Aufgabensammlung uncf Klausurentrainer zur Optimierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aufgabensammlung uncf Klausurentrainer zur Optimierung"

Transkript

1 Karl Heinz Borgwardt unter Mitarbeit von Matthias Tinkl und Thomas Wörle Aufgabensammlung uncf Klausurentrainer zur Optimierung Für die Bachelorausbildung in mathematischen Studiengängen STUDIUM 11 VIEWEG+ TEUBNER

2 Inhalt Vorwort Bezeichnungen Problemtypen v xiii xvii I Lineare Optimierung 1 1 Problemstellung und Zweck ModelIierung Aufgaben zur ModelIierung Lösungen zur ModelIierung Aufgaben zum spielerischen Lösen Lösungen zu den spielerischen Aufgaben Darstellungsformen und Alternativsätze für lineare Optimierungsprobleme Lineare Ungleichungssysteme Aufgaben zu linearen Ungleichungssystemen Lösungen zu linearen Ungleichungssystemen 37 3 Polyedertheorie Konvexität von Mengen Aufgaben zur Konvexität von Mengen Lösungen zur Konvexität von Mengen Polyeder und polyedrische Kegel Aufgaben zu Polyeder und polyedrische Kegel Lösungen zu Polyeder und polyedrische Kegel Ecken und Seitenflächen Aufgaben zu Ecken und Seitenflächen Lösungen zu Ecken und Seitenflächen Polyederstruktur Endliche Erzeugung

3 x 4.2 Aufgaben zur endlichen Erzeugung. 4.3 Lösungen zur endlichen Erzeugung. 4.4 Zerlegungssatz. 4.5 Aufgaben zum Zerlegungssatz 4.6 Lösungen zum Zerlegungssatz 5 Dualität 5.1 Duale Probleme und Dualitätssatz. 5.2 Aufgaben zu dualen Problemen und zum Dualitätssatz 5.3 Lösungen zu dualen Problemen und zum Dualitätssatz 5.4 Sätze vom komplementären Schlupf. 5.5 Aufgaben zu den Sätzen vom komplementären Schlupf 5.6 Lösungen zu den Sätzen vom komplementären Schlupf 6 Simplex-Algorithmus 6.1 Restriktionsorientierter Simplex-Algorithmus Aufgaben zum restriktionsorientierten Simplex-Algorithmus 6.3 Lösungen zum restriktionsorientierten Simplex-Algorithmus 6.4 Variablenorientierter Simplex-Algorithmus. 6.5 Aufgaben zum variahlenorientierten Simplex-Algorithmus 6.6 Lösungen zum variablenorientierten Simplex-Algorithmus 6.7 Postoptimierung. 6.8 Aufgaben zur Postoptimierung 6.9 Lösungen zur Postoptimierung Inhalt Ganzzahlige lineare Optimierung 7 Problemstellung und Zweck 7.1 ModelIierung Aufgaben zur ModelIierung. 7.3 Lösungen zur ModelIierung. 7.4 Unimodulare Prohleme Aufgaben zu unimodularen Problemen 7.6 Lösungen zu unimodularen Problemen 8 Polyedertheorie bei Ganzzahligkeit 8.1 Theorie der Ganzzahligen Optimierung Aufgaben zur Theorie der Ganzzahligen Optimierung 8.3 Lösungen zur Theorie der Ganzzah1igen Optimierung 9 Algorithmen der Ganzzahligen Optimierung 9.1 Dakins Branch-and-Bound-Algorithmus Aufgaben zu Dakins Branch-and-Bound-Algorithmus. 9.3 Lösungen zu Dakins Branch-and-Bound-Algorithmus. 9.4 Gomorys Schnittebenenverfahren

4 Inhalt 9.5 Aufgaben zu Gomorys Schnittebenenverfahren 9.6 Lösungen zu Gomorys Schnittebenenverfahren xi III Nichtlineare Optimierung Problemstellung und Zweck der nichtlinearen Optimierung 10.1 ModelIierung von nichtlinearen Optimierungsproblemen Aufgaben zur Modellierung von nichtlinearen Optimierungsproblemen Lösungen zur Modellierung von nichtlinearen Optimierungsproblemen. 11 Konvexität in nichtlinearen Optimierungsproblemen 11.1 Konvexe Mengen Aufgaben zu konvexen Mengen Lösungen zu konvexen Mengen Konvexität und Differenzierbarkeit 11.5 Aufgaben zur Konvexität und Differenzierbarkeit 11.6 Lösungen zur Konvexität und Differenzierbarkeit 11.7 Optimierungseigenschaften bei Konvexität Aufgaben zu Optimierungseigenschaften bei Konvexität Lösungen zu Optimierungseigenschaften bei Konvexität. 12 Optimalitätskriterien 12.1 Karush-Kuhn-Tucker-Theorie Aufgaben zu Karush-Kuhn-Tucker 12.3 Lösungen zu Karush-Kuhn-Tucker 12.4 Theorie der Constraint-Qualifications Aufgaben zu Constraint-Qualifications 12.6 Lösungen zu Constraint-Qualifications 13 Dualität in der nichtlinearen Optimierung 13.l Lagrange-Dualität Aufgaben zur Lagrange-Dualität 13.3 Lösungen zur Lagrange-Dualität 13.4 Dualitätssätze Aufgaben zu den Dualitätssätzen 13.6 Lösungen zu den Dualitätssätzen 13.7 Sattelpunkte Aufgaben zu Sattelpunkten 13.9 Lösungen zu Sattelpunkten IV Elementare kombinatorische Optimierung Bäume und Wälder 14.l Minimale aufspannende Bäume

5 XH Inhalt 14.2 Aufgaben zu minimalen aufspannenden Bäumen Lösungen zu minimalen aufspannenden Bäumen. 15 Kürzeste Wege und Routenplanung 15.1 Modellierung als Kürzeste-Wege-Problem Aufgaben zur ModelIierung als Kürzeste-Wege-Problem 15.3 Lösungen zur ModelIierung als Kürzeste-Wege-Problem 15.4 Algorithmen zur Bestimmung kürzester Wege Aufgaben zu den Algorithmen zur Bestimmung kürzester Wege Lösungen zu den Algorithmen zur Bestimmung kürzester Wege. Literaturhinweise Index

Karl Heinz Borgwardt unter Mitarbeit von Matthias Tinkl und Thomas Wörle. Aufgabensammlung und Klausurentrainer zur Optimierung

Karl Heinz Borgwardt unter Mitarbeit von Matthias Tinkl und Thomas Wörle. Aufgabensammlung und Klausurentrainer zur Optimierung Karl Heinz Borgwardt unter Mitarbeit von Matthias Tinkl und Thomas Wörle Aufgabensammlung und Klausurentrainer zur Optimierung Aus dem Programm Mathematik Nichtlineare Optimierung von Walter Alt Numerische

Mehr

Optimierung Operations Research Spieltheorie

Optimierung Operations Research Spieltheorie 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Karl Heinz Borgwardt Optimierung Operations Research Spieltheorie

Mehr

Ergänzungsmaterial zu: Aufgabensammlung und Klausurentrainer zur Optimierung für die Bachelor-Ausbildung in Mathematik und Wirtschaftsmathematik

Ergänzungsmaterial zu: Aufgabensammlung und Klausurentrainer zur Optimierung für die Bachelor-Ausbildung in Mathematik und Wirtschaftsmathematik Ergänzungsmaterial zu: Aufgabensammlung und Klausurentrainer zur Optimierung für die Bachelor-Ausbildung in Mathematik und Wirtschaftsmathematik Karl Heinz Borgwardt unter Mitarbeit von Matthias Tinkl

Mehr

Einführung in Operations Research

Einführung in Operations Research Wolfgang Domschke Andreas Drexl Einführung in Operations Research Achte Auflage fyj Springer Inhaltsverzeichnis Vorwort Symbolverzeichnis V XIII Kapitel 1: Einführung 1 1.1 Begriff des Operations Research

Mehr

Modulhandbuch für. den Bachelor-Studiengang Mathematik. und. den Bachelor-Studiengang Wirtschaftsmathematik. an der Universität Augsburg

Modulhandbuch für. den Bachelor-Studiengang Mathematik. und. den Bachelor-Studiengang Wirtschaftsmathematik. an der Universität Augsburg Universität Augsburg Institut für Modulhandbuch für den Bachelor-Studiengang und den Bachelor-Studiengang Wirtschaftsmathematik an der Universität Augsburg 29.06.2009 Grundlegend für dieses Modulhandbuch

Mehr

Operations Research. Klaus Neumann Martin Morlock HANSER. 2. Auflage. Mit 288 Abbildungen und 111 Tafeln

Operations Research. Klaus Neumann Martin Morlock HANSER. 2. Auflage. Mit 288 Abbildungen und 111 Tafeln Klaus Neumann Martin Morlock Operations Research 2. Auflage Mit 288 Abbildungen und 111 Tafeln Technische Universität Darmstadt Fach bar«! ah 1 e Bibliothek Abttall-Nr. HANSER HIIIIIIIIIIIHH Inhaltsverzeichnis

Mehr

1 Einleitung Optimierung in Technik-, Natur- und Wirtschaftswissenschaften Optimierung mit dem Computer

1 Einleitung Optimierung in Technik-, Natur- und Wirtschaftswissenschaften Optimierung mit dem Computer 1 Einleitung...1 1.1 Optimierung in Technik-, Natur- und Wirtschaftswissenschaften... 4 1.2 Optimierung mit dem Computer... 5 1.2.1 Anwendung von Computeralgebrasystemen... 6 1.2.2 Anwendung von EXCEL...

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser

Mehr

Optimierung Operations Research Spieltheorie

Optimierung Operations Research Spieltheorie Karl Heinz Borgwardt Optimierung Operations Research Spieltheorie Mathematische Grundlagen Springer Basel AG Autor: Karl Heinz Borgwardt Institut für Mathematik Universität Augsburg Universitätsstrasse

Mehr

Mathematische Optimierung mit Computeralgebrasystemen

Mathematische Optimierung mit Computeralgebrasystemen Mathematische Optimierung mit Computeralgebrasystemen Einführung für Ingenieure, Naturwissenschaflter und Wirtschaftswissenschaftler unter Anwendung von MATHEMATICA, MAPLE, MATHCAD, MATLAB und EXCEL Bearbeitet

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS200/ / 29Lineare Optimierung 30Der Simplex-Algorithmus 3Das Heiratsproblem 32Ganzzahligkeit von Polyedern 33Ne Inhaltsübersicht 29Lineare Optimierung

Mehr

LEHRVERANSTALTUNGSBESCHREIBUNG

LEHRVERANSTALTUNGSBESCHREIBUNG LEHRVERANSTALTUNGSBESCHREIBUNG 1. Angaben zum Programm 1.1 Hochschuleinrichtung Babes-Bolyai Universität 1.2 Fakultät Mathematik und Informatik 1.3 Department Informatik 1.4 Fachgebiet Informatik 1.5 Studienform

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Dualität bei konvexer Optimierung

Dualität bei konvexer Optimierung Dualität bei konvexer Optimierung Seminar zur Numerik I im SS 2016 Laslo Hunhold 10. Mai 2016 Ausarbeitung zum Seminarvortrag vom 2. Mai 2016 Mathematisches Institut Mathematisch-Naturwissenschaftliche

Mehr

Logistik: Transport. Grundlagen, lineare Transport- und Umladeprobleme. von Prof. Dr. Wolfgang Domschke. TU Darmstadt. 5.,.überarbeitete Auflage

Logistik: Transport. Grundlagen, lineare Transport- und Umladeprobleme. von Prof. Dr. Wolfgang Domschke. TU Darmstadt. 5.,.überarbeitete Auflage Logistik: Transport Grundlagen, lineare Transport- und Umladeprobleme von Prof. Dr. Wolfgang Domschke TU Darmstadt 5.,.überarbeitete Auflage R. Oldenböurg Verlag München Wien Inhaltsverzeichnis Vorwort

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Quantitative Methoden in der Betriebswirtschaftslehre

Quantitative Methoden in der Betriebswirtschaftslehre Quantitative Methoden in der Betriebswirtschaftslehre von Dr. Dietrich Ohse Professor für Betriebswirtschaftslehre, insbesondere Quantitative Methoden an der Johann Wolfgang Goethe-Universität Frankfurt

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Werner Helm Andreas Pfeifer Joachim Ohser Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors !"#$%&"#'()*+,)-',#./$"*#.0'..%1./$"*#2%, !"#$%&'!"#$%&'()&*+'(,-+'.#&/0123/0145

Mehr

Mathematische Optimierungsverfahren des Operations Research

Mathematische Optimierungsverfahren des Operations Research De Gruyter Studium Matthias Gerdts Frank Lempio Mathematische Optimierungsverfahren des Operations Research De Gruyter Mathematics Subject Classification 2010: Primary: 90C05, 90C08, 90C10, 90C25, 90C30,

Mehr

Dieter Jungnickel. Optimierungsmethoden. Eine Einführung. 3., neu bearbeitete Auflage

Dieter Jungnickel. Optimierungsmethoden. Eine Einführung. 3., neu bearbeitete Auflage Springer-Lehrbuch Dieter Jungnickel Optimierungsmethoden Eine Einführung 3., neu bearbeitete Auflage Dieter Jungnickel Lehrstuhl für Diskrete Mathematik Optimierung und Operations Research Universität

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 Teil I Statische Optimierung 2 Allgemeine Problemstellung der statischen

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Algorithmische Geometrie: Polyedrische und algebraische Methoden

Algorithmische Geometrie: Polyedrische und algebraische Methoden Algorithmische Geometrie: Polyedrische und algebraische Methoden Michael Joswig and Thorsten Theobald Vieweg-Verlag, 2008 Vorwort, Inhaltsverzeichnis und Einführung Vorwort Die Geometrie gilt als das älteste

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Martin Aigner. Diskrete Mathematik

Martin Aigner. Diskrete Mathematik Martin Aigner Diskrete Mathematik Martin Aigner Diskrete Mathematik Mit über 500 Übungs aufgaben 3., durchgesehene Auflage Die Deutsche Bibliothek - CIP-Einheitsaufnahme Aigner, Martin: Diskrete Mathematik:

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Inhalt. 42 ein Geleitwort von Peter Gritzmann xi. Vorwort zur ergänzten Neuauflage

Inhalt. 42 ein Geleitwort von Peter Gritzmann xi. Vorwort zur ergänzten Neuauflage Inhalt 42 ein Geleitwort von Peter Gritzmann xi Vorwort Vorwort zur ergänzten Neuauflage xiii xvii 1 Brigitte Lutz-Westphal Optimal zum Ziel: Das Kürzeste-Wege-Problem 1 1 U-Bahn-Fahrten, Schulwege und

Mehr

Inhaltsverzeichnis. Zeichenerklärung

Inhaltsverzeichnis. Zeichenerklärung Inhaltsverzeichnis Zeichenerklärung XIII 1 Grundlagen 1 1.1 Instrumente der Elementarmathematik 1 1.1.1 Zahlbereiche. Zahlendarstellung 1 1.1.2 Rechnen mit Zahlen 3 1.1.3 Bruchrechnung 7 1.1.4 Potenzrechnung

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Werner Helm Andreas Pfeifer Joachim Ohser Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage !"#$%&%'(")("*%&%+,-"*!"#$%&"#'()*+,)-',#./$"*#.0'..%1./$"*#2%,

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mathematik I à Claus Schneider Sommersemester numerik_i_inhalt.nb Inhalt. Beispiele. Lineare Gleichungssysteme I à. Problemstellung. Gestaffelte Gleichungssysteme, Dreiecksmatrizen. Gauß-Elimination.

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

3.1. Existenzsatz und Struktur der Lösungsmenge

3.1. Existenzsatz und Struktur der Lösungsmenge 3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

Diskrete Optimierung (Einführung zur Vorlesung)

Diskrete Optimierung (Einführung zur Vorlesung) Diskrete Optimierung (Einführung zur Vorlesung) Christoph Helmberg : [,] Inhaltsübersicht Diskrete Optimierung. Das Heiratsproblem (ungerichtete Graphen).2 Ganzzahligkeit von Polyedern ( und gerichtete

Mehr

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26.

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Nebenfach Mathematik im Informatik-Studium Martin Gugat martin.gugat@fau.de FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Oktober 2016 Motivation Die rigorose Analyse von Algorithmen erfordert

Mehr

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie mit ausführlichen Erläuterungen und zahlreichen Beispielen Bearbeitet von Prof. Dr. Guido Walz 1. Auflage 2010. Taschenbuch. xi, 580 S.

Mehr

Inhaltsverzeichnis. Grundlagen

Inhaltsverzeichnis. Grundlagen Grundlagen 1 Logik und Mengen... 1 1.1 Elementare Logik... 1 1.2 Elementare Mengenlehre... 10 1.3 Schaltalgebra... 15 1.3.1 Anwendung: Entwurf von Schaltkreisen... 21 1.4 Mit dem digitalen Rechenmeister...

Mehr

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben...

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben... Vorwort v I Approximative Algorithmen 1 1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT).... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben..... 18 2 DieKomplexitätsklassen

Mehr

Diskrete Optimierung

Diskrete Optimierung Diskrete Optimierung (Algorithmische Diskrete Mathematik II, kurz ADM II) Skriptum zur Vorlesung im SS 2013 Prof. Dr. Martin Grötschel Institut für Mathematik Technische Universität Berlin Version vom

Mehr

ma orrsc e, I rerun er e en

ma orrsc e, I rerun er e en Stephan Hußmann (Hrsg.) o ma orrsc e, I rerun er e en In Studium und Unterricht vieweg 42 - ein Geleitwort von Peter Gritzmann Xl Vorwort Xll1 1 Optimal zum Ziel: Das Kürzeste-Wege-Problem 1 1 U-Bahn-Fahrten,

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Optimierungsalgorithmen

Optimierungsalgorithmen Optimierungsalgorithmen Jakob Puchinger Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Übersicht

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Die Ellipsoidmethode

Die Ellipsoidmethode Die Ellipsoidmethode Thorben Römer Abstract Mit der Ellipsoidmethode wies Leonid Khachiyan erstmals nach, dass lineare Programme in polynomieller Zeit lösbar sind. Neben einer Einführung in die grundlegende

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Bernhard Korte Jens Vygen Kombinatorische Optimierung Theorie und Algorithmen Aus dem Englischen von R. von Randow 123 Prof. Dr. Bernhard Korte Prof. Dr. Jens Vygen Forschungsinstitut

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Vorwort Abbildungsverzeichnis Teil I Mathematik 1

Vorwort Abbildungsverzeichnis Teil I Mathematik 1 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen Inhalt Problemstellung und Überblick Allgemeine Problemstellung und Terminologie Überblick über spezielle Klassen von Optimierungsproblemen 40: 40 [40,40] 2.1 Das Optimierungsproblem in allgemeiner Form

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Zuweisungsprobleme 2 1 3 5 4 Kombinatorische Optimierung Rucksackpackproblem 1 10 2 4 6 3 5 8 6 Aufspannende Bäume Travelling Salesman VLSI Design C. Kanzow, M. Gerdts Kombinatorische

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Optimierung. Statische, dynamische, stochastische Verfahren für die Anwendung. Bearbeitet von Markos Papageorgiou, Marion Leibold, Martin Buss

Optimierung. Statische, dynamische, stochastische Verfahren für die Anwendung. Bearbeitet von Markos Papageorgiou, Marion Leibold, Martin Buss Optimierung Statische, dynamische, stochastische Verfahren für die Anwendung Bearbeitet von Markos Papageorgiou, Marion Leibold, Martin Buss erweitert, überarbeitet 2012. Taschenbuch. XVIII, 519 S. Paperback

Mehr

Teil I: Mathematik ohne Anwendungsbezüge

Teil I: Mathematik ohne Anwendungsbezüge Inhaltsverzeichnis 1 Teil I: Mathematik ohne Anwendungsbezüge 1 Elementares Handwerkszeug 1.1 Vorrangregeln und Klammersetzung... 21 1.1.1 Beispiele dafür, wie es richtig gemacht wird... 21 1.1.2 Aufgaben...

Mehr

X Inhaltsverzeichnis 2.7 StrukturorientierteModelle Komponenten-Verbindungsdiagramm (CCD) HeterogeneModelle Kontr

X Inhaltsverzeichnis 2.7 StrukturorientierteModelle Komponenten-Verbindungsdiagramm (CCD) HeterogeneModelle Kontr 1 Einleitung... 1 1.1 Motivation... 1 1.2 Entwurfsmethodik..... 7 1.2.1 Erfassenundsimulieren... 7 1.2.2 Beschreibenundsynthetisieren... 8 1.2.3 Spezifizieren,explorierenundverfeinern... 9 1.3 Abstraktion

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Springer-Verlag Berlin Heidelberg GmbH

Springer-Verlag Berlin Heidelberg GmbH Springer-Lehrbuch Springer-Verlag Berlin Heidelberg GmbH Dieter Jungnickel Optimierungsmethoden Eine Einführung, Springer Professor Dr. Dieter Jungnickel Universität Augsburg Institut für Mathematik Universitätsstraße

Mehr

Lineares Programmieren Algorithmentechnik WS 09/10 Dorothea Wagner 7. Januar 2010

Lineares Programmieren Algorithmentechnik WS 09/10 Dorothea Wagner 7. Januar 2010 Lineares Programmieren Algorithmentechnik WS 09/10 Dorothea Wagner 7. Januar 2010 FAKULTÄT FÜR I NFORMATIK, I NSTITUT FÜR T HEORETISCHE I NFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

DISKRETE OPTIMIERUNG. Robert Weismantel

DISKRETE OPTIMIERUNG. Robert Weismantel MATHEMATIK DISKRETE OPTIMIERUNG Robert Weismantel Unter einer Optimierungsaufgabe im mathematischen Sinne versteht man die Problemstellung, den maximalen oder minimalen Wert einer Funktion über einem zulässigen

Mehr

Algorithmische Geometrie: Lineare Optimierung (I)

Algorithmische Geometrie: Lineare Optimierung (I) Algorithmische Geometrie: Lineare Optimierung (I) Nico Düvelmeyer WS 2009/2010, 17.11.2009 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus Überblick 1 Geometrie

Mehr

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Türkisch-Deutsche Universität. Datenblatt für Vorlesungen

Türkisch-Deutsche Universität. Datenblatt für Vorlesungen Türkisch-Deutsche Universität Datenblatt für en Code Semester Operations Research WNG301 5 ECTS Übung Labor (Wochenstunden) (Wochenstunden) (Wochenstunden) 6 2 2 0 Voraussetzungen keine Lehrsprache Deutsch

Mehr

Teilgebiet des Operations Research

Teilgebiet des Operations Research 1 Teilgebiet des Operations Research Lineare Optimierung * Nichtlineare Optimierung Ganzzahlige und kombinatorische Optimierung Netzwerkoptimierung * * Dynamische Optimierung Mehrzieloptimierung Stochastische

Mehr

Lineare Optimierung und Simplex-Algorithmus

Lineare Optimierung und Simplex-Algorithmus Lineare Optimierung und Simplex-Algorithmus Problemstellung Beispiel : Unser Unternehmen verfügt über drei Maschinen A, B, C, mit denen zwei verschiedene Produkte P, P2 hergestellt werden. Die Maschinen

Mehr

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching Kap. 1.4: Minimum Weight Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 4. VO 6. November 2006 Überblick kurze Wiederholung: 1.2 Blüten-Schrumpf-Algorithmus für Perfektes Matching

Mehr

Geometrische Interpretation

Geometrische Interpretation Geometrische Interpretation Stefanie Riedel 10. Mai 2010 1 Starke und schwache Dualität über Wertemengen Wir betrachten eine einfache geometrische Interpretation dualer Funktionen aus der Menge G: G =

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Computer-gestützter Entwurf von absatzweise arbeitenden chemischen Mehrproduktanlagen

Computer-gestützter Entwurf von absatzweise arbeitenden chemischen Mehrproduktanlagen Research Collection Doctoral Thesis Computer-gestützter Entwurf von absatzweise arbeitenden chemischen Mehrproduktanlagen Author(s): Klossner, Jürg Publication Date: 1985 Permanent Link: https://doi.org/10.3929/ethz-a-000342601

Mehr

Integer Convex Minimization in Low Dimensions

Integer Convex Minimization in Low Dimensions DISS. ETH NO. 22288 Integer Convex Minimization in Low Dimensions A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by TIMM OERTEL Diplom-Mathematiker,

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

DER LIFT & PROJECT- SCHNITTEBENENALGORITHMUS FÜR GEMISCHT-GANZZAHLIGE 0/1-OPTIMIERUNGSAUFGABEN

DER LIFT & PROJECT- SCHNITTEBENENALGORITHMUS FÜR GEMISCHT-GANZZAHLIGE 0/1-OPTIMIERUNGSAUFGABEN DER LIFT & PROJECT- SCHNITTEBENENALGORITHMUS FÜR GEMISCHT-GANZZAHLIGE 0/1-OPTIMIERUNGSAUFGABEN Diplomarbeit von Stefan Körkel Betreuer: Prof. Dr. Gerhard Reinelt März 1995 UNIVERSITÄT HEIDELBERG FAKULTÄT

Mehr

3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung

3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung 32KAPITEL 3. NP-SCHWIERIGE KOMBINATORISCHE OPTIMIERUNGSPROBLEME n Anzahl der Ungleichungen 3 8 4 20 5 40 6 910 7 87.472 8 >488.602.996 Tabelle 3.1: Anzahl der Ungleichungen des LOP-Polytops für n 8 3.4

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1) (Die Thesen zur Vorlesung 1) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Grundlegende Annahmen der linearen Programmierung) Prof. Dr. Michal Fendek Institut für Operations

Mehr

Lineare Optimierung und ganzzahlige lineare Optimierung

Lineare Optimierung und ganzzahlige lineare Optimierung Definition 1: Problem LP: Lineare Optimierung und ganzzahlige lineare Optimierung geg.: m, n N, A Z m n, b Z m, c Z n ges.: x R n 0 mit c T x max Beispiel 1: (Gewinnmaximierung) Ax b Gerät Abteilung 1

Mehr

Überblick Kap. 5: Graph Coloring

Überblick Kap. 5: Graph Coloring Überblick Kap. 5: Graph Coloring Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 10./11. VO 18.12.0 / 8.1.07 5.1 Einführung Definition und Motivation Sudoku 5.2 ILP-Formulierungen

Mehr

Kap. 5: Graph Coloring

Kap. 5: Graph Coloring Kap. 5: Graph Coloring Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 10./11. VO 18.12.06 / 8.1.07 Überblick 5.1 Einführung Definition und Motivation Sudoku 5.2 ILP-Formulierungen

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. Winfried Hochstättler Kurs 01212 Lineare Optimierung LESEPROBE mathematik und informatik Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere das Recht der Vervielfältigung

Mehr

Mathematische Methoden der Algorithmik

Mathematische Methoden der Algorithmik Mathematische Methoden der Algorithmik Dozent: Prof. Dr. Sándor P. Fekete Assistent: Nils Schweer Digitalisierung: Winfried Hellmann Wintersemester 2008/2009 Inhaltsverzeichnis 2 1 Einführung Problem 1.1

Mehr

EULER-CHARAKTERISTIK KONVEXER POLYEDER

EULER-CHARAKTERISTIK KONVEXER POLYEDER MINI-IKM 1998 EULER-CHARAKTERISTIK KONVEXER POLYEDER Eberhard-Karls-Universität Tübingen, März 1998 Richard Bödi Inhalt 1. Der euklidische Raum, affine Räume...........................................1

Mehr

Diskrete Optimierung. Vorlesungsskript SS 2010, TU München. Prof. Dr. Raymond Hemmecke

Diskrete Optimierung. Vorlesungsskript SS 2010, TU München. Prof. Dr. Raymond Hemmecke Diskrete Optimierung Vorlesungsskript SS 2010, TU München Prof. Dr. Raymond Hemmecke Version vom 11. Juli 2010 Inhaltsverzeichnis 1 Komplexitätstheorie 1 1.1 Was ist ein Problem?...................................

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Operations Research kompakt

Operations Research kompakt Operations Research kompakt von Michael Sauer Oldenbourg Verlag München Inhalt s Verzeichnis 1 Einführung 1 1.1 Vorwort 1 1.2 Anwendungsbeispiel 2 1.3 Inhaltsüberblick 3 1.4 Einige Grundlagen 4 1.4.1 Grundbegriffe

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

6. Softwarewerkzeuge für die Lineare Programmierung

6. Softwarewerkzeuge für die Lineare Programmierung 6. Softwarewerkzeuge für die Lineare Programmierung Inhalt 6. Softwarewerkzeuge für die Lineare Programmierung GNU Linear Programming Kit Operations Research I Hochschule Bonn-Rhein-Sieg, SS 2013 314 GNU

Mehr