlung Ziel dieses Versuches ist der experimentelle Nacheis der Äquivalenz von mechanischer und elektrischer Energie. Dazu erden beide Energieformen in die gleiche Wärmeenergie umgeandelt.

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de Reynoldszahl

Mehr

Arbeitsblatt zur Ventilberechnung Berechnungsbeispiele

Arbeitsblatt zur Ventilberechnung Berechnungsbeispiele Arbeitsblatt zur Ventilberechnung Berechnungsbeisiele Inhalt Seite Ventilberechnung bei Flüssigkeiten Ventilberechnung bei Wasserdamf 5 Ventilberechnung bei Gas und Damf 7 Ventilberechnung bei Luft 9 Durchfluss

Mehr

Biegelinie eines Trägers

Biegelinie eines Trägers HTBL Graz (Ortweinschule Biegelinie eines Trägers Seite von Heinz Slepcevic slep@htlortwein-graz.ac.at Biegelinie eines Trägers Mathematische / Fachliche Inhalte in Stichworten: Biegelinie, Differentialgleichung,

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J Aufgabe 3 0 kg Luft perfektes Gas: κ,4 ; R L 287 J von T 293 K und p 0,96 bar werden auf 0 bar verdichtet. Dies soll. isochor 2. isotherm 3. reversibel adiabat und 4. polytrop mit n,3 geschehen. a Skizzieren

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Institut für Computational Engineering ICE. N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t. w w w. n t b.

Institut für Computational Engineering ICE. N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t. w w w. n t b. Institut für Computational Engineering ICE N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t w w w. n t b. c h Rechnen Sie mit uns Foto: ESA Das Institut für Computational Engineering

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM

SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM In diesem Kapitel werden kurz einige wichtige Begriffe definiert. Ebenso wird das Beheizen von Anlagen mit Dampf im Vakuumbereich beschrieben. Im Sprachgebrauch

Mehr

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Lernziele zu SoL: Druck, Auftrieb

Lernziele zu SoL: Druck, Auftrieb Lernziele zu SoL: Druck, Auftrieb Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Teilchenmodell b) Wie erklärt man die Aggregatzustände im Teilchenmodell?

Mehr

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen. Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 20. August 2009 Bearbeitungszeit:

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel SCIENTIFIC COMPUTING Die eindimensionale Wärmeleitungsgleichung (WLG) Begriffe Temperatur Spezifische Wärmekapazität Wärmefluss Wärmeleitkoeffizient Fourier'sche Gesetz Spezifische Wärmeleistung Mass für

Mehr

Wärmeaustauscher-Berechnung mit NTU

Wärmeaustauscher-Berechnung mit NTU Wärmeaustauscher-Berechnung mit NTU In unseren SW-Applikationen arbeiten wir nie mit Werten wie Wi, Pi, Ri, NTUi und ϴ weil man sie für die Berechnung von Wärmeaustauschern nicht benötigt. Einige Ingenieure

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

Verarbeitung von Messdaten

Verarbeitung von Messdaten HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Kryotechnik Fortbildung am GSI

Kryotechnik Fortbildung am GSI Kryotechnik Fortbildung am GSI 1. Kälteerzeugung 2. Kälteverteilung 3. Wärmeübergang 4. Niedrigere Temperaturen Kühlmöglichkeite nmit Helium Bezugsquellen für Stoffdatenprogramme GASPAK, HEPAK, CRYOCOMP

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

Prüfungsvorbereitung Physik: Elektrischer Strom

Prüfungsvorbereitung Physik: Elektrischer Strom Prüfungsvorbereitung Physik: Elektrischer Strom Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen Sie auswendig in

Mehr

DI(FH) Joachim MATHÄ. Ingenieurbüro für Energietechnik

DI(FH) Joachim MATHÄ. Ingenieurbüro für Energietechnik DI(FH) Joachim MATHÄ Ingenieurbüro für Energietechnik UID: ATU 57242326 7423 PINKAFELD Tuchmachergasse 32 Tel.: 03357/43042 Fax DW 4 +43 664 3263091 e-mail: ibmathae@kabelplus.at Gegenstand: Gutachtennummer:

Mehr

13.1 NORMEN, RICHTLINIEN UND MASSEINHEITEN

13.1 NORMEN, RICHTLINIEN UND MASSEINHEITEN .6 EINHEITEN UND UMRECHNUNGSFAKTOREN Grundeinheiten des SI-Systems Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrischer Strom Ampere A Temperatur Kelvin K Lichtstärke Candela cd Umrechnungsfaktoren

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 200 24. 28. Mai 200 Physik für Bauingenieure Übungsblatt 6. Luftfeuchtigkeit Gruppenübungen In einer Finnischen Sauna

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von:

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von: Membrantechnik Betreuer: Univ. Prof. Dr. Anton Friedl Durchgeführt von: Marion Pucher Mtk.Nr.:0125440 Kennzahl: S26 Mtk.Nr.:0125435 Kennzahl: Datum der Übung: 17.3.2004 Seite 1/11 1. Ziel der Übung Mithilfe

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr