9.1 ADDIEREN UND SUBTRAHIEREN VON MATRIZEN MULTIPLIKATION EINER MATRIX MIT EINEM SKALAR

Größe: px
Ab Seite anzeigen:

Download "9.1 ADDIEREN UND SUBTRAHIEREN VON MATRIZEN MULTIPLIKATION EINER MATRIX MIT EINEM SKALAR"

Transkript

1 Matrizen 9. ADDIEREN UND SUBTRAHIEREN VON MATRIZEN MULTIPLIKATION EINER MATRIX MIT EINEM SKALAR 9.. Definition der Matrizenaddition, der Matrizensubtraktion und der Multiplikation einer Matrix mit einem Skalar Beispiel C: Die folgenden Tabellen beschreiben das Exportgeschäft einer Firma Zahl der verkauften Stück) in den Jahren 8 und 9: 8: Belgien Irland Chile 9: Belgien Irland Chile Modell 8 6 Modell Modell 7 9 Modell 9 ) Beschreibe das Exportgeschäft von 8 9 durch eine einzige Tabelle! ) Beschreibe durch eine Tabelle, wie sich das Exportgeschäft im Jahr 9 gegenüber 8 verändert hat! ) Das Exportgeschäft ist doppelt so gut wie das von 8. Was kann das bedeuten? Lösung: ) Man hat die Summe entsprechender, d. h. gleich plazierter Elemente zu bilden: Belgien Irland Chile Modell Modell ) ) Man hat die Differenz entsprechender, d. h. gleich plazierter Elemente zu bilden: Belgien Irland Chile Modell 8 6 Modell ) ) Unter der Voraussetzung, dass diese Verdoppelung für jedes Modell und jedes Exportland gilt, hat man jedes Element der Matrix mit zu multiplizieren. Belgien Irland Chile Modell 8 6 Modell ) Wie müsste im Beispiel C die Ergebnismatrix zu Frage ) aussehen, wenn die Exportmatrizen für 8 und 9 gleich wären? Die Matrix müsste aus lauter Nullen bestehen. ) Definition: Eine Matrix, deren Elemente sämtlich null sind, heißt Nullmatrix O : O = Buchstabe O

2 Addieren und Subtrahieren von Matrizen Multiplikation einer Matrix mit einem Skalar In Verallgemeinerung von Beispiel C gibt man die folgende Definition: Es seien A und B Matrizen vom selben Typ m; n) und v : ) Unter der Summe A + B versteht man jene Matrix C vom Typ m; n), deren Elemente die Summe gleichplazierter Elemente von A und B sind: = a a n b b n a + b a n + b n a a n b b n a + b a n + b C = A + B n + = a m a mn b m b mn a m + b m a mn + b mn ) Unter der Differenz A B versteht man jene Matrix C vom Typ m; n), deren Elemente die Differenz gleichplazierter Elemente von A und B sind: = a a n b b n a b a n b n a a n b b n a b a n b C = A B n = a m a mn b m b mn a m b m a mn b mn ) Unter dem Produkt der Matrix A mit dem Skalar v versteht man jene Matrix C, deren Elemente das v-fache der gleichplazierten Elemente von A sind: a a n v a v a n a a n v a v a C = v A = v n = a m a mn v a m v a mn Bemerkung: Analog zu v A lässt sich A v definieren. Dann gilt: v A = A v. Begründe! Statt ) A bzw. O A schreibt man einfach A. 9.. Rechnen mit Matrizen Durch Verknüpfen der drei Rechenoperationen entstehen Matrizenterme, die letztlich durch geeignete Umformungen auf die Gestalt v A + v A + + v k A k gebracht werden können. In Verallgemeinerung des Begriffs aus der Vektorrechnung nennt man einen solchen Ausdruck eine Linearkombination von Matrizen. Für das Rechnen mit solchen Linearkombinationen gelten die Rechenregeln:! Es seien A, B und C Matrizen vom gleichen Typ, v und w Skalare aus. Dann gilt: ) A + B = B + A ) A + B + C) = A + B) + C ) A + O = A ) A + A) = O ) A = A 6) A = O 7) v w A) = v w) A 8) v A ± B) = v A ± v B 9) v ± w) A = v A ± w A Man sieht: Die Nullmatrix spielt bei der Matrizenaddition und Matrizensubtraktion die gleiche Rolle wie der Nullvektor bei der Vektoraddition und bei der Vektorsubtraktion; sie ist das neutrale Element der Matrizenaddition.

3 Matrizen 79 Berechne die folgenden Matrizenterme für A = ) C = ) B = 7 a) A + B C b) A B C c) A + B) A B) d) A A B) + B e) A + B) C f) A B + C) g) A B) + C_ h) A_ B + C) ) 8 Löse die folgenden Matrizengleichungen nach X auf! Verwende die Angaben von Aufgabe 79! a) X = A + B b) X = A B c) A X = B X) d) C + X = A X) e) A + X) C = B + X f) X A X) = X + B g) A_ X = B_ h) C_ + X = A_ 8 Vereinfache durch Herausheben eines Faktors! a) 9 6 b) c) 9 d) 8 ) 68 ) 9 6) ),6, ),9,9 ),,8),, ) e),6,8 f),,9 g),, h),8, 8 Beweise die Rechenregel von Seite anhand der Definitionen der Matrizenoperationen und der Rechenregeln für reelle Zahlen! a) Regel ) b) Regel ) c) Regel 8) d) Regel 9) e) Regel ) f) Regel 7) g) Regel ) h) Regel ) 8 Eine Motorenfabrik erzeugt Gleichstrommotoren G) und Wechselstrommotoren W) an zwei gleichartig ausgerüsteten Standorten T und T. Die nachfolgenden Tabellen geben die Produktionsergebnisse einer bestimmten Woche wieder. Ermittle ) die Tabelle der Gesamtproduktion dieser Woche, ) eine Tabelle, welche einen Vergleich der Produktivität an den beiden Betriebsstätten zulässt! T Mo Di Mi Do Fr T Mo Di Mi Do Fr G G 8 9 W 8 9 W Die nachstehenden Tabellen geben die Nettoverkaufspreise ) verschiedener Waren A, B, in den Güteklassen I, II, an. Gib die Matrix für die Bruttoverkaufspreise ) für den angegebenen Mehrwertsteuersatz an! a) % A B C D b) % A B C I 8,,8 7,, I 6, II,6 7, 66, 8,6 III,,,8 87, II 967, 8 7 III, Schreibe ein Computer-Programm a) für die Addition zweier Matrizen! b) für die Subtraktion zweier Matrizen! c) für die Multiplikation einer Matrix mit einem Skalar!

4 Multiplikation einer Matrix mit einer Matrix 9. MULTIPLIKATION EINER MATRIX MIT EINER MATRIX 9.. Multiplikation einer Matrix mit einer Matrix MMM) Beispiel D: Im Jahresbericht einer Schule wurden die Tabellen A und B über die Rauchgewohnheiten ihrer Schülerinnen und Schüler veröffentlicht. Ermittle eine Tabelle C, in der die Anzahl der starken Raucher, schwachen Raucher und Nichtraucher unter Schülerinnen und unter Schülern insgesamt aufgelistet ist! A Starke Raucher % % % 8 % Schwache Raucher 9 % % 7 % % Nichtraucher 7 % % 8 % 7 % Lösung: Die Lösung ist offenbar eine Tabelle C mit Zeilen für die Rauchgewohnheiten) und Spalten für das Geschlecht), d. h. eine Matzrix C vom Typ ; ). Die Berechnung der 6 Elemente demonstrieren wir für die Elemente c und c : c =, +, 6 +, +,8 8 = 9 c =,7 +, +,8 +,7 9 =, Man sieht: c ist eine Verknüpfung des -ten Zeilenvektors von A mit dem -ten Spaltenvektor von B. Eine derartige Verknüpfung nennt man skalares Produkt. Ebenso ist c das skalare Produkt des -ten Zeilenvektors von A mit dem -ten Spaltenvektor von B. Die restlichen Elemente c ij erhält man in analoger Weise durch skalare Multiplikation des i-ten Zeilenvektors von A mit dem j-ten Spaltenvektor von B: c ij = a i b j + a i b j + + a in b nj Die folgende Tabelle zeigt die notwendigerweise gerundeten Ergebnisse: C Schüler Schülerinnen Starke Raucher 9 9 Schwache Raucher 8 Nichtraucher 8 B Schüler Schülerinnen. Kl 6. Kl 6 7. Kl 8. Kl 8 9 In Verallgemeinerung dieser Überlegungen geben wir die Definition: Ist A eine Matrix vom Typ m; n) und B eine Matrix vom Typ n; r), so heißt die gemäß b a a a b b r a b + + a n b n a b r + + a n b nr n b a a a b b r a b + + a n b n a b r + + a n b nr n = a m a m a mn b n b n b nr a m b + + a mn b n a m b r + + a mn b nr erklärte Verknüpfung Multiplikation einer Matrix mit einer Matrix. Das Ergebnis ist eine Matrix C vom Typ m; r), bei der das Element c ij der Matrix C das Skalare Produkt des i-ten Zeilenvektors a i der Matrix A mit dem j-ten Spaltenvektor b j der Matrix B ist: c ij = a i b j + a i b j + + a in b nj

5 Matrizen Bemerkung: ) Matrizen kann man genau dann multiplizieren, wenn die Spaltenzahl der ersten Matrix mit der Zeilenzahl der zweiten Matrix übereinstimmt! Merkregel: m; n) n; r) = m; r) ) Ist insbesondere eine der beiden Matrizen ein Vektor, so spricht man von der Multiplikation einer Matrix mit einem Vektor MMV). Gemäß der Merkregel gibt es die Fälle m; n) n; ) = m; ) Multiplikation einer Matrix mit einem Spaltenvektor von rechts ; n) n; r) = ; r) Multiplikation einer Matrix mit einem Zeilenvektor von links Beim händischen Multiplizieren von Matrizen ist das Falk sche Schema hilfreich: Wir erläutern es an der Fortsetzung von Beispiel D: Ermittle mit Hilfe des Falk schen Schemas ) C = A B, ) C = B A! Lösung: ) ; ) ; ) = ; ) 6 8 9,,,,8 9, 8,6,9,,7 7,67 m =,,,7,,8,7 8,, n = r = ) Das Produkt B A kann man nicht bilden, da die Spaltenzahl von B nicht mit der Zeilenzahl von A übereinstimmt! 9.. Rechenregeln Gibt es für die Matrizenmultiplikation ein neutrales Element, d. h. eine Matrix E, deren Produkt mit jeder Matrix A wieder die Matrix A ergibt? Die Antwort ist ja. Die Elemente in der Hauptdiagonale von E haben den Wert, alle anderen haben den Wert :! Definition: Die quadratische Matrix E = vom Typ n; n) heißt n x n Einheitsmatrix. Es seien v und A, B und C Matrizen mit Zeilen- und Spaltenzahlen, welche die Produktbildung erlauben, dann gelten die folgenden Rechenregeln: ) A B C) = A B) C ) v A B) = v A) B = A v B) ) A O = O und O A = O ) A E = A und E A = A ) A B ± C) = A B ± A C Ungültig ist jedoch das Kommutativgesetz A B = B A Aufgabe 86). benannt nach Sigurd Falk

6 Matrizenrechnung mit Hilfe des Computers 9. MATRIZENRECHNUNG MIT HILFE DES COMPUTERS 9.. Matrizenrechnung mittels des CAS wxmaxima Das Rechnen mit Matrizen lässt sich mit Hilfe wxmaxima leicht durchführen: Fortsetzung von Beispiel D Seite ): Im Fenster Algebra öffnet man Matrix eingeben, wählt dann im Fenster die Anzahl der Zeilen hier ) und Spalten hier ). Nach Ok kann dann die Matrix eingegeben werden Dezimalpunkt verwenden!). Soll dieselbe Matrix öfters verwendet werden, kann man ihr eine Variable im Fenster Eingabe zuordnen. Man gibt A:%i bzw. B:%i ein. Nun lassen sich die gewünschten Rechenoperationen sehr bequem durchführen. Beachte, dass das Matrizenmultiplikationszeichen ein Punkt ist.

7 Matrizen 9.. Matrizenrechnung mittels Excel Da Excel ein Tabellenkalkulationsprogramm ist, kann es mit Tabellen rechnen. Die Addition ist durch Addieren der entsprechenden Zellen sehr einfach. Daher zeigen wir die Multiplikation. Fortsetzung von Beispiel D Seite ): Trage die beiden Matrizen in das Tabellenblatt ein. Da das Ergebnis eine mal -Matrix sein muss, markiere zwei Zeilen und drei Spalten und gib die Formel =MMULTA:D*A:B8) ein. Nun drücke gleichzeitig Strg, Shift und Enter. Excel schließt die Formel in geschlungene Klammern ein und liefert das Ergebnis. 86 Berechne A B und B A! a) A = ) B = ) c) A = B = ) b) A = ) d) A = ) B = 7 ) B = ) ) 87 Gegeben sind die Matrizen A, B, C und D. Berechne: a) A B b) A C c) A D d) D B e) D C f) C A 6 ) A = B = C = D = Berechne die angegebenen Produkte! Was fällt dir auf? Formuliere das Ergebnis allgemein! a) A B b) C D c) A C d) A D e) B C f) B D a ) e ) a d c) f h) i A = b c B = f g C = b D = g d h e j 89 ) Überprüfe anhand der folgenden Matrizen, dass das Produkt A B die Nullmatrix ergeben kann, ohne dass A oder B eine Nullmatrix ist! A = 6 8) B = ) ) Welcher Satz für das Rechnen mit reellen Zahlen lässt sich daher nicht auf Matrizen übertragen? ) Finde selbst ein Paar von Matrizen A, B, für die A B = O gilt! 9 ) Überprüfe anhand der folgenden Matrizen, dass das Produkt A B die Einheitsmatrix ist! A = ) B =,8,,6,) ) Wie könnte man daher B in Bezug auf A bezeichnen? ) Finde selbst ein Paar von Matrizen A, B, für die A B = E gilt! 9 Berechne! a) 8 e) ) ) b) ) ) f) ) ) c) 6 ) ) g) 7 6 ) 7) d) ) 6) h) ) ) 7) ) 6

8 9 Zeichne analog zur Fortsetzung von Beispiel D das Falk sche Schema ) für die Multiplikation einer Matrix mit einem Vektor von links, ) für die Multiplikation einer Matrix mit einem Vektor von rechts, ) für das skalare Produkt zweier Vektoren! Matrizenrechnung mit Hilfe des Computers 9 Begründe anhand des Falk schen Schemas, warum in der Definition verlangt wird, dass die Spaltenzahl von A mit der Zeilenzahl von B übereinstimmen muss! 9 Unter welcher Voraussetzung kann man eine Matrix quadrieren, kubieren? 9 Es gibt Matrizen, die mit ihrem Quadrat übereinstimmen. Gib zwei Beispiele solcher Matrizen a) vom Typ ; ), b) vom Typ ; ) an! 96 Berechne A, A, A. Was fällt dir auf? ) a) b) ) c) ) d) ) 97 Verifiziere anhand geeignet gewählter Matrizen und Skalare die a) linke Gleichung von Regel ) auf Seite! b) rechte Gleichung von Regel ) auf Seite! 98 Wie Aufgabe 97 für das Assoziativgesetz der MMM! 99 Beweise die a) linke Gleichung von Regel ) auf Seite! b) rechte Gleichung von Regel ) auf Seite! Für die Matrizenmultiplikation gilt das Kommutativgesetz nicht. Dennoch gibt es Paare von Matrizen, für die A B = B A gilt. Gib ein solches Paar an und bilde zur Kontrolle beide Produkte! In der ersten Produktionsstufe werden aus den Rohstoffen R, R die Zwischenprodukte Z, Z und Z, in einer zweiten Produktionsstufe aus diesen die Endprodukte E und E hergestellt. Der Materialverbrauch von Stufe zu Stufe ist je Einheit in den folgenden Tabellen angegeben. Wie viele Einheiten von R und R sind erforderlich für die Herstellung a) von je Stück E und E? b) von je 6 Stück E und E? c) von je Stück E und E? d) von je Stück E und E? Z Z R R E E Z Z Z Z In der ersten Produktionsstufe werden aus den Rohstoffen R, R und R die Zwischenprodukte Z und Z, in einer zweiten Produktionsstufe aus diesen die Endprodukte E, E und E hergestellt. Der Materialverbrauch von Stufe zu Stufe ist je Einheit in den folgenden Tabellen angegeben. Wie viele Einheiten von R, R und R sind erforderlich für die Herstellung a) von je Stück E, E und E? b) von je 8 Stück E, E und E? R R R Z Z c) von je Stück E, E und E? Z E d) von je Stück E, E und E? 6 Z 7 E E 7

Matrizen Definition: Typ einer Matrix

Matrizen Definition: Typ einer Matrix Matrizen Definition: Eine Matrix ist ein rechteckiges Zahlenschema. Die Matrix (Mehrzahl: Matrizen) besteht aus waagerecht verlaufenden Zeilen und senkrecht verlaufenden Spalten. Verdeutlichung am Beispiel:

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

Die Siedler von Catan Mehrstufige Produktionsprozesse

Die Siedler von Catan Mehrstufige Produktionsprozesse Die Siedler von Catan Mehrstufige Produktionsprozesse Übersicht Inhalte Ziele Rolle der Technologie Modellierung von Materialverflechtungsprozessen Multiplikation von Matrizen Assoziativgesetz für die

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

Mathematik. Lernbaustein 6

Mathematik. Lernbaustein 6 BBS Gerolstein Mathematik Mathematik für die Berufsoberschule II Lernbaustein 6 Lineare Algebra www.p-merkelbach.de/bos2/mathe/matheskript-bos-2 Lernbaustein 6.pdf Erstellt von: Herrn St Percy Merkelbach

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

8 Lineare Gleichungssysteme

8 Lineare Gleichungssysteme $Id: lgs.tex,v 1.6 2010/12/20 12:57:04 hk Exp $ $Id: matrix.tex,v 1.3 2010/12/20 13:12:44 hk Exp hk $ 8 Lineare Gleichungssysteme In der letzten Sitzung hatten wir mit der Besprechung linearer Gleichungssysteme

Mehr

Einführung in die Matrixalgebra

Einführung in die Matrixalgebra Einführung in die Matrixalgebra Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Bachelor S. Garbade (SRH Heidelberg) Matrixalgebra Bachelor

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation . Inhaltsverzeichnis.............. Spezialgebiet Mathematik(Christian Behon ) 1 Matrizen Kapitel 1 Definitionen und Herleitung von Matrizen 1.1 Was sind Matrizen 1.2 Arten von Matrizen Kapitel 2 Matrizenoperation

Mehr

3 Matrizen und Determinanten

3 Matrizen und Determinanten 31 Matrizen 311 Matrizen und Gleichungssysteme Grundlegende Begriffe der linearen Algebra und linearen Optimierung sind die Begriffe Matrix, Vektor, Determinante und lineares Gleichungssystem Beispiel

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

(A T ) T = A. Eigenschaft:

(A T ) T = A. Eigenschaft: Elementare Matrizenrechnung m n-matrix von Zahlen A m n a 1,1 a 1,n a m,1 a m,n rechteckige Tabelle m n Dimension der Matrix Sprechweise: m Kreuz n wobei m Anzahl Zeilen, n Anzahl Spalten a i,j Element

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Kapitel II. Algebraische Grundbegriffe

Kapitel II. Algebraische Grundbegriffe Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

Lineare Algebra 1. . a n1 a n2 a n3 a nm

Lineare Algebra 1. . a n1 a n2 a n3 a nm Lineare Algebra 1 Lineare Algebra Hilfreiche Konzepte zur Vereinfachung der Darstellung und Berechnung stellt die lineare Algebra bereit. Auch wenn sie nur an wenigen Stellen des Buches verwendet wurden,

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Demoseiten für

Demoseiten für Matrizenrechnung Anwendungsaufgaben Teil Themenheft Demoseiten für Arbeiten mit Bedarfsmatrizen Herstellung von Zwischen- und Endprodukten aus Rohstoffen Kostenberechnungen Datei 623 Stand: 5. August 2

Mehr

2.4 Matrizen und Lineare Abbildungen

2.4 Matrizen und Lineare Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 73 2.4 Matrizen und Lineare Abbildungen Zum Schluss von Abschnitt 2.2 hatten wir Matrizen eingeführt, und zwar im Zusammenhang mit der abgekürzten Schreibweise

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Mathematik Matrizenrechnung

Mathematik Matrizenrechnung Mathematik Matrizenrechnung Einstufige Prozesse Rechenregeln für Matrizen Mehrstufige Prozesse Inverse Matrix Stochastische Prozesse 6 Zyklisches Verhalten Einstufige Prozesse Einstufige Prozesse Zur Beschreibung

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

k 5 Mathematische Vorlagen und die Vorlage für eine nxm-matrix mit dem Pfeilcursor bzw. dem Mauszeiger doppelt anklicken

k 5 Mathematische Vorlagen und die Vorlage für eine nxm-matrix mit dem Pfeilcursor bzw. dem Mauszeiger doppelt anklicken 25. Grundoperationen mit Vektoren In Schulbüchern werden Vektoren üblicherweise als Spaltenvektoren dargestellt. Darum werden in den Kapiteln 2530 Beispiele fast ausschliesslich mit Spaltenvektoren gerechnet,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Mathematik und Statistik für Raumplaner I

Mathematik und Statistik für Raumplaner I Mathematik und Statistik für Raumplaner I Vektor- und Matrizenrechnung Wintersemester 2010/2011 Leiter und Autor: Ao.Univ.Prof. Dr. Wolfgang Feilmayr Fachbereich Stadt- und Regionalforschung Technische

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind

Mehr

DEMO für www.mathe-cd.de

DEMO für www.mathe-cd.de (1) Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder 3 Unbekannten (3) Zwei Gleichungen mit 3 Unbekannten Datei Nr. 61 011 Stand 19. Oktober 010 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42

Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42 Vektoren Jörn Loviscach Versionsstand:. April 29, 23:42 Rechnen mit Pfeilen Bei den komplexen Zahlen haben wir das Rechnen mit Pfeilen schon kennen gelernt. Addition und Subtraktion klappen in drei wie

Mehr

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Matrizen Jörn Loviscach Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Matrix Ein rechteckige Anordnung von mathematischen Objekten

Mehr

Übungsblatt 5 : Lineare Algebra

Übungsblatt 5 : Lineare Algebra Mathematik I Übungsblatt 5 WS /5 Dr. A. Schmitter Übungsblatt 5 : Lineare Algebra Aufgabe 5. Gegeben sind die folgenden Vektoren: u = v = 8 w = 6 a) Bestimmen Sie die Komponenten von u v, 6u + w, v + u,

Mehr

Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag

Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag Rolf Stahlberger Alexander Golfmann Lineare Algebra Grundlagen der Vektorrechnung fsg Verlag Impressum Herausgeber: FSG Verlag Alexander Golfmann Augustenstr. 58 80333 München info@fsg-verlag.de www.fsg-verlag.de

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Die Verfasser: Kurt Bohner Oberstudienrat Dipl.-Phys. Dr. Peter Ihlenburg Oberstudienrat

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

Erneut: Matrizen und lineare Abbildungen

Erneut: Matrizen und lineare Abbildungen Erneut: Matrizen und lineare Abbildungen Mit Hilfe der Matrixmultiplikation lässt sich die Korrespondenz zwischen linearen Abbildungen und Matrizen elegant ausdrücken: Satz. e 1, e 2,..., e n sei die Standardbasis

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE ENSORRECHNUNG eil 1 SIEGFRIED PERY Neufassung vom 7 Juni 2016 I n h a l t 1 Was sind ensoren? 2 2 Multiplikation von Matrizen 21 Multiplikation einer Vektors mit einem ensor 2 Stufe 5

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Jürgen Roth Didaktik der Linearen Algebra & Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra & Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 3: Modellieren & Angewandte Mathematik 3.1 Inhalte

Mehr

Daniel Heibrock. Facharbeit Mathe. Matrizenrechnung mit dem Graphik- Taschenrechner fx-9750gii. Herr Bonertz M_L1 Q1

Daniel Heibrock. Facharbeit Mathe. Matrizenrechnung mit dem Graphik- Taschenrechner fx-9750gii. Herr Bonertz M_L1 Q1 Daniel Heibrock Facharbeit Mathe Matrizenrechnung mit dem Graphik- Taschenrechner fx-9750gii Herr Bonertz M_L1 Q1 Inhaltsverzeichnis Themenwahl und Schwerpunktsetzung...3 Einführung in die Matrizenrechnung...3

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Lineare Algebra (Teil 1) (LinAlg_1.mw)

Lineare Algebra (Teil 1) (LinAlg_1.mw) Lineare Algebra (Teil 1) (LinAlg_1.mw) Neue MAPLE-Befehle: Vector, DotProduct, CrossProduct, Norm, Matrix, Row, Column, Transpose, Rank, Basis, Determinant, MatrixInverse, Eigenvalues, Eigenvectors. Wir

Mehr