Computergestützte Mechanik

Größe: px
Ab Seite anzeigen:

Download "Computergestützte Mechanik"

Transkript

1 Technische Universität Chemnitz Wintersemester 009/10 Institut für Physik Di, Prof. Dr. A. Thränhardt Abgabe: Montag, 1. Februar 010 Stehaufkreisel Computergestützte Mechanik 3. Projekt Der Stehaufkreisel (Englisch: Tippe top) ist ein älteres Spielzeug, das sich Frl. Helene Sperl aus München 1891 patentieren ließ. Schon lange vorher hatten Kinder aus dem Amazonasgebiet mit Kalebassenkreiseln gespielt, die sich auf den Kopf stellten. Anfang der 50er Jahre des 0-ten Jahrhunderts brachte ein englischer Spielzeugfabrikant mit großem Erfolg einen Stehaufkreisel aus Plastik auf den Markt, der selbst Nobelpreisträger, Könige und Politiker in seinen Bann zog. Winston Churchill soll stundenlang in seinem Arbeitszimmer gekniet und damit gespielt haben. Abb. 1: Bei der Aufrichtung geht der durch einen schwarzen Punkt markierte Schwerpunkt in die höchste Lage. Die Richtungen des Drehimpulses L und der Winkelgeschwindigkeit ω ändern sich bei der Aufrichtung nur wenig. Die in der Abbildung 1 dargestellte Form des Stehaufkreisels besteht aus einer hohlen, abgeschnittenen Kugel mit einem aufgesetzten Stift. Ohne Drehung oder mit geringer Drehzahl ist die Lage ANF stabil; der Kreisel wackelt wie ein Stehaufmännchen hin und her, da der Schwerpunkt S unterhalb des Kugelmittelpunktes M liegt. Dieses einfache Verhalten ändert sich grundlegend, wenn man den Kreisel in eine schnelle Rotation ψ(0) um die Symmetrieachse versetzt: Man beobachtet dann ein erstaunliches Phänomen: Die Position ANF ist nun instabil; der Kreisel neigt sich immer stärker zur Seite, der Neigungswinkel ϑ wird laufend größer. Dabei dreht sich nun der Kreisel nicht nur mit der Winkelgeschwindigkeit ψ um die Symmetrieachse, sondern gerät auch schnell in eine überraschend große Präzession ϕ um die raumfeste vertikale Achse. Schließlich berührt der Stift den Boden, und einen Augenblick haben Kreisel und Unterlage zwei Berührungspunkte. Nach dem Bruchteil einer Sekunde richtet sich der Kreisel fast ruckartig auf dem Stift auf und rotiert stabil in der Position END weiter. Der Schwerpunkt S hat die höchste Lage erreicht. Die stabile Rotation in der Lage END dauert so lange an, bis die Reibung die Winkelgeschwindigkeit unter einen kritischen Wert gedrückt hat. Dann taumelt der Kreisel und geht langsam in die Ausgangslage ANF zurück. 1

2 Laut Experiment ändern Drehimpuls und Winkelgeschwindigkeit ihre raumfeste (nahezu vertikale) Richtung bei der Aufrichtung des Kreisels kaum (siehe die Drehsinne in Abbildung 1). Die numerischen Rechnungen bestätigen diese überraschende Beobachtung. Daher ist der Drehimpulssatz L = M, der in der Literatur gerne für die Veranschaulichung von allen möglichen Kreiseleigenschaften herangezogen wird, beim Stehaufkreisel nutzlos, wenn die Aufrichtung anschaulich - nicht, wenn sie mathematisch - begründet werden soll. Leider gibt es keine leicht verständliche und einprägsame Erklärung für die Aufrichtung. Die Ursache für das Verhalten des Stehaufkreisels ist in den Bewegungsgleichungen verborgen. Sie sind trotz des einfachen Aufbaus des Kreisels sehr kompliziert und können nur numerisch gelöst werden - abgesehen von uninteressanten Spezialfällen. Entscheidend für die Aufrichtung ist die Reibungskraft des Kreisels auf dem Boden, denn da die potentielle Energie bei der Aufrichtung größer wird, muss die kinetische Energie (unabhängig von den Reibungsverlusten) kleiner werden: T End I 3 ω End < T Anf I 3 ω Anf Folglich muss auch der Drehimpuls, der während der ganzen Bewegung seine nahezu vertikale Richtung nicht wesentlich ändert, kleiner werden: L End I 3 ω End < L Anf I 3 ω Anf Daher ist ein vertikales Drehmoment erforderlich. Es kann nur durch horizontale Kräfte aufgebracht werden. Die einzige horizontale Kraft, die der über den Boden rutschende Kreisel erfährt, ist die Reibungskraft. Wir stellen also fest: Ohne Reibungskraft ist eine Aufrichtung nicht möglich. Wenn der Kreisel auf einer völlig glatten Oberfläche reibungsfrei rutscht, erfolgt keine Aufrichtung. Die Reibung kann allerdings nicht genau angegeben werden - alleine schon deshalb, weil Staubpartikel und Unregelmäßigkeiten der Oberflächen die Reibung stark beeinträchtigen. Wir verwenden hier folgenden Ansatz für die Reibung: Aufgrund der Elastizität wird der Kreisel unten etwas eingedrückt und berührt daher die Unterlage nicht - wie beim Coulombschen Reibungsgesetz angenommen - in einem Punkt, sondern auf einer kleinen, kreisförmigen Fläche. Da diese Fläche zugleich eine Translation und eine Rotation ausführt, haben ihre infinitesimalen Flächenelemente verschiedene Geschwindigkeitsvektoren und daher sowohl dem Betrage als auch der Richtung nach verschiedene infinitesimale Reibungskräfte d R. Integration der Reibungskräfte d R über die Berührungsfläche liefert die gesamte Reibungskraft. Sie ist für nicht zu kleine Winkelgeschwindigkeiten proportional zur Gleitgeschwindigkeit R = k m (g + z S ) v K, wobei z S die z-koordinate des Schwerpunkts und v K die Geschwindigkeit des Kreiselpunkts, der momentan über den Boden rutscht, bezeichnet.

3 Der Boden soll weich sein, weil ein harter, unnachgiebiger Boden zwei Nachteile hat: Die Bewegungsgleichungen des Kreisels auf hartem Boden sind extrem steif und können daher nur mit aufwendigen numerischen Verfahren, die auf steife Differentialgleichungen spezialisiert sind (wie z.b. das Gearsche Verfahren), zuverlässig gelöst werden 1. Bei einem weichen Boden sind die Differentialgleichungen nicht steif und es treten keine gravierenden numerischen Probleme auf. Bei einem harten Boden gilt für die z-komponente des Schwerpunktes die Zwangsbedingung z S = r a cos ϑ z S = a( ϑ sin ϑ + ϑ cos ϑ). Die Bezeichnungen sind aus Abbildung ersichtlich. Der Aufrichtung des Kreisels ist eine Nutation überlagert, so dass ϑ(t) nicht monoton wächst, sondern in großen Teilen der Bewegung abwechselnd steigt und fällt. Wegen dieses typischen Kreiseleffektes kann z S beim zwischenzeitlichen Hochschwingen des Stiftes auch bei hartem Boden auf g = 9, 81m/s fallen, so dass der Kreisel eventuell vom Boden abhebt und einen kleinen Luftsprung macht! (In Experimenten können die Luftsprünge an einem Rattern akustisch erkannt werden.) Der folgende Aufprall auf den Boden kann nur bei einem nachgiebigen Boden realistisch simuliert werden. Der Einfachheit wegen berechnen wir nur die Bewegung einer inhomogenen Kugel - ohne Stift. Der Stift ist für den Stehaufeffekt unwichtig; er macht die Aufrichtung nur spektakulärer und ermöglicht ein schnelles Andrehen per Hand. Abgesehen von dem in Abbildung dargestellten Doppelkontakt werden inhomogene Kugel und Stehaufkreisel durch dieselbe Physik beschrieben. Wegen des weichen Bodens hat der Kreisel sechs Freiheitsgrade. Als generalisierte Koordinaten bieten sich die drei Schwerpunktkoordinaten x S, y S, z S sowie die Euler-Winkel ϕ, ϑ, ψ an. Abb. : Stehaufkreisel mit den Abmessungen r,r und a,a beim flüchtigen Doppelkontakt am Boden. 1 Ein System von Differentialgleichungen heißt steif, wenn für die Realteile der Eigenwerte λ i der Jacobi-Matrix gilt: Re(max λ i ) Re(min λ i ) = Re(λ max) Re(λ min ) 1 Da diese Definition gelegentlich Probleme bereitet, definiert man auch: Differentialgleichungen heißen steif, wenn sie durch die herkömmlichen numerischen Verfahren (z.b. Runge-Kutta-Verfahren) nicht zuverlässig gelöst werden können 3

4 Für die Eindrücktiefe s des weichen Bodens gilt z S = r a cos ϑ s s = r z S a cos ϑ. Die potentielle Energie des weichen Bodens ist daher V Boden = D s = D (r z S a cos ϑ). Die Lagrangefunktion lautet dann L = m (ẋ S + ẏ S + ż S) + I 1 ( ϕ sin ϑ + ϑ ) m g z s D (r z s a cos ϑ). + I 3 ( ϕ cos ϑ + ψ ) (1) Da Reibung keine konservative Kraft ist, wird zu ihrer Behandlung eine sogenannte Dissipationsfunktion eingeführt. r K und v K sind der Orts- und Geschwindigkeitsvektor des kreiselfesten Punktes, der momentan über den Boden rutscht. Es gilt mit R j = R r K q j = km (g + z S )v K v K v K r K q j = km (g + z S )v K v K q j = km (g + z S ) ˆP q j ˆP : = v K. Auf eine Herleitung der Dissipationsfunktion soll hier verzichtet werden (siehe F. Kuypers, Klassische Mechanik, Kapitel 6.). Wir definieren eine effektive Schwerebeschleunigung g eff := g + z S. Wenn g eff bei der Ableitung der Dissipationsfunktion nach den Geschwindigkeiten q j als Konstante behandelt wird und erst nach Aufstellung der Lagrangegleichungen wieder durch die veränderliche Größe g + z S ersetzt wird, dann dürfen wir mit der Dissipationsfunktion P = kmg eff ˆP = k mg effv K () arbeiten. Da die Reibungskraft nur in horizontaler Richtung wirkt, muss die z-komponente von v K gleich Null gesetzt werden; das geschieht aber erst unmittelbar vor Gleichung (3). Für die Dissipationsfunktion P muss v K als Funktion der sechs generalisierten Koordinaten und ihrer Zeitableitungen geschrieben werden. Es gilt v K = v S + ω r SA mit r SA = Vektor von S zum Auflagepunkt A. Er hat nach Abbildung () die raumfesten Koordinaten cosϕ sin ϕ 0 0 a sin ϕ sin ϑ r SA = sin ϕ cos ϕ 0 a sin ϑ = a cos ϕ sin ϑ (r a cos ϑ) a cosϑ r 4

5 Die raumfesten Koordinaten von ω lauten ψ sin ϑ sin ϕ + ϑ cos ϕ ω = ψ sin ϑ cos ϕ + ϑ sin ϕ ϕ + ψ cos ϑ ẋ S ψ sin ϑ sin ϕ + ϑ cos ϕ v K = ẏ S ż S + ψ sin ϑ cosϕ + ϑ sin ϕ ϕ + ψ cos ϑ = ẋ S + (a ϕ + r ψ) cos ϕ sin ϑ ϑ(r a cos ϑ) sin ϕ ẏ S + (a ϕ + r ψ) sin ϕ sin ϑ ϑ(r a cos ϑ) cos ϕ ż S ϑa sin ϑ a sin ϕ sin ϑ a cos ϕ sin ϑ a cos ϑ r = Wir streichen die z-komponente von v K, da sie keinen Beitrag zur Reibung liefert. Nach einigen Umformungen ergibt sich die Dissipationsfunktion als Funktion der sechs generalisierten Koordinaten und ihrer Zeitableitungen: P = 1 kmg effvk = = k [ mg eff ẋ S + ẏs + (a ϕ + r ψ) sin ϑ + ϑ (r a cos ϑ) +(a ϕ + r ψ) sin ϑ(ẋ S cos ϕ + ẏ S sin ϕ) ϑ(r a cos ϑ)(ẋ S sin ϕ ẏ S cosϕ) (3) Mit den Abkürzungen L qj := d ( ) L dt q j L q j + P q j und c := kmg eff = km(g + z S ) lauten die Bewegungsgleichungen für eine inhomogene Kugel, die mit der sogenannten Contensou-Reibung über einen weichen Boden rutscht: L ϕ = d [ I 1 ϕ sin ϑ + I 3 ( ϕ cos ϑ + dt ψ) cos ϑ [ + ca sin ϑ (a ϕ + r ψ) (4) sin ϑ + ẋ S cos ϕ + ẏ S sin ϕ = 0 I 3 I 1 L ϑ = I 1 ϑ + ϕ sin(ϑ) + I 3 ϕ ψ sin ϑ + D a sin ϑ(r z S a cos ϑ) + c(r a cos ϑ)[ ϑ(r a cos ϑ) ẋs sin ϕ + ẏ S cos ϕ = 0 L ψ = d [ I 3 ( ϕ cos ϑ + dt ψ) [ + cr sin ϑ (a ϕ + r ψ) sin ϑ + ẋ S cos ϕ + ẏ S sin ϕ = 0 (6) [ L xs = mẍ S + c ẋ S + (a ϕ + r ψ) sin ϑ cos ϕ ϑ(r a cos ϑ) sin ϕ = 0 (7) [ L ys = mÿ S + c ẏ S + (a ϕ + r ψ) sin ϑ sin ϕ ϑ(r a cos ϑ) cos ϕ = 0 (8) L zs = m z S + mg D(r z S a cos ϑ) = 0 (9) (5) 5

6 Aufgaben a) Bringen Sie die Differentialgleichungen auf eine numerisch lösbare Form. b) Lösen Sie das Gleichungssystem mit Hilfe eines Runge-Kutta-Algorithmus, möglichst mir variabler Schrittweite. Unterscheiden Sie dabei die folgenden vier Phasen: Abb. 3 Phase=1: Die Hauptkugel rutscht über den Boden. Die Gleichungen (4-9) gelten. Phase=: Die Hauptkugel fliegt durch die Luft. Die Gleichungen (4-9) gelten mit D = 0 und k = 0 bzw. c = 0. Phase=3: Hauptkugel und Stift berühren den Boden zugleich. Hier ist zu berücksichtigen, dass Reibungs- und Normalkräfte in beiden Auflagepunkten auftreten. Phase=4: Der Stift rutscht über den Boden. Die Differentialgleichungen (4-9) gelten auch hier, wenn nur r durch r und a durch a ersetzt werden (siehe Abbildung ). Hinweis: Um zu sehen, ob der Kreisel sich aufstellt, tragen Sie die Bewegungsphasen und den Winkel ϑ gegen die Zeit auf. Mit den folgenden Parametern und Anfangsbedingungen sollte sich der Kreisel nach etwa 0,8s aufstellen: m = 15g I 1 = I = 3, kg m I 3 = 4, 10 6 kg m D = 14715N/m k = 30s/m r =, 5 10 m r = 0, 5 10 m a = 0, 5 10 m a =, 7 10 m ϑ(0) = 0, 1Rad ψ(0) = 350Rad/s z S (0) = r a cos ϑ(0) mg/d =, m Die restlichen neun Anfangsbedingungen sind null. aus: F. Kuypers, Klassische Mechanik, WILEY-VCH, 8.,erweiterte Auflage, 008 6

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

2. Anfangswertprobleme 2. Ordnung

2. Anfangswertprobleme 2. Ordnung Zu einem Anfangswertproblem 2. Ordnung gehören folgende Daten: Eine Differenzialgleichung 2. Ordnung: ẍ t f [ x t, ẋ t,t ] Die Anfangsbedingungen: x 0 x 0, ẋ 0 ẋ 0 Das zu untersuchende Zeitintervall: t

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

1 Mechanik starrer Körper

1 Mechanik starrer Körper 1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Lagrange Formalismus

Lagrange Formalismus Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen:

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen: Aufgabe zur Corioliskraft 1 Aufgabe: Ein Luftgewehr sei mit dem Lot exakt senkrecht nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit 60 ms 1 Wo landet das Geschoss, wenn der Abschuss

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m

Mehr

IM3. Modul Mechanik. Maxwell sches Rad

IM3. Modul Mechanik. Maxwell sches Rad IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Versuch 4 - Trägheitsmoment und Drehimpuls

Versuch 4 - Trägheitsmoment und Drehimpuls UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.

Mehr

UNIVERSITÄT AUGSBURG Institut für Physik. Der Stehaufkreisel. Zulassungsarbeit zum 1. Staatsexamen

UNIVERSITÄT AUGSBURG Institut für Physik. Der Stehaufkreisel. Zulassungsarbeit zum 1. Staatsexamen UNIVERSITÄT AUGSBURG Institut für Physik Der Stehaufkreisel Zulassungsarbeit zum 1. Staatsexamen vorgelegt von Christian Friedl am 26. November 1997 Referent: Prof. Dr. G.-L. Ingold Das Bild wurde aus

Mehr

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D)

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D) Welche der Größen ist extensiv? ( ) Lautstärke eines Kopfhörers ( ) Rasenfläche eines Fußballplatzes ( ) Farbe der Wand in Ihrer Küche ( ) Geschmack eines Kuchens Welche der Darstellungen hat das oberflächlichste

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr KIT SS 15 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung. September 15, 1-14 Uhr Aufgabe 1: Kurzfragen (3+4+1+1 Punkte (a Die erhaltenen Größen und evtl.

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation Kapitel Lagrangesche Mechanik Hier entwickeln wir eine elegante und einfache Betrachtungsweise der Newtontheorie, die eine Verallgemeinerung für quantenmechanische und relativistische Systeme ermöglicht..1

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung

Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung TBM, Physik, T. Borer Übung 1-006/07 Übung 1 Mechanik Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung Lernziele - die vektorielle Addition bzw. Zerlegung von Impuls, Impulsstrom und Kraft zur

Mehr

Lagrange sche Bewegungsgleichungen

Lagrange sche Bewegungsgleichungen Kapitel 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Lösung VIII Veröentlicht:

Lösung VIII Veröentlicht: 1 Impulse and Momentum Bei einem Crash-Test kollidiert ein Auto der Masse 2kg mit einer Wand. Die Anfangs- und Endgeschwindigkeit des Autos sind jeweils v = (- 2 m/ s) e x und v f = (6 m/ s) e x. Die Kollision

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

2 Lagrange sche Bewegungsgleichungen

2 Lagrange sche Bewegungsgleichungen 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens ein. Unterwirft

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

3.7 Physik auf einem Karussell

3.7 Physik auf einem Karussell 3.7-1 3.7 Phsik auf einem Karussell 3.7.1 Geradlinig gleichförmige Bewegung auf einer sich drehenden Plattform Im Abschnitt 1.1 untersuchten wir einen Körper, der sich reibungsfrei mit konstanter Geschwindigkeit

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 16. November 25 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

Übungsblatt 8 Physik für Ingenieure 1

Übungsblatt 8 Physik für Ingenieure 1 Übungsblatt 8 Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 4. 12. 2001 1 Aufgaben für die Übungsstunden Statische Gleichgewichte 1, Gravitation 2, PDF-Datei 3 1. Bei einem Kollergang

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M10 Physikalisches Grundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 11

Technische Universität München Zentrum Mathematik. Übungsblatt 11 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 11 Hausaufgaben Aufgabe 11.1 Berechnen Sie jeweils die Jacobi-Matrix folgender

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2

Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2 Versuch P - 71,74: Kreisel Vorbereitung Von Jan Oertlin und Ingo Medebach 11. Mai 010 Inhaltsverzeichnis 1 Drehimpulserhaltung Freie Achse 3 Kräftefreie Kreisel 3 4 Dämpfung des Kreisels 3 5 Kreisel unter

Mehr

4 Die Rotation starrer Körper

4 Die Rotation starrer Körper 4 Die Rotation starrer Körper Die Bewegung eines realen Körpers ist erst dann vollständig beschrieben, wenn nicht nur seine als Translation bezeichnete geradlinige Bewegung, sondern auch seine als Rotation

Mehr