D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2"

Transkript

1 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung ein freigelegtes elektrisches Kabel der selben Länge mit einem Durchmesser D, das von einer elektrisch nicht leitenden Isolierschicht der Dicke δ ummantelt ist. Durch den im Kabel ieÿenden elektrischen Strom wird Wärme erzeugt und nach auÿen abgeführt. Im stationären Zustand steht das ummantelte Kabel im Wärmeaustausch durch Konvektion und Strahlung mit dem Kanal. Wärmeleitung durch die Luft und Wärmeübergang an den Stirnseiten des Kabels werden vernachlässigt. Die konstanten Temperaturen der Isoliermanteloberäche T 0 und der Luft T L sind bekannt. Berechnen Sie unter diesen Umständen a) den vom horizontalen Kabel an die umgebende Luft im Kanal durch freie Konvektion abgeführten Wärmestrom Q K, b) die Temperatur ϑ W der Kanalwände, wenn ein konstanter Wärmeübergangskoef- zient α W zwischen den Kanalwänden und der Luft angenommen wird und die Lufttemperatur ϑ L konstant bleibt, c) den vom Kabel mit den Kanalwänden ausgetauschten Wärmestrom durch Strahlung Q Str unter der Annahme, dass das Kabel von den Kanalwänden vollständig umschlossen ist (Vernachlässigen Sie die beiden Stirnächen!), d) die pro Volumeneinheit des elektrisch leitenden Kabels erzeugte mittlere Wärmeleistung (Joulesche Wärme) q diss (Hinweis: [ q diss ] = W/m3 ) sowie e) die Temperatur ϑ i an der Innenwand der Isolierschicht. Angaben: D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 0 W/m K ɛ 0 = 0, 8 ɛ W = 0, Mit der Wärmeleitfähigkeit λ i und dem Emissionsgrad ɛ 0 der Isolierschicht sowie dem Emissionsgrad ɛ W der Kanalwand. Die Erdbeschleunigung beträgt: g = 9, 81 m/s. Stowerte des idealen Gases Luft: Wärmeleitfähigkeit kinemat. Viskosität Prandtlzahl therm. Ausdehungskoe. λ L = 0, 099 W 5 m ν mk L =, P r s L = 0, 708??? ideales Gas!!! Lösung: Kabelkanal (ehemalige Vordiplom-Aufgabe) 1

2 a) Freie Konvektion am horizontalen Zylinder Nu = { { 0, , } Ra f 3 mit f 3 = 1 + ( 0, 559 P r ) } 9 9 Die Rayleighzahl berechnet sich als Produkt von Grashof- und Prandtl-Zahl: Die Grashof-Zahl der Luft ergibt sich zu: Ra = Gr P r Gr L = β g l3 ν T 0 T L = T 0 T L g (D + δ)3 = T L ν wobei die charakteristische Länge der Auÿendurchmesser der Kabelisolierung ist und sich der isobare Volumenausdehnungskoezient β im vorliegenden Fall des idealen Gases zu β = 1 ( ) ( ) v = 1 R T p = 1 R v T p v T v p T T = 1 T ergibt. Die Rayleigh-Zahl Ra und die Funktion f 3 lauten nun: { ( ) } 9 9 0, 559 Ra = Gr P r = und f 3 = 1 + P r Es folgt schlieÿlich die Nuÿelt-Zahl Nu = { 0, , , 6} = 6, 1 Der Wärmeübergangskoezient ergibt sich zu p = 0, 37 α = Nu λ L (D + δ) = 9, 9 W m K Der konvektiv von der Isolierung abgegebene Wärmestrom Q K beträgt Q K = α A zyl (T 0 T L ) = 9, 9 W m K π L (D + δ) 100 K = 87, 56 W b) Damit im stationären Fall die Lufttemperatur T L konstant bleibt, muss der konvektive Wärmestrom Luf t Kanalwand genauso groÿ sein wie der Wärmestrom Kabel Luft. Q K = α W A kanal (T L T W ) = 0 W m K a L (T L T W ) T W = T L Q K a L α W = 95, 85 K ϑ W =, 7 C

3 c) Der Wärmestrom infolge des Strahlungsaustausches zwischen Kanalwand und Kabel, unter Vernachlässigung der Stirnächen, berechnet sich zu Einsetzen der Werte ergibt mit Q Str = σ A 0 (T0 TW ( ) ) 1 ɛ 0 + A 0 1 A W ɛ W 1 A 0 = π (D + δ) L = 0, 095 m bzw. A W = a L = 0, 6 m folgenden Wärmestrom Q Str = 5, W m K 0, 095 m (03, 15 95, 85 ) K ( ) = 53, 36 W 1 0,095 m ,8 0,6 m 0, d) Die spezische Wärmeleistung des Kabels ist nun die auf das Volumen bezogene insgesamt abgeführte Leistung Q ab, die sich als Summe aus Strahlungsleistung und konvektiv abgegebener Wärmeleistung ergibt: Es ergibt sich somit: Q ab = Q K + Q Str = 53, 36 W + 87, 56 W = 10, 9 W q diss = Q ab V Kabel = Q ab π D L = 10, 9 W MW = 1, 196, m3 m 3 e) Die Temperatur an der Isolierschichtinnenseite T i kann man mit Hilfe der Wärmeleitfähigkeit λ i und der Beziehung für den Gesamtwiderstand eines Hohlzylinders berechnen: Q Leitung = 1 R zyl (T i T 0 ) = π λ i L ln ( ) (T D+δ i T 0 ) D Die insgesamt abgegebene Wärme Q ab muss zuvor in Form von Wärmeleitung durch die Isolationsschicht transportiert werden. Daher gilt: Q Leitung = Q ab Es ergibt sich somit für die Temperatur an der Innenseite der Isolierschicht: T i = 03, 15 K + T i = T 0 + Q ( ) ab D + δ π λ i L ln D ( ) 10, 9 W 0, 0 ln = 9, 1 K π 0, W 1, 5 m 0, 01 m K ϑ i = 155, 91 C 3

4 Aufgabe.13: Thermometer im Raum Ein Thermometer bendet sich in der Mitte eines Raumes. Die Temperatur der Raumwände beträgt ϑ W = 15 C und die Temperatur der umgebenden Luft ϑ L = 5 C. Der Glaskolben mit der Thermometerüssigkeit hat die Oberäche A 1 = cm. Der Emissionsgrad beträgt ɛ 1 = 0, 9 und der Wärmeübergangskoezient Glaskolbenoberäche / Umgebungsluft beträgt α = 10 W. m K a) Veranschaulichen Sie sich die Richtung der im stationären Fall am Thermometer auftretenden Wärmeströme. b) Geben Sie eine Gleichung zur Berechnung des Strahlungswärmestroms von dem Thermometer zur Wand Q T W an. Vergegenwärtigen Sie sich hierzu zunächst die Besonderheit der vorliegenden Geometrie. c) Geben Sie eine Gleichung zur Berechnung des konvektiven Wärmestroms von der Umgebungsluft zum Thermometer Q L T an. d) Welche Temperatur liest man am Thermometer im stationären Zustand ab? e) Überprüfen Sie das unter c) gefundene Ergebnis. Hinweis: Verwenden Sie zur Auswertung des Strahlungsterms in c) folgende Beziehung TT TW = (T T T W ) (T T + T W ) ( ) TT + TW bzw. ( ) ( ) TT TW (T T T W ) TT + T W T T + TW } {{ } =: f( T T, T W ) = konst. mit einer geeigneten konstanten Schätztemperatur T T = konstant für T T. Lösung: Thermometer im Raum a) Für die Temperatur des Thermometers T T gilt sicher T W T T T L Das heiÿt: Der konvektive Wärmestrom geht von der wärmeren Luft an das kältere Thermometer, während der Strahlungswärmestrom von dem Thermometer an die noch kältere Wand übergeht. Berücksichtigt man dies, so sind alle unten aufgeführten Wärmeströme positiv. b) Bei der Geometrie handelt es sich um einen kleinen Körper 1, der von einem Körper, dem Wohnraum, umgeben ist, der eine wesentlich gröÿere Oberäche aufweist als der Glaskolben des Thermometers: A >> A 1. Die Gleichung, welche den Wärmestrom in diesem Fall beschreibt, lautet ( ) Q T W = σ ɛ 1 A 1 T T TW

5 c) Der konvektive Wärmestrom von der Umgebungsluft zum Thermometer berechnet sich zu: Q L T = α A 1 (T L T T ) d) Im Gleichgewichtszustand muss der dem Thermometer zuieÿende Wärmestrom gleich dem abieÿenden Wärmestrom sein: Es muss also gelten Q T W = Q L T σ ɛ 1 A 1 ( T T T W ) = α A1 (T L T T ) Da diese Gleichung nicht ohne weiteres aufgelöst werden kann, wird der Strahlungsterm zunächst umgeformt: ( ) ( ) σ ɛ 1 A 1 (T T T W ) TT + T W T T + TW = α A 1 (T L T T ) } {{ } =: f( T T, T W ) = konst. Da sich die interessierenden Temperaturen lediglich im Bereich 88, 15 K T 98, 15 K bewegen, sind die Summenterme der Temperaturen bzw. deren Quadrate numerisch hinreichend stabil während die Dierenz zweier nahe beeinander liegender Temperaturen numerisch schwieriger zu verarbeiten ist. Daher kann der träge Summenterm f( T T, T w ) ohne groÿen Fehler als konstant angenommen werden, während die Dierenz der Temperaturen variabel belassen wird. Für die Thermometertemperatur ϑ T wird zunächst das arithmetische Mittel von Wand- und Lufttemperatur eingesetzt: Es gilt somit: Es folgt daher: T T ϑ T = 1 (ϑ W + ϑ L ) = 0 C T T = 93, 15 K f( T T, T W ) = f(93, 15 K, 88, 15 K) = 9, K 3 T T = ( ) ( α A 1 T L + σ ɛ 1 A 1 TT + T W T T + TW ( ) ( ) σ ɛ 1 A 1 TT + T W T T + TW + α A 1 = 0, 5963 W + 1, W/K 9, K 3 88, 15 K 1, W/K 9, K 3 + 0, 00 W/K ) T W = 0, , also T T = 9, 8 K ϑ T = 1, 65 C Es ist erstaunlich, wie wenig sich T T ändert wenn man für TT die theoretischen Extremalwerte = 88, 15 K und = 98, 15 K einsetzt: T T T T T T = 88, 15 K : f( T T, T W ) = 9, K 3 T T = 9, 87 K ϑ T = 1, 7 C T T = 98, 15 K : f( T T, T W ) = 10, K 3 T T = 9, 6 K 5 ϑ T = 1, 9 C

6 e) Man kann das unter c) gewonnene Ergebnis überprüfen, indem man mit der errechneten Thermometertemperatur T T die beiden Wärmeströme Q T W und Q L T bestimmt. Es gilt zunächst für den infolge von Strahlung hervorgerufenen Wärmestrom Q T W : ( ) Q T W = σ ɛ 1 A 1 T T TW Also Q T W = 5, W m K 0, 000 m (9, 8 88, 15 )K = 6, W Für den konvektiven Wärmestrom Q L T gilt: Also Q L T = α A 1 (T L T T ) Q L T = 10 W m K 0, 000 m (98, 15 K 9, 8 K) K = 6, W Die berechnete Thermometertemperatur ist demnach richtig! 6

7 Aufgabe.11: Das spektrale Maximum der Solarstrahlung Bei welcher Wellenlänge λ max weist das solare Spektrum sein Maximum auf, wenn man die Sonne als schwarzen Strahler betrachtet, dessen Oberächentemperatur T S = 5700 K beträgt? Lösung: Das spektrale Maximum der Solarstrahlung Das Maximum der spektralen Intensität kann man mit Hilfe des Wienschen Verschiebungsgesetzes für den schwarzen Körper bestimmen: λ max T = 897, m K Setzt man hier die Oberächentemperatur T S = 5700 K ein, so ndet man: λ max = 897, m K 5700 K = 5, m = 508, nm Man würde diese Wellenlänge auch ermitteln, wenn man das spektrale Maximum der Empndlichkeit des menschlichen Auges sucht. 7

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines

Mehr

Modulpaket TANK Beispielausdruck

Modulpaket TANK Beispielausdruck Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung:

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung: 3.8 Wärmeausbreitung Es gibt drei Möglichkeiten der Energieausbreitung: ➊ Konvektion: Strömung des erwärmten Mediums, z.b. in Flüssigkeiten oder Gasen. ➋ Wärmeleitung: Ausbreitung von Wärmeenergie innerhalb

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

1. Aufgabe (15 Punkte)

1. Aufgabe (15 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Sommersemester 2009 24. September 2009 Teil II: Wärmetransportphänomene

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

DI(FH) Joachim MATHÄ. Ingenieurbüro für Energietechnik

DI(FH) Joachim MATHÄ. Ingenieurbüro für Energietechnik DI(FH) Joachim MATHÄ Ingenieurbüro für Energietechnik UID: ATU 57242326 7423 PINKAFELD Tuchmachergasse 32 Tel.: 03357/43042 Fax DW 4 +43 664 3263091 e-mail: ibmathae@kabelplus.at Gegenstand: Gutachtennummer:

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Sämtliche Rechenschritte müssen nachvollziehbar sein!

Sämtliche Rechenschritte müssen nachvollziehbar sein! und Bioverfahrenstechnik Seite 1 von 5 Name: Vorname: Matr. Nr.: Sämtliche Rechenschritte müssen nachvollziehbar sein! Aufgabe 1 (Wärmeleitung), ca. 32 Punkte: Eine L = 50 m lange zylindrische Dampfleitung

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Wärmeübertragung an einem Heizungsrohr

Wärmeübertragung an einem Heizungsrohr HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB klaus.leeb@surfeu.at ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen,

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer Peter von Böckh Wärmeübertragung Grundlagen und Praxis Zweite, bearbeitete Auflage 4y Springer Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung 3 1.2 Definitionen 5 1.2.1

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Thermodynamik 9. März 20 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Kryotechnik Fortbildung am GSI

Kryotechnik Fortbildung am GSI Kryotechnik Fortbildung am GSI 1. Kälteerzeugung 2. Kälteverteilung 3. Wärmeübergang 4. Niedrigere Temperaturen Kühlmöglichkeite nmit Helium Bezugsquellen für Stoffdatenprogramme GASPAK, HEPAK, CRYOCOMP

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Inhaltsverzeichnis. Seite 2

Inhaltsverzeichnis. Seite 2 Inhaltsverzeichnis 1 Einleitung... 1 2 Konstruktionsbeschreibung...1 3 Berechnungsgrundlagen...2 4 Randbedingungen für die Berechnung... 4 5 Berechnungsergebnisse...4 6 Ergebnisinterpretation... 5 7 Zusammenfassung...

Mehr

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung...3 1.2 Definitionen... 5 1.2.1 Wärmestrom und Wärmestromdichte... 5 1.2.2 Wärmeübergangszahl und Wärmedurchgangszahl...5

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

Fragebogen Auswahl Peltier-Element

Fragebogen Auswahl Peltier-Element Fragebogen Auswahl Peltier-Element Inhaltsverzeichnis 1 Einleitung... 3 2 Anwendung / Anordnung / Konfiguration... 3 3 Abmessungen... 4 4 Umgebung... 4 4.1 Temperatur... 4 5 Kalte Seite... 4 5.1 Temperatur...

Mehr

Klausur zur Vorlesung. Wärme- und Stoffübertragung

Klausur zur Vorlesung. Wärme- und Stoffübertragung Institut für Thermodynamik 27. Juli 202 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

Dreidimensionale Wärmebrückenberechnung für das Edelstahlanschlusselement FFS 340 HB

Dreidimensionale Wärmebrückenberechnung für das Edelstahlanschlusselement FFS 340 HB für das Edelstahlanschlusselement FFS 340 HB Darmstadt 12.03.07 Autor: Tanja Schulz Inhalt 1 Aufgabenstellung 1 2 Balkonbefestigung FFS 340 HB 1 3 Vereinfachungen und Randbedingungen 3 4 χ - Wert Berechnung

Mehr

Infrarotaufnahmen im Physikunterricht

Infrarotaufnahmen im Physikunterricht Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik Infrarotaufnahmen im Physikunterricht Bachelorarbeit Name des Studenten: Anne Neupert Matrikelnummer: 1264832 Studiengang:

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Aufgabe 3: Hagen- Rubens- Gesetz Das Hagen- Rubens Gesetz beschreibt das Reflektionsvermögen

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet) erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren

Mehr

STATIONÄRE WÄRMELEITUNG

STATIONÄRE WÄRMELEITUNG Wärmeübertragung und Stofftransport VUB4 STATIONÄRE WÄRMELEITUNG Bestimmung der Wärmeleitfähigkeit λ eines Metallzylinders durch Messungen der stationären Wärmeverteilung Gruppe 1 Christian Mayr 23.03.2006

Mehr

In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden.

In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden. Skizze In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden. Warum muß der Höhenunterschied h1 größer als Null sein, wenn

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

Bericht Nr. H.0906.S.633.EMCP-k

Bericht Nr. H.0906.S.633.EMCP-k Beheizung von Industriehallen - Rechnerischer Vergleich der Wärmeströme ins Erdreich bei Beheizung mit Deckenstrahlplatten oder Industrieflächenheizungen Auftragnehmer: HLK Stuttgart GmbH Pfaffenwaldring

Mehr

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft ersuch : Bestimmung des olumenausdehnungskoeffizienten γ von Luft Theoretische Grundlagen: I. Theoretische Bestimmung des vom Wassertropfen eingeschlossenen Gases nach ersuchsaufbau. olumen des Erlenmeyerkolbens:.

Mehr

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)?

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)? Übung 8 Aufgabe 5.3: Carnot-Schiff In der Region des Nordmeeres liegt die Wassertemperatur zumeist über der Temperatur der Umgebungsluft. Ein Schiff soll die Temperaturdifferenz zwischen diesen beiden

Mehr

BERECHNUNG DER WÄRMEBRÜCKENBEIWERTE FÜR DIE VERBINDUNG WAND-FENSTER UNTER EINBEZIEHUNG VON ZIERLEISTENPROFILEN MIT PROFILSTÄRKEN VON 25 MM.

BERECHNUNG DER WÄRMEBRÜCKENBEIWERTE FÜR DIE VERBINDUNG WAND-FENSTER UNTER EINBEZIEHUNG VON ZIERLEISTENPROFILEN MIT PROFILSTÄRKEN VON 25 MM. Abteilung Verkleidung und Beläge Hygrothermisches Verhalten von Baukonstruktionen Angelegenheit Nr.: 12-047A Den 29. Oktober 2012 Ref. DER/HTO 2012-260-BB/LS BERECHNUNG DER WÄRMEBRÜCKENBEIWERTE FÜR DIE

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

Dipl.- Geol. Martin Sauder / Ö. b. u. v. Sachverständiger für mineralische Baustoffe / Institut für Baustoffuntersuchung und

Dipl.- Geol. Martin Sauder / Ö. b. u. v. Sachverständiger für mineralische Baustoffe / Institut für Baustoffuntersuchung und / Wärmedurchlasswiderstand von Luftschichten Ruhende Luftschicht: Der Luftraum ist von der Umgebung abgeschlossen. Liegen kleine Öffnungen zur Außenumgebung vor und zwischen der Luftschicht und der Außenumgebung

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Aufgabe 1: Geldnachfrage I Die gesamtwirtschaftliche

Mehr

Thermodynamik Wärmeempfindung

Thermodynamik Wärmeempfindung Folie 1/17 Warum fühlt sich 4 warmes wesentlich heißer an als warme? Und weshalb empfinden wir kühles wiederum kälter als kühle? 7 6 5 4 2 - -2 32 32 Folie 2/17 Wir Menschen besitzen kein Sinnesorgan für

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

24. Transportprozesse

24. Transportprozesse 4. Transportprozesse 4.1. Diffusion Gas- und Flüssigkeitsteilchen befinden sich in ständiger unregelmäßiger Bewegung (Gas: BROWNsche Bewegung). unwahrscheinliche Ausgangsverteilungen gleichen sich selbständig

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Wärmeübertragung durch Bauteile (k-wert) nach ÖNORM EN ISO 6946. Copyright 1999 LandesEnergieVerein, Burggasse 9, 8010 Graz. Autor: G.

Wärmeübertragung durch Bauteile (k-wert) nach ÖNORM EN ISO 6946. Copyright 1999 LandesEnergieVerein, Burggasse 9, 8010 Graz. Autor: G. Wärmeübertragung durch Bauteile (k-wert) nach ÖNOM EN ISO 6946 Copyright 999 LandesEnergieVerein, Burggasse 9, 800 Graz Autor: G. Bittersmann 4.07.000 :3 Seite von 9 Wärmeübertragung durch Bauteile (k-wert)

Mehr

5. Numerische Ergebnisse 58. 5.3. Füllgas Argon

5. Numerische Ergebnisse 58. 5.3. Füllgas Argon 5. Numerische Ergebnisse 58 5.3. Füllgas Argon Argon wird als Füllgas für Verglasungen sehr häufig eingesetzt. Die physikalischen Eigenschaften dynamische Zähigkeit und Wärmeleitfähigkeit dieses Edelgases

Mehr

Konvektion ist der Transport von Wärme in und mit einem Stoff. Die Moleküle transportieren die Wärme mit sich.

Konvektion ist der Transport von Wärme in und mit einem Stoff. Die Moleküle transportieren die Wärme mit sich. 6. Wärmetransportphänomene 10_Thermodynamik_Waermetransport_BAneu.doc - 1/11 Wärmetransport tritt in einem System immer dann auf, wenn es Orte mit unterschiedlicher Temperatur gibt, d.h., wenn es sich

Mehr

im Auftrag der Firma Schöck Bauteile GmbH Dr.-Ing. M. Kuhnhenne

im Auftrag der Firma Schöck Bauteile GmbH Dr.-Ing. M. Kuhnhenne Institut für Stahlbau und Lehrstuhl für Stahlbau und Leichtmetallbau Univ. Prof. Dr.-Ing. Markus Feldmann Mies-van-der-Rohe-Str. 1 D-52074 Aachen Tel.: +49-(0)241-8025177 Fax: +49-(0)241-8022140 Bestimmung

Mehr

5.4 Thermische Anforderungen

5.4 Thermische Anforderungen 5.4 Thermische Anforderungen 133 5.4 Thermische Anforderungen Bild 5-32 Testzentrum zur Wintererprobung in Arjeplog, Schweden (Foto: Bosch) Extreme Temperaturen im Fahrzeug können z. B. durch kalte Winternächte

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

Übungsaufgaben zu Interferenz

Übungsaufgaben zu Interferenz Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.

Mehr

Bild 6.1: Beispiel für eine Hydropumpe Radialkolbenpumpe (Wepuko Hydraulik)

Bild 6.1: Beispiel für eine Hydropumpe Radialkolbenpumpe (Wepuko Hydraulik) 6 Hydropumpen 6.1 Allgemeines Als Herzstück eines hydraulischen Systems gilt die Hydropumpe. Die über ihre Antriebswelle zugeführte mechanische Energie wird dazu benötigt, die Energie des durch die Pumpe

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski Betrachtung der Stoffwerte und ihrer Bezugstemperatur Von Franz Adamczewski Inhaltsverzeichnis Einleitung... 3 Bezugstemperatur... 4 Eintrittstemperatur des Kühlmediums 4 Austrittstemperatur des Kühlmediums

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines emperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte hermische enzschichtdicke hydraulische

Mehr

EMPA: Abteilung Bautechnologien Bericht-Nr. 443 015-1 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7

EMPA: Abteilung Bautechnologien Bericht-Nr. 443 015-1 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7 1 Auftrag Die Firma Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur, erteilte der EMPA Abt. Bautechnologien

Mehr

Kein Tauwasser (Feuchteschutz)

Kein Tauwasser (Feuchteschutz) U = 0,37 W/m²K (Wärmedämmung) Kein Tauwasser (Feuchteschutz) TA-Dämpfung: 43,5 (Hitzeschutz) 0 0.5 EnEV Bestand*: U

Mehr

Berechnungsbeispiel Erwärmung (1)

Berechnungsbeispiel Erwärmung (1) Berechnungsbeispiel Erwärmung (1) Erwärmung von Wasser bei einer HF-Leistungsflussdichte, die dem Grenzwert entspricht (gilt auch als grobe Näherung für die Erwärmung von Körpergewebe). Grenzwert D-Netz

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen 3.5 Die chemische Produktionsdichte Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen und mit folgt Die rechte Seite der Gleichung wird als chemische Produktionsdichte bezeichnet: Sie

Mehr

Effiziente Wärmeableitung von PCB-Power-Modulen

Effiziente Wärmeableitung von PCB-Power-Modulen Effiziente Wärmeableitung von PCB-Power-Modulen Entwickler von Stromversorgungsmodulen sind stets auf der Suche nach mehr Leistungsdichte auf kleinerem Raum. Dies trifft vor allem auf Server in Datencentern

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

EHW Seite. Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld.

EHW Seite. Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld. EHW Seite Bei einem Spritzeinsatz zur Schädlingsbekämpfung fliegt ein Flugzeug bei Windstille in 20 s über ein 500 m langes Feld. Welche Geschwindigkeit besitzt das Flugzeug? Wie lange benötigt es, wenn

Mehr

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG)

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Thermische Simulation von temperaturkritischen

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

V8 - Auf- und Entladung von Kondensatoren

V8 - Auf- und Entladung von Kondensatoren V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz 07.2.2005 Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren.......

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Grundlagen der Elektrotechnik 2 für WIng Teil 2 S.2

Grundlagen der Elektrotechnik 2 für WIng Teil 2 S.2 Teil 2 S.1 1 2 3 4 5 6 7 8 Summe Note 20 10 13 10 6 8 14 24 105............ Name Vorname Matr.-Nr. Unterschrift Zugelassene Hilfsmittel: Taschenrechner, Zeichenmaterial 2 Blätter = 4 Seiten selbst geschriebene

Mehr

Klausur. "Technische Wärmelehre" am 02. September 2010

Klausur. Technische Wärmelehre am 02. September 2010 Klausur "Technische Wärmelehre" am 02. September 2010 Diplomvorprüfung im - Diplomstudiengang Elektrotechnik und - Diplomstudiengang Elektrotechnik mit der Studienrichtung Technische Informatik Bachelorprüfung

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 200 Versuch 0 ärmetransport durch ärmeleitung und Konvektion in einem Doppelrohrwärmeaustauscher Betreuer: olfgang Rüth (rueth@dechema.de,

Mehr

(9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt

(9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt Meteorologie und Klimaphysik Meteo 137 (9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt Wiensches Verschiebungsgesetz Meteo 138 Anhand des Plankschen Strahlungsgesetzes (Folie 68 + 69) haben wir

Mehr

Halogen-Infrarotheizstrahler. Holen Sie sich auch an kalten Tagen die Sonne auf Ihre Terrasse!

Halogen-Infrarotheizstrahler. Holen Sie sich auch an kalten Tagen die Sonne auf Ihre Terrasse! Halogen-Infrarotheizstrahler Holen Sie sich auch an kalten Tagen die Sonne auf Ihre Terrasse! Halogen-Infrarotheizstrahler Gegenüber Gasheizstrahlern und anderen Heiztechniken, bei denen lediglich die

Mehr

1 Massenwirkungsgesetz

1 Massenwirkungsgesetz 1 Massenwirkungsgesetz Zeige: Bei konstantem Druck und konstanter emperatur gilt für chemische Reaktionen der Art a 1 A 1 + a A + : : : a L A L b 1 B 1 + b B + : : : b R B R : K c (A i ) ai c (B j ) bj

Mehr

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz 1 Historisch 164-177: Newton beschreibt Licht als Strom von Teilchen 1800 1900: Licht als Welle um 1900: Rätsel um die "Hohlraumstrahlung" Historisch um 1900: Rätsel um

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Jan-Gerd Tenberge 1 Tobias Südkamp 2 6. Januar 2009 1 Matrikel-Nr. 349658 2 Matrikel-Nr. 350069 Experimentelle Übungen I E5 Tenberge,

Mehr

Physikalisches Grundpraktikum. Wärmeleitung

Physikalisches Grundpraktikum. Wärmeleitung Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 200 24. 28. Mai 200 Physik für Bauingenieure Übungsblatt 6. Luftfeuchtigkeit Gruppenübungen In einer Finnischen Sauna

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK.

KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK. KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK.CH EINLEITUNG In Halbleitern entstehen Verluste, die in Form von Wärme

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

von Feldausbildungen und Stromdichteverteilungen (zweidimensional)

von Feldausbildungen und Stromdichteverteilungen (zweidimensional) Katalog Katalog von Feldausbildungen und Stromdichteverteilungen (zweidimensional) Inhalt 1 Leiter bei Gleichstrom (Magnetfeld konstanter Ströme) Eisenleiter bei Gleichstrom 3 Leiter bei Stromanstieg 4

Mehr