D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

Größe: px
Ab Seite anzeigen:

Download "D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2"

Transkript

1 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung ein freigelegtes elektrisches Kabel der selben Länge mit einem Durchmesser D, das von einer elektrisch nicht leitenden Isolierschicht der Dicke δ ummantelt ist. Durch den im Kabel ieÿenden elektrischen Strom wird Wärme erzeugt und nach auÿen abgeführt. Im stationären Zustand steht das ummantelte Kabel im Wärmeaustausch durch Konvektion und Strahlung mit dem Kanal. Wärmeleitung durch die Luft und Wärmeübergang an den Stirnseiten des Kabels werden vernachlässigt. Die konstanten Temperaturen der Isoliermanteloberäche T 0 und der Luft T L sind bekannt. Berechnen Sie unter diesen Umständen a) den vom horizontalen Kabel an die umgebende Luft im Kanal durch freie Konvektion abgeführten Wärmestrom Q K, b) die Temperatur ϑ W der Kanalwände, wenn ein konstanter Wärmeübergangskoef- zient α W zwischen den Kanalwänden und der Luft angenommen wird und die Lufttemperatur ϑ L konstant bleibt, c) den vom Kabel mit den Kanalwänden ausgetauschten Wärmestrom durch Strahlung Q Str unter der Annahme, dass das Kabel von den Kanalwänden vollständig umschlossen ist (Vernachlässigen Sie die beiden Stirnächen!), d) die pro Volumeneinheit des elektrisch leitenden Kabels erzeugte mittlere Wärmeleistung (Joulesche Wärme) q diss (Hinweis: [ q diss ] = W/m3 ) sowie e) die Temperatur ϑ i an der Innenwand der Isolierschicht. Angaben: D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 0 W/m K ɛ 0 = 0, 8 ɛ W = 0, Mit der Wärmeleitfähigkeit λ i und dem Emissionsgrad ɛ 0 der Isolierschicht sowie dem Emissionsgrad ɛ W der Kanalwand. Die Erdbeschleunigung beträgt: g = 9, 81 m/s. Stowerte des idealen Gases Luft: Wärmeleitfähigkeit kinemat. Viskosität Prandtlzahl therm. Ausdehungskoe. λ L = 0, 099 W 5 m ν mk L =, P r s L = 0, 708??? ideales Gas!!! Lösung: Kabelkanal (ehemalige Vordiplom-Aufgabe) 1

2 a) Freie Konvektion am horizontalen Zylinder Nu = { { 0, , } Ra f 3 mit f 3 = 1 + ( 0, 559 P r ) } 9 9 Die Rayleighzahl berechnet sich als Produkt von Grashof- und Prandtl-Zahl: Die Grashof-Zahl der Luft ergibt sich zu: Ra = Gr P r Gr L = β g l3 ν T 0 T L = T 0 T L g (D + δ)3 = T L ν wobei die charakteristische Länge der Auÿendurchmesser der Kabelisolierung ist und sich der isobare Volumenausdehnungskoezient β im vorliegenden Fall des idealen Gases zu β = 1 ( ) ( ) v = 1 R T p = 1 R v T p v T v p T T = 1 T ergibt. Die Rayleigh-Zahl Ra und die Funktion f 3 lauten nun: { ( ) } 9 9 0, 559 Ra = Gr P r = und f 3 = 1 + P r Es folgt schlieÿlich die Nuÿelt-Zahl Nu = { 0, , , 6} = 6, 1 Der Wärmeübergangskoezient ergibt sich zu p = 0, 37 α = Nu λ L (D + δ) = 9, 9 W m K Der konvektiv von der Isolierung abgegebene Wärmestrom Q K beträgt Q K = α A zyl (T 0 T L ) = 9, 9 W m K π L (D + δ) 100 K = 87, 56 W b) Damit im stationären Fall die Lufttemperatur T L konstant bleibt, muss der konvektive Wärmestrom Luf t Kanalwand genauso groÿ sein wie der Wärmestrom Kabel Luft. Q K = α W A kanal (T L T W ) = 0 W m K a L (T L T W ) T W = T L Q K a L α W = 95, 85 K ϑ W =, 7 C

3 c) Der Wärmestrom infolge des Strahlungsaustausches zwischen Kanalwand und Kabel, unter Vernachlässigung der Stirnächen, berechnet sich zu Einsetzen der Werte ergibt mit Q Str = σ A 0 (T0 TW ( ) ) 1 ɛ 0 + A 0 1 A W ɛ W 1 A 0 = π (D + δ) L = 0, 095 m bzw. A W = a L = 0, 6 m folgenden Wärmestrom Q Str = 5, W m K 0, 095 m (03, 15 95, 85 ) K ( ) = 53, 36 W 1 0,095 m ,8 0,6 m 0, d) Die spezische Wärmeleistung des Kabels ist nun die auf das Volumen bezogene insgesamt abgeführte Leistung Q ab, die sich als Summe aus Strahlungsleistung und konvektiv abgegebener Wärmeleistung ergibt: Es ergibt sich somit: Q ab = Q K + Q Str = 53, 36 W + 87, 56 W = 10, 9 W q diss = Q ab V Kabel = Q ab π D L = 10, 9 W MW = 1, 196, m3 m 3 e) Die Temperatur an der Isolierschichtinnenseite T i kann man mit Hilfe der Wärmeleitfähigkeit λ i und der Beziehung für den Gesamtwiderstand eines Hohlzylinders berechnen: Q Leitung = 1 R zyl (T i T 0 ) = π λ i L ln ( ) (T D+δ i T 0 ) D Die insgesamt abgegebene Wärme Q ab muss zuvor in Form von Wärmeleitung durch die Isolationsschicht transportiert werden. Daher gilt: Q Leitung = Q ab Es ergibt sich somit für die Temperatur an der Innenseite der Isolierschicht: T i = 03, 15 K + T i = T 0 + Q ( ) ab D + δ π λ i L ln D ( ) 10, 9 W 0, 0 ln = 9, 1 K π 0, W 1, 5 m 0, 01 m K ϑ i = 155, 91 C 3

4 Aufgabe.13: Thermometer im Raum Ein Thermometer bendet sich in der Mitte eines Raumes. Die Temperatur der Raumwände beträgt ϑ W = 15 C und die Temperatur der umgebenden Luft ϑ L = 5 C. Der Glaskolben mit der Thermometerüssigkeit hat die Oberäche A 1 = cm. Der Emissionsgrad beträgt ɛ 1 = 0, 9 und der Wärmeübergangskoezient Glaskolbenoberäche / Umgebungsluft beträgt α = 10 W. m K a) Veranschaulichen Sie sich die Richtung der im stationären Fall am Thermometer auftretenden Wärmeströme. b) Geben Sie eine Gleichung zur Berechnung des Strahlungswärmestroms von dem Thermometer zur Wand Q T W an. Vergegenwärtigen Sie sich hierzu zunächst die Besonderheit der vorliegenden Geometrie. c) Geben Sie eine Gleichung zur Berechnung des konvektiven Wärmestroms von der Umgebungsluft zum Thermometer Q L T an. d) Welche Temperatur liest man am Thermometer im stationären Zustand ab? e) Überprüfen Sie das unter c) gefundene Ergebnis. Hinweis: Verwenden Sie zur Auswertung des Strahlungsterms in c) folgende Beziehung TT TW = (T T T W ) (T T + T W ) ( ) TT + TW bzw. ( ) ( ) TT TW (T T T W ) TT + T W T T + TW } {{ } =: f( T T, T W ) = konst. mit einer geeigneten konstanten Schätztemperatur T T = konstant für T T. Lösung: Thermometer im Raum a) Für die Temperatur des Thermometers T T gilt sicher T W T T T L Das heiÿt: Der konvektive Wärmestrom geht von der wärmeren Luft an das kältere Thermometer, während der Strahlungswärmestrom von dem Thermometer an die noch kältere Wand übergeht. Berücksichtigt man dies, so sind alle unten aufgeführten Wärmeströme positiv. b) Bei der Geometrie handelt es sich um einen kleinen Körper 1, der von einem Körper, dem Wohnraum, umgeben ist, der eine wesentlich gröÿere Oberäche aufweist als der Glaskolben des Thermometers: A >> A 1. Die Gleichung, welche den Wärmestrom in diesem Fall beschreibt, lautet ( ) Q T W = σ ɛ 1 A 1 T T TW

5 c) Der konvektive Wärmestrom von der Umgebungsluft zum Thermometer berechnet sich zu: Q L T = α A 1 (T L T T ) d) Im Gleichgewichtszustand muss der dem Thermometer zuieÿende Wärmestrom gleich dem abieÿenden Wärmestrom sein: Es muss also gelten Q T W = Q L T σ ɛ 1 A 1 ( T T T W ) = α A1 (T L T T ) Da diese Gleichung nicht ohne weiteres aufgelöst werden kann, wird der Strahlungsterm zunächst umgeformt: ( ) ( ) σ ɛ 1 A 1 (T T T W ) TT + T W T T + TW = α A 1 (T L T T ) } {{ } =: f( T T, T W ) = konst. Da sich die interessierenden Temperaturen lediglich im Bereich 88, 15 K T 98, 15 K bewegen, sind die Summenterme der Temperaturen bzw. deren Quadrate numerisch hinreichend stabil während die Dierenz zweier nahe beeinander liegender Temperaturen numerisch schwieriger zu verarbeiten ist. Daher kann der träge Summenterm f( T T, T w ) ohne groÿen Fehler als konstant angenommen werden, während die Dierenz der Temperaturen variabel belassen wird. Für die Thermometertemperatur ϑ T wird zunächst das arithmetische Mittel von Wand- und Lufttemperatur eingesetzt: Es gilt somit: Es folgt daher: T T ϑ T = 1 (ϑ W + ϑ L ) = 0 C T T = 93, 15 K f( T T, T W ) = f(93, 15 K, 88, 15 K) = 9, K 3 T T = ( ) ( α A 1 T L + σ ɛ 1 A 1 TT + T W T T + TW ( ) ( ) σ ɛ 1 A 1 TT + T W T T + TW + α A 1 = 0, 5963 W + 1, W/K 9, K 3 88, 15 K 1, W/K 9, K 3 + 0, 00 W/K ) T W = 0, , also T T = 9, 8 K ϑ T = 1, 65 C Es ist erstaunlich, wie wenig sich T T ändert wenn man für TT die theoretischen Extremalwerte = 88, 15 K und = 98, 15 K einsetzt: T T T T T T = 88, 15 K : f( T T, T W ) = 9, K 3 T T = 9, 87 K ϑ T = 1, 7 C T T = 98, 15 K : f( T T, T W ) = 10, K 3 T T = 9, 6 K 5 ϑ T = 1, 9 C

6 e) Man kann das unter c) gewonnene Ergebnis überprüfen, indem man mit der errechneten Thermometertemperatur T T die beiden Wärmeströme Q T W und Q L T bestimmt. Es gilt zunächst für den infolge von Strahlung hervorgerufenen Wärmestrom Q T W : ( ) Q T W = σ ɛ 1 A 1 T T TW Also Q T W = 5, W m K 0, 000 m (9, 8 88, 15 )K = 6, W Für den konvektiven Wärmestrom Q L T gilt: Also Q L T = α A 1 (T L T T ) Q L T = 10 W m K 0, 000 m (98, 15 K 9, 8 K) K = 6, W Die berechnete Thermometertemperatur ist demnach richtig! 6

7 Aufgabe.11: Das spektrale Maximum der Solarstrahlung Bei welcher Wellenlänge λ max weist das solare Spektrum sein Maximum auf, wenn man die Sonne als schwarzen Strahler betrachtet, dessen Oberächentemperatur T S = 5700 K beträgt? Lösung: Das spektrale Maximum der Solarstrahlung Das Maximum der spektralen Intensität kann man mit Hilfe des Wienschen Verschiebungsgesetzes für den schwarzen Körper bestimmen: λ max T = 897, m K Setzt man hier die Oberächentemperatur T S = 5700 K ein, so ndet man: λ max = 897, m K 5700 K = 5, m = 508, nm Man würde diese Wellenlänge auch ermitteln, wenn man das spektrale Maximum der Empndlichkeit des menschlichen Auges sucht. 7

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines

Mehr

Modulpaket TANK Beispielausdruck

Modulpaket TANK Beispielausdruck Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang

Mehr

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung:

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung: 3.8 Wärmeausbreitung Es gibt drei Möglichkeiten der Energieausbreitung: ➊ Konvektion: Strömung des erwärmten Mediums, z.b. in Flüssigkeiten oder Gasen. ➋ Wärmeleitung: Ausbreitung von Wärmeenergie innerhalb

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

1. Aufgabe (15 Punkte)

1. Aufgabe (15 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Sommersemester 2009 24. September 2009 Teil II: Wärmetransportphänomene

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

DI(FH) Joachim MATHÄ. Ingenieurbüro für Energietechnik

DI(FH) Joachim MATHÄ. Ingenieurbüro für Energietechnik DI(FH) Joachim MATHÄ Ingenieurbüro für Energietechnik UID: ATU 57242326 7423 PINKAFELD Tuchmachergasse 32 Tel.: 03357/43042 Fax DW 4 +43 664 3263091 e-mail: ibmathae@kabelplus.at Gegenstand: Gutachtennummer:

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Wärmeübertragung an einem Heizungsrohr

Wärmeübertragung an einem Heizungsrohr HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB klaus.leeb@surfeu.at ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen,

Mehr

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet) erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Kryotechnik Fortbildung am GSI

Kryotechnik Fortbildung am GSI Kryotechnik Fortbildung am GSI 1. Kälteerzeugung 2. Kälteverteilung 3. Wärmeübergang 4. Niedrigere Temperaturen Kühlmöglichkeite nmit Helium Bezugsquellen für Stoffdatenprogramme GASPAK, HEPAK, CRYOCOMP

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Konvektion ist der Transport von Wärme in und mit einem Stoff. Die Moleküle transportieren die Wärme mit sich.

Konvektion ist der Transport von Wärme in und mit einem Stoff. Die Moleküle transportieren die Wärme mit sich. 6. Wärmetransportphänomene 10_Thermodynamik_Waermetransport_BAneu.doc - 1/11 Wärmetransport tritt in einem System immer dann auf, wenn es Orte mit unterschiedlicher Temperatur gibt, d.h., wenn es sich

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

STATIONÄRE WÄRMELEITUNG

STATIONÄRE WÄRMELEITUNG Wärmeübertragung und Stofftransport VUB4 STATIONÄRE WÄRMELEITUNG Bestimmung der Wärmeleitfähigkeit λ eines Metallzylinders durch Messungen der stationären Wärmeverteilung Gruppe 1 Christian Mayr 23.03.2006

Mehr

5.4 Thermische Anforderungen

5.4 Thermische Anforderungen 5.4 Thermische Anforderungen 133 5.4 Thermische Anforderungen Bild 5-32 Testzentrum zur Wintererprobung in Arjeplog, Schweden (Foto: Bosch) Extreme Temperaturen im Fahrzeug können z. B. durch kalte Winternächte

Mehr

Dreidimensionale Wärmebrückenberechnung für das Edelstahlanschlusselement FFS 340 HB

Dreidimensionale Wärmebrückenberechnung für das Edelstahlanschlusselement FFS 340 HB für das Edelstahlanschlusselement FFS 340 HB Darmstadt 12.03.07 Autor: Tanja Schulz Inhalt 1 Aufgabenstellung 1 2 Balkonbefestigung FFS 340 HB 1 3 Vereinfachungen und Randbedingungen 3 4 χ - Wert Berechnung

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Bericht Nr. H.0906.S.633.EMCP-k

Bericht Nr. H.0906.S.633.EMCP-k Beheizung von Industriehallen - Rechnerischer Vergleich der Wärmeströme ins Erdreich bei Beheizung mit Deckenstrahlplatten oder Industrieflächenheizungen Auftragnehmer: HLK Stuttgart GmbH Pfaffenwaldring

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG)

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Thermische Simulation von temperaturkritischen

Mehr

Halogen-Infrarotheizstrahler. Holen Sie sich auch an kalten Tagen die Sonne auf Ihre Terrasse!

Halogen-Infrarotheizstrahler. Holen Sie sich auch an kalten Tagen die Sonne auf Ihre Terrasse! Halogen-Infrarotheizstrahler Holen Sie sich auch an kalten Tagen die Sonne auf Ihre Terrasse! Halogen-Infrarotheizstrahler Gegenüber Gasheizstrahlern und anderen Heiztechniken, bei denen lediglich die

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de Die mittlere kinetische Energie der Teilchen eines Körpers ist ein Maß für (A) die absolute Temperatur des Körpers (B) die Dichte des Körpers (C) die spezifische Wärmekapazität (D) das spezifische Wärmeleitvermögen

Mehr

In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden.

In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden. Skizze In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden. Warum muß der Höhenunterschied h1 größer als Null sein, wenn

Mehr

1.3. Inhalt dieses Vorlesungsteils - ROADMAP MIKROWELLEN-HEIZPROZESSE. Einsatz von Mikrowellenenergie in der Verfahrenstechnik

1.3. Inhalt dieses Vorlesungsteils - ROADMAP MIKROWELLEN-HEIZPROZESSE. Einsatz von Mikrowellenenergie in der Verfahrenstechnik Inhalt dieses Vorlesungsteils - ROADMAP GR UN DL AG EN MW-VT TRIKA OR T PROLOG APPLIKA TIONEN TE CH NI K 41 Einsatz von Mikrowellenenergie in der Verfahrenstechnik W ÄR M ET RA NS P ÄR M UN G+ DIELEK ER

Mehr

Eine kurze Einführung von Prof. Dipl.-Ing. Eckhard Franke

Eine kurze Einführung von Prof. Dipl.-Ing. Eckhard Franke Fachhochschule Flensburg Institut für Medieninformatik und Technische Informatik Eine kurze Einführung von Prof. Dipl.-Ing. Eckhard Franke Thermografie: Temperaturmessung im Infrarot-Bereich Grundlagen

Mehr

Inhaltsverzeichnis. Seite 2

Inhaltsverzeichnis. Seite 2 Inhaltsverzeichnis 1 Einleitung... 1 2 Konstruktionsbeschreibung...1 3 Berechnungsgrundlagen...2 4 Randbedingungen für die Berechnung... 4 5 Berechnungsergebnisse...4 6 Ergebnisinterpretation... 5 7 Zusammenfassung...

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

EMPA: Abteilung Bautechnologien Bericht-Nr. 443 015-1 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7

EMPA: Abteilung Bautechnologien Bericht-Nr. 443 015-1 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7 1 Auftrag Die Firma Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur, erteilte der EMPA Abt. Bautechnologien

Mehr

Physik / Wärmelehre 2. Klasse Wärmetransport

Physik / Wärmelehre 2. Klasse Wärmetransport Wärmetransport Wärmetransport bedeutet, dass innere Energie von einem Ort zum anderen Ort gelangt. Wärmeübertragung kann auf drei Arten erfolgen: zusammen mit der Substanz, in der sie gespeichert ist (Wärmeströmung),

Mehr

Wärmetauscher. Produktinformation Seite 1 von 6

Wärmetauscher. Produktinformation Seite 1 von 6 Produktinformation Seite 1 von 6 Unsere keramischen werden im Bereich der regenerativen Nachverbrennung erfolgreich eingesetzt. Sie sind die Alternative zu konventionellen Füllungen mit keramischem Schüttmaterial.

Mehr

Effiziente Wärmeableitung von PCB-Power-Modulen

Effiziente Wärmeableitung von PCB-Power-Modulen Effiziente Wärmeableitung von PCB-Power-Modulen Entwickler von Stromversorgungsmodulen sind stets auf der Suche nach mehr Leistungsdichte auf kleinerem Raum. Dies trifft vor allem auf Server in Datencentern

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

im Auftrag der Firma Schöck Bauteile GmbH Dr.-Ing. M. Kuhnhenne

im Auftrag der Firma Schöck Bauteile GmbH Dr.-Ing. M. Kuhnhenne Institut für Stahlbau und Lehrstuhl für Stahlbau und Leichtmetallbau Univ. Prof. Dr.-Ing. Markus Feldmann Mies-van-der-Rohe-Str. 1 D-52074 Aachen Tel.: +49-(0)241-8025177 Fax: +49-(0)241-8022140 Bestimmung

Mehr

Berechnungsbeispiel Erwärmung (1)

Berechnungsbeispiel Erwärmung (1) Berechnungsbeispiel Erwärmung (1) Erwärmung von Wasser bei einer HF-Leistungsflussdichte, die dem Grenzwert entspricht (gilt auch als grobe Näherung für die Erwärmung von Körpergewebe). Grenzwert D-Netz

Mehr

Wärmeübertragung durch Bauteile (k-wert) nach ÖNORM EN ISO 6946. Copyright 1999 LandesEnergieVerein, Burggasse 9, 8010 Graz. Autor: G.

Wärmeübertragung durch Bauteile (k-wert) nach ÖNORM EN ISO 6946. Copyright 1999 LandesEnergieVerein, Burggasse 9, 8010 Graz. Autor: G. Wärmeübertragung durch Bauteile (k-wert) nach ÖNOM EN ISO 6946 Copyright 999 LandesEnergieVerein, Burggasse 9, 800 Graz Autor: G. Bittersmann 4.07.000 :3 Seite von 9 Wärmeübertragung durch Bauteile (k-wert)

Mehr

Austrotherm Bauphysik

Austrotherm Bauphysik Austrotherm Bauphysik Behaglichkeit durch Wärmedämmung Behaglichkeit durch Wärmedämmung Ω Wärmedämmung von Baustoffen Ω Grundlagen zur Wärmeleitfähigkeit Ω Raumklima und Wärmespeicherung austrotherm.com

Mehr

Physikalisches Grundpraktikum. Wärmeleitung

Physikalisches Grundpraktikum. Wärmeleitung Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

5. Numerische Ergebnisse 58. 5.3. Füllgas Argon

5. Numerische Ergebnisse 58. 5.3. Füllgas Argon 5. Numerische Ergebnisse 58 5.3. Füllgas Argon Argon wird als Füllgas für Verglasungen sehr häufig eingesetzt. Die physikalischen Eigenschaften dynamische Zähigkeit und Wärmeleitfähigkeit dieses Edelgases

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 200 Versuch 0 ärmetransport durch ärmeleitung und Konvektion in einem Doppelrohrwärmeaustauscher Betreuer: olfgang Rüth (rueth@dechema.de,

Mehr

Infrarotaufnahmen im Physikunterricht

Infrarotaufnahmen im Physikunterricht Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik Infrarotaufnahmen im Physikunterricht Bachelorarbeit Name des Studenten: Anne Neupert Matrikelnummer: 1264832 Studiengang:

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

G u t a c h t e n. Gutachten über physikalische Eigenschaften der easytherm Infrarot Wärmepaneele.

G u t a c h t e n. Gutachten über physikalische Eigenschaften der easytherm Infrarot Wärmepaneele. Ao.Univ.-Prof. Dr. G. Pottlacher INSTITUT FÜR EXPERIMENTALPHYSI A-800 Graz, Petersgasse 6 Telefon: (036) 873 / 8 Telefax: (036) 873 / 8655 Graz, 09..200 G u t a c h t e n An die Firma easytherm Infrarot

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang

Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Aufgaben 1. Berechnen Sie die Wärmekapazität des Kalorimetergefäßes.

Mehr

2 Wärmeschutz. 2.1 Wärmeschutztechnische Begriffe. 2.1.1 Temperatur. 2.1.2 Rohdichte. 2.1.3 Wärmemenge, Spezi sche Wärmekapazität

2 Wärmeschutz. 2.1 Wärmeschutztechnische Begriffe. 2.1.1 Temperatur. 2.1.2 Rohdichte. 2.1.3 Wärmemenge, Spezi sche Wärmekapazität 39 2 Wärmeschutz 2.1 Wärmeschutztechnische Begriffe 2.1.1 Temperatur = T - 273,15 (2.1.1-1) Celsius-Temperatur in C T Kelvin-Temperatur in K 2.1.2 Rohdichte ρ = m V (2.1.2-1) Rohdichte in kg/m 3 m Masse

Mehr

Kein Tauwasser (Feuchteschutz)

Kein Tauwasser (Feuchteschutz) U = 0,37 W/m²K (Wärmedämmung) Kein Tauwasser (Feuchteschutz) TA-Dämpfung: 43,5 (Hitzeschutz) 0 0.5 EnEV Bestand*: U

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw=

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw= c~åüüçåüëåüìäéaçêíãìåç k~ãéw mêçñkaêkjfåökdk_~äáéä c_p j~íêkjkêkw Klausur: Bordnetze 14.7.2004 Aufgabe 1: Es sollen zwei massive Cu-Leiter auf Ihre Stromtragfähigkeit untersucht werden. Der eine hat einen

Mehr

Standard Optics Information

Standard Optics Information VF, VF-IR und VF-IR Plus 1. ALLGEMEINE PRODUKTBESCHREIBUNG Heraeus VF - Material ist ein aus natürlichem, kristallinem Rohstoff elektrisch erschmolzenes Quarzglas. Es vereint exzellente physikalische Eigenschaften

Mehr

Übungsaufgaben: Grundlagen der Wärmeübertragung

Übungsaufgaben: Grundlagen der Wärmeübertragung Übungsaufgaben: Grundlagen der Wärmeübertragung apl. Prof. Dr.-Ing. K. Spindler Dipl.-Ing. A. Frank Institut für Thermodynamik und Wärmetechnik Universität Stuttgart, Pfaffenwaldring 6, 70550 Stuttgart

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch

Mehr

(9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt

(9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt Meteorologie und Klimaphysik Meteo 137 (9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt Wiensches Verschiebungsgesetz Meteo 138 Anhand des Plankschen Strahlungsgesetzes (Folie 68 + 69) haben wir

Mehr

Mittelwelliges Infrarot STIR - Der Spezialist für Komposite

Mittelwelliges Infrarot STIR - Der Spezialist für Komposite Mittelwelliges Infrarot STIR - Der Spezialist für Komposite Referent: Dipl.-Ing. Ingolf Jaeger Entwicklungsingeneur bei IBT.InfraBioTech GmbH, Freiberg Inhalt (1) Über IBT.InfraBioTech GmbH (2)Zielstellungen

Mehr

Probeklausur Sommersemester 2000

Probeklausur Sommersemester 2000 Probeklausur Sommersemester 2000 1. in Mensch, der 50 kg wiegt, schwimmt im Freibad. Wie viel Wasser verdrängt er? 500 l 7,5 m³ 75 l 150 l 50 l 2. urch ein lutgefäß der Länge 1 cm fließt bei einer ruckdifferenz

Mehr

Webinar: Thermische Simulation hilft bei der Auswahl des richtigen Wärmemanagementkonzeptes Würth Elektronik Circuit Board Technology

Webinar: Thermische Simulation hilft bei der Auswahl des richtigen Wärmemanagementkonzeptes Würth Elektronik Circuit Board Technology Webinar: Thermische Simulation hilft bei der Auswahl des richtigen Wärmemanagementkonzeptes Würth Elektronik Circuit Board Technology www.we-online.de/waermemanagement Seite 1 06.11.2014 Grundlagen Treiber

Mehr

UNIVERSITÄT STUTTGART. INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Kommissarischer Leiter: apl. Prof. Dr.-Ing. Klaus Spindler

UNIVERSITÄT STUTTGART. INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Kommissarischer Leiter: apl. Prof. Dr.-Ing. Klaus Spindler UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Kommissarischer Leiter: apl. Prof. Dr.-Ing. Klaus Spindler Praktikum Bestimmung des Oberflächentemperaturfeldes und des Emissionsgrads

Mehr

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)?

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)? Übung 8 Aufgabe 5.3: Carnot-Schiff In der Region des Nordmeeres liegt die Wassertemperatur zumeist über der Temperatur der Umgebungsluft. Ein Schiff soll die Temperaturdifferenz zwischen diesen beiden

Mehr

EHW Seite. Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld.

EHW Seite. Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld. EHW Seite Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld. Welche Geschwindigkeit besitzt das Flugzeug? Wie lange benötigt es, wenn

Mehr

Etwas Bauphysik. Auszüge von Dipl.-Ing. (fh) Martin Denk aus Richtig bauen von Prof. Dr.-Ing. habil. C. Meier

Etwas Bauphysik. Auszüge von Dipl.-Ing. (fh) Martin Denk aus Richtig bauen von Prof. Dr.-Ing. habil. C. Meier Etwas Bauphysik Auszüge von Dipl.-Ing. (fh) Martin Denk aus Richtig bauen von Prof. Dr.-Ing. habil. C. Meier Welche Konsequenzen entstehen aufgrund der Erfahrungen des Beispielobjektes Gäßler in Bezug

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Nachweis Energieeinsparung und Wärmeschutz

Nachweis Energieeinsparung und Wärmeschutz Nachweis Energieeinsparung und Wärmeschutz Prüfbericht 432 26793/1 Auftraggeber Produkt Bezeichnung Querschnittsabmessung Material Art und Material der Dämmzone Besonderheiten -/- ift Rosenheim 4. April

Mehr

Warum Kühlung sich lohnt - Wärmeleitende Produkte für die Elektronik

Warum Kühlung sich lohnt - Wärmeleitende Produkte für die Elektronik PRESSEARTIKEL Version 21.01.2016 CMC Klebetechnik GmbH Rudolf-Diesel-Strasse 4 67227 Frankenthal Gerald Friederici 06233 872 356 friederici@cmc.de Warum Kühlung sich lohnt - Wärmeleitende Produkte für

Mehr

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft ersuch : Bestimmung des olumenausdehnungskoeffizienten γ von Luft Theoretische Grundlagen: I. Theoretische Bestimmung des vom Wassertropfen eingeschlossenen Gases nach ersuchsaufbau. olumen des Erlenmeyerkolbens:.

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

von Feldausbildungen und Stromdichteverteilungen (zweidimensional)

von Feldausbildungen und Stromdichteverteilungen (zweidimensional) Katalog Katalog von Feldausbildungen und Stromdichteverteilungen (zweidimensional) Inhalt 1 Leiter bei Gleichstrom (Magnetfeld konstanter Ströme) Eisenleiter bei Gleichstrom 3 Leiter bei Stromanstieg 4

Mehr

Nachweis Energieeinsparung und Wärmeschutz

Nachweis Energieeinsparung und Wärmeschutz Nachweis Energieeinsparung und Wärmeschutz Prüfbericht 432 29876/1 Auftraggeber Produkt Bezeichnung Querschnittsabmessung Ansichtsbreite Material Oberfläche Art und Material der Dämmzone Besonderheiten

Mehr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr 5 5 Wärmeübertrager Wärmeübertrager sind Apparate, in denen ein Fluid erwärmt oder abgekühlt wird Das Heiz- oder Kühlmedium ist in der Regel ein anderes Fluid Verdampft oder kondensiert ein Fluid dabei,

Mehr

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Aufgabe 3: Hagen- Rubens- Gesetz Das Hagen- Rubens Gesetz beschreibt das Reflektionsvermögen

Mehr

WÄRMEÜBERTRAGUNG. Mag. Dipl.-Ing. Katharina Danzberger

WÄRMEÜBERTRAGUNG. Mag. Dipl.-Ing. Katharina Danzberger WÄREÜBERTRAGUNG ag. Dipl.-Ing. Katharina Danzberger 1. Voraussetzungen Für die Durchführung dieses Übungsbeispiels sind folgende theoretische Grundlagen erforderlich: a. Kenntnis der Gesetzmäßigkeiten

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

Behaglichkeit durch Wärmedämmung. Austrotherm Bauphysik

Behaglichkeit durch Wärmedämmung. Austrotherm Bauphysik Austrotherm Bauphysik Behaglichkeit durch Wärmedämmung Ω Wärmedämmung von Baustoffen Ω Grundlagen zur Wärmeleitfähigkeit Ω Raumklima und Wärmespeicherung Das lässt keinen kalt. www.austrotherm.com Wärmedämmung

Mehr

Instrumentenpraktikum

Instrumentenpraktikum Instrumentenpraktikum Theoretische Grundlagen: Bodenenergiebilanz und turbulenter Transport Kapitel 1 Die Bodenenergiebilanz 1.1 Energieflüsse am Erdboden 1.2 Energiebilanz Solare Strahlung Atmosphäre

Mehr

Lösungen zur Übung Grundlagen der Wärmeübertragung

Lösungen zur Übung Grundlagen der Wärmeübertragung Lösungen zur Übung Grundlagen der Wärmeübertragung Universität der Bundeswehr München Fakultät für Luft- und Raumfahrttechnik Institut für Thermodynamik -202- Lösung zu Aufgabe : In dieser Aufgabe wird

Mehr

Versuch 9. Raumwärme. 9.1 Energieversorgung der Zukunft

Versuch 9. Raumwärme. 9.1 Energieversorgung der Zukunft Versuch 9 Raumwärme Fast jeder weiß, wie viel Liter Benzin oder Diesel sein Auto verbraucht um eine Strecke von 100 km zu fahren. Wissen Sie auch, wie viel Liter Heizöl oder Gas Ihre Wohnung im Jahr verbraucht,

Mehr

Auftraggeber: TEHNI S.A. PANTELOS 2o klm Kimmeria - Pigadia 67100 Xanthi Greece

Auftraggeber: TEHNI S.A. PANTELOS 2o klm Kimmeria - Pigadia 67100 Xanthi Greece Seite 1 von 5 Auftraggeber: TEHNI S.A. PANTELOS 2o klm Kimmeria - Pigadia 67100 Xanthi Greece Bauvorhaben/Kunde/Projekt: Aluminium-Hauseingangstür mit Glasausschnitten Inhalt: Uf-Berechnungen für Profile

Mehr

24. Transportprozesse

24. Transportprozesse 4. Transportprozesse 4.1. Diffusion Gas- und Flüssigkeitsteilchen befinden sich in ständiger unregelmäßiger Bewegung (Gas: BROWNsche Bewegung). unwahrscheinliche Ausgangsverteilungen gleichen sich selbständig

Mehr

Kein Tauwasser (Feuchteschutz) sd-wert: 5.2 m. Temperaturverlauf

Kein Tauwasser (Feuchteschutz) sd-wert: 5.2 m. Temperaturverlauf wand K Plus Putzfassade: wand, U=,126 W/m²K (erstellt am 14.6.13 1:39) U =,126 W/m²K (Wärmedämmung) Kein Tauwasser (Feuchteschutz) TA-Dämpfung: 163.9 (Hitzeschutz) EnEV Bestand*: U

Mehr

Nachweis Energieeinsparung und Wärmeschutz

Nachweis Energieeinsparung und Wärmeschutz Nachweis Energieeinsparung und Wärmeschutz Prüfbericht 432 29282/1 Auftraggeber Produkt heroal-johann Henkenjohann GmbH & Co.KG Österwieher Straße 80 33415 Verl Feste Systeme: Blendrahmen / Sprosse Bewegliche

Mehr

Theorie - Begriffe. Gleichgewichtszustand. Stationäre Temperaturverteilung. Wärmemenge. Thermoelement

Theorie - Begriffe. Gleichgewichtszustand. Stationäre Temperaturverteilung. Wärmemenge. Thermoelement Theorie - Begriffe Gleichgewichtszustand Ein Gleichgewichtszustand ist ein Zustand in dem sich der betrachtete Parameter eines Systems nicht ändert, aber es können dennoch permanent Vorgänge stattfinden(dynamisches

Mehr

Thermische Simulation und Kühlung von Leiterplatten

Thermische Simulation und Kühlung von Leiterplatten Thermische Simulation und Kühlung von Leiterplatten In modernen Leistungselektronik Anwendungen wie z.b. Schaltnetzteilen müssen auf engstem Raum mehrere Leistungs-Halbleiter montiert werden. Die steigende

Mehr

WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN

WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN U. Heisel, G. Popov, T. Stehle, A. Draganov 1. Einleitung Die Arbeitsgenauigkeit und Leistungsfähigkeit von Werkzeugmaschinen hängt zum einen von

Mehr

Aufbau eines Teststands zur Vermessung von Sole-Wärmepumpen

Aufbau eines Teststands zur Vermessung von Sole-Wärmepumpen Aufbau eines Teststands zur Vermessung von Sole-Wärmepumpen A. Ratka, W. Ernst, T. Priesnitz, Hochschule Weihenstephan-Triesdorf Steingruberstr.2, D-91746 Weidenbach Tel.: 09826/654-202, e-mail: andreas.ratka@hswt.de

Mehr

Nachweis Energieeinsparung und Wärmeschutz

Nachweis Energieeinsparung und Wärmeschutz Nachweis Energieeinsparung und Wärmeschutz Prüfbericht 432 29282/5 Auftraggeber Produkt heroal-johann Henkenjohann GmbH & Co.KG Österwieher Straße 80 33415 Verl Bezeichnung E 110 Querschnittsabmessung

Mehr

Zeichen Definition Bezeichnung Einheit. A Fläche; Oberfläche m 2 A j A j A Flächenanteil der Komponente j 1

Zeichen Definition Bezeichnung Einheit. A Fläche; Oberfläche m 2 A j A j A Flächenanteil der Komponente j 1 4 Wärmeübertragung F. R. Stupperich Formelzeichen Zeichen Definition Bezeichnung Einheit Lateinische Zeichen A Fläche; Oberfläche m 2 A j A j A Flächenanteil der Komponente j A q Querschnittfläche (Querschnitt)

Mehr

6 Strombelastbarkeit von Leiterbahnen

6 Strombelastbarkeit von Leiterbahnen 6 Strombelastbarkeit von Leiterbahnen 6 Strombelastbarkeit von Leiterbahnen... 6-1 6.1 Elektrischer Widerstand von Leiterbahnen und Stromwärme... 6-2 6.2 Die IPC-D-275... 6-3 6.2.1 Leiterbahndicke in US-Unzen...

Mehr