(i) Abgeschlossenheit, (ii) Assoziativität, (iii) neutrales Element, (iv) inverses Element

Größe: px
Ab Seite anzeigen:

Download "(i) Abgeschlossenheit, (ii) Assoziativität, (iii) neutrales Element, (iv) inverses Element"

Transkript

1 Zusammenfassung: L1 Vorlesung 1 Gruppe: Verknüpfung: (i) Abgeschlossenheit, (ii) Assoziativität, (iii) neutrales Element, (iv) inverses Element Körper: (zwei Verknüpfungsregeln: Addition & Multiplikation, beide liefern jeweils eine kommutative Gruppe) Algebraische Struktur, die Addition, Subtraktion, Multiplikation und Division erlaubt. Beispiele: Komplexe Zahlen: Zusammenfassung: C1-C2 Vorlesung 2 C1: Ableitung 1-dimensionaler Funktionen Definition d. Ableitung: Jede Ableitung stellt eine lokale Näherungen einer Funktion durch eine lineare Funktion dar! Produktregel: Kettenregel: Ableitung d. Umkehrfunktion:

2 C2 Integrale Vorlesung 2 'Riemann-Summe' Fläche unter Kurve: 'Hauptsatz': Bestimmtes Integral: 'Variablen- Substitution': 'Partielle Integration' Zusammenfassung: L2 Vektorräume Vorlesung 3 -Vektorraum: Vektoraddition: Skalare Multiplikation: Axiome: (i)-(v): kommutative Gruppe (vi,vii) distributiv (viii) assoziativ (ix) Identitätselement Wichtigstes Beispiel: Vektoraddition: Skalare Multiplikation:

3 Weiteres Beispiel: Diskretisierte Funktionen: Vorlesung 3 Diskretisierte Funktion: Vektoraddition: Skalarmultiplikation: Vektorraum: Basis und Dimension Vorlesung 3 alle möglichen Linearkombination der Vektoren 'Linear unabhängig', falls S ist 'vollständig', falls S bildet 'Basis', falls S vollständig und linear unabhängig ist. Standardbasis in : i-position j-komponente v. i-tem Basisvektor: 'Kroneckerdelta' Symbol: falls falls

4 Zusammenfassung L3 Vorlesung 4 Euklidische Vektorräume (V: reeller Vektorraum) Inneres Produkt: (i) Symmetrie, (ii-iii) Linearität bzgl. und (iv) Positiv definit Zahl Wichtigstes Beispiel: Skalarprodukt in Norm: Cauchy-Schwarz Ungleichung (CSU): Dreiecksungleichung: Winkel: Vorlesung 4 Einheitsvektor: 'Projektion' v. auf 'Orthogonales Komplement' zu Orthonormalbasis: vollständig, normiert, orthogonal: Gram-Schmidt-Verfahren liefert Orthonormalbasis:

5 Zusammenfassung: L4 Vektorprodukt Vorlesung 5 Geometrische Def: Daumen: Mittelfinger: Zeigefinger: Levi-Civita: komplett antisymmetrisch Eigenschaften: antisymmetrisch, distributiv, nicht assoziativ, Identitäten... Spatprodukt: Volumen v. Parallelepiped Zusammenfassung V1: Kurven Vorlesung 6 'Kurve': wobei Ort entlang Kurve: Kurvengeschwindigkeit: liegt 'tangential' zur Kurve Kurvenlänge: unabhängig von Parametrisierung des Weges Bogenlänge nach Zeit t: Natürliche Parametrisierung durch Bogenlänge: Für Vektorfeld: Linienintegral: unabhängig von Parametrisierung des Weges

6 Zusammenfassung V2: Konzept eines Feldes Vorlesung 7 Zusammenfassung V3: Skalarfelder, Gradient Totales Differential: differentielle Änderung von bei durch einen -Schritt: Gradient: zeigt in Richtung maximaler Steigung v. steht auf den 'Höhenflächen' v. Zusammenfassung C3: Partielle Ableitungen Vorlesung 7 Partielle Ableitung: Satz v. Schwarz: Totales Differential: Kettenregel:

7 Zusammenfassung V4.1: Gradientenfeld Vorlesung 8 Gradientenfeld: ist ein Gradientenfeld ist ein Gradientenfeld ist wegunabhängig und U ist einfach zusammenhängend für geschlossenen Weg Konkret: Konservatives Kraftfeld ist ein Gradientenfeld: Arbeit von x nach x' ist unabhängig vom Weg! geschlossener Weg: Zusammenfassung V4.2,3: Nabla, Gradient, Divergenz, Rotation, Laplace Skalarfeld: Vektorfeld: Vorlesung 8 Partielle Ableitung: Totales Differential: Gradient: Nabla-Operator: (Vektor-Diff.-Operator) Laplace-Operator: Divergenz: Rotation: (alle Indizes unten) Gradiententelder sind 'wirbelfrei': Wirbelfelder sind 'quelfrei':

8 Zusammenfassung: C4 Mehrdimensionale Integration (Kartesisch) Integration in Vorlesung 9 Fubini: Integrationsreihenfolge ist egal: Gebiet Für das "innere" (zweite) Integral sind die Grenzen abhängig von der "äußeren" (ersten) Integrationsvariable. Analog in 3D: Reihenfolge dieser Integrale ist beliebig Zusammenfassung: V5 Krummlinige Koordinaten Vorlesung 10 Cartesisch: Polar (2D): Zylinder (3D): Kugel (3D); Koordinatenlinie: Kurvengeschwindigkeit entlang KL, wird variert werden konstant gehalten erinnert an Ortsabhängigkeit, wird meist nicht explizit angezeigt Lokale Basis:

9 Cartesisch: Vorlesung 10 Polar: Zylinder (3D): Kugel (3D); Alle diese lokalen Basen sind orthonormal: Zusammenfassung: Allgemeine Koordinatentransformation in 2D Vorlesung 11 Jakobi-Determinante Polar: für krummlinig-orthogonale Koord. Zusammenfassung: Allgemeine Koordinatentransformation in 3D Jakobi-Determinante für krummlinig-orthogonale Koord. Zylinder: Kugel:

10 Zusammenfassung: L Lineare Abbildungen und Matrizen Vorlesung 12 ist 'lineare Abbildung', falls Für hat eine lineare Abbildung die Form: mit m x n Matrix: Spalte j: Reihe i: Abbildung der Standardbasis: = Spalte j Reelle (mxn)-matrizen bilden dim. Vektorraum, Vorlesung 12 mit Matrixaddition, (elementenweise) und Skalarmultiplikation, (elementenweise) Verknüpfung von zwei linearen Abbildungen Matrixmultiplikation (5e.3,4) (Zeile k von B) (Spalte j von A) Matrixmultiplikation ist assoziativ & distributiv, aber nicht kommutativ!

11 Zusammenfassung: L5.5-6 Basistransformationen Vorlesung 13 Zwei Vektorräume: Allgemeine lineare Abbildung: Matrixdarstellung v. A: In Standardbasis: A bildet Basisvektor Zwei Basen für denselben Raum: Basistransformation: Matrixdarstellung v. T: ab auf: Spalte j von A Darstellung v. altem Basisvektor in neuer Basis: Spalte j von T Inverse Transformation: Darstellung v. neuem Basisvektor in alter Basis: Spalte i von T Bezug zwischen und Zusammenfassung: L6 Determinanten Vorlesung 14 Determinante: diagnostiziert lin. Unabhängigkeit d. Spaltenvektoren einer nxn-matrix Leibniz-Regel: Laplace-Regel: (j fest) (i fest) (hier keine Summenkonvention!) 2x2: 3x3: Kofaktor: Unterdeterminante: (streiche Zeile i, Spalte j aus A, bilde dann die Determinante) Diagonalmatrix: Transponierte:

12 Vorlesung 14 Multilinearität: j-te Stelle j-te Stelle Antisymmetrie: Vorzeichenwechsel beim Vertauschen v. zwei Zeilen oder zwei Spalten. Zwei gleiche Spalten oder Zeilen: Konstruktion des Inversen: A invertierbar Spaltenvektoren v. A sind lin. unabhängig Multiplikationstheorem: Det. des Inversen Zusammenfassung: L7.1 Diagonalisieren, Eigenwerte, Eigenvektoren Eigenwertgleichung: Eigenwert Eigenvektor Vorlesung 15 Bedingung an EW: charakteristisches Polynom Für ist ein Polynom v. Grad, mit Nullstellen. diese entsprechen den n Eigenwerten v. Wenn EW bekannt ist, finde dazugehörigen EV durch Lösen des linearen Gleichungsystems: Falls n linear unabhängige EV existieren, wird diagonalisiert durch, wobei die EV als Spaltenvektoren hat:

13 Zusammenfassung: L5.6 Symmetrische und hermitesche MatrizenVorlesung 16 Reelles Skalarprodukt: Komplexes Skalarprodukt: Komplexe Matrix: Transponierte hermitesch Konjugierte: ist 'symmetrisch', falls Für symmetrische Matrizen gilt: ist 'hermitesch', falls Für hermitesche Matrizen gilt: und Zusammenfassung: L5.6 Orthogonale und unitäre Matrizen ist 'orthogonal' falls Vorlesung 16 (äquivalent) Reelles Skalarprodukt invariant: ist 'unitär' falls (äquivalent) Komplexes Skalarprodukt invariant: Spalten (oder Zeilen-)vektoren einer unitären oder orthogonalen Matrix bilden eine orthonormierte Basis. 'Unitäre Gruppe': 'Orthogonale Gruppe': 'spezielle orthogonale Gruppe': 'spezielle unitäre Gruppe':

14 Zusammenfassung: L7.2 Diagonalisierung v. symm. und hermiteschen Matrizen Vorlesung 16 ist 'symmetrisch', falls (oder ) ist 'hermitesch', falls Für alle hermiteschen (insb. auch für alle reelle symmetrischen) Matrizen gilt: - sie sind immer diagonalisierbar - alle Eigenwerte sind reell: - es lässt sich immer eine Orthonormalbasis aus Eigenvektoren finden - Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal: Für hermitesche Matrizen ist unitär: reell symmetrische orthogonal: Zusammenfassung: C5.1 Taylorreihen Vorlesung 17 'Taylor-Reihe' v. f(x') um x'=x: Wichtige Beispiele: für für Euler - de Moivre: Euler: Polardarstellung einer komplexen Zahl: Multidimensionale Taylor-Reihe:

15 Zusammenfassung: C5.2 Asymptotische Entwicklungen Vorlesung 18 Reihenentwicklungen in Gleichungen: links = = rechts Koeffizientenvergleich: Zusammenfassung: C5.3 Extrema mit Nebenbedingungen: Lagrange-Multiplikatoren Finde Extrema von mit Nebenbedingungen, wobei Lösungstrategie: Führe Lagrange-Multiplikatoren ein, Anzahl Nebenbedingungen und betrachte Kandidaten für Extrema müssen folgende Gl. erfüllen: Zusammenfassung: C7.3' Separable Differentialgleichungen Vorlesung 19 Separable DG: (x- und t-abhängigkeit faktorisiert) Lösungsweg: Trennung der Variablen Trennen: Integrieren: Stammfunktionen: Nach x auflösen:

16 Zusammenfassung: C7 Homogene lineare Differentialgleichungen Vorlesung 19 Superpositionsprinzip (SP) für lineare, homogene DG: falls dann SP ist nützlich für Lösung v. Anfangswertproblem mit nämlich: wobei Für konstanten Koeffizienten: exp-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Eigenwertproblem! Zusammenfassung: Inhomogene lineare DG 1. Ordnung Lineare DG: Vorlesung 20 falls =0: homogen falls =0: inhomogen Allgemeine Lösung einer inhomogenen linearen DG: Allgemeine homogene Lösung: (irgendeine) Partikuläre Lösung: 1D (n=1): homogene Lösung (Trennung d. Variablen): partikuläre Lösung (Variation d. Konstanten): mit:

17 Zusammenfassung: Inhomegene lineare DG mit konstanten Koeffizienten Vorlesung 20 (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit durch Anfangsbedingungen bestimmt Eigenwertproblem! (ii) Partikuläre Lösung für inhomogene DGL: per Variation der Konstanten (zerlegt in Eigenbasis von ) mit und (iii) Allgemeine Lösung: Zusammenfassung C6.2 delta-funktion Vorlesung 21 Definierende Eigenschaft: ist ein unendlich hoher, infinitesimal scharfer Peak bei x = 0 : Werte: für für Normierung: Beliebte Darstellungen: Lorentz-Peak: Exp.-Peak: Wichtige Eigenschaften: Gauß-Peak: wobei die einfachen Nullstellen von sind.

18 Zusammenfassung C6.1 Fourier-Reihen Vorlesung 21 Fourier-Reihen- Ansatz für f(x): 'Fourier-Moden' 'Fourier-Komponenten' Rücktransformation: Eigenschaften der 'Fourier-Moden': Periodisch, mit Wellenlänge Orthonormalität: Vollständigkeit: periodische delta-funktion Parseval-Identität: Zusammenfassung C6.1 Fourier-Reihen für periodische Funktionen Vorlesung 22 Sei periodisch, mit Periode L: (b.3) (c.5) beliebige Periode Faltung: Ableitung in Fourier-Darstellung: Zeit-Darstellung: Für Fourier-Reihen- Ansatz: Ableitung:

19 Zusammenfassung: C6.3 Fourier-Transformation Vorlesung 23 Vorzeichen ist Konvention, in Mathe: + 'Fourier-Rücktransformation' mit Fourier- Koeffizienten: 'Fourier-Transformation' Wichtige Eigenschaften der Fourier-Exponenten: "Vollständigkeit" : "Orthonormalität" : Wichtige Beispiele: Exponentialfunktion Lorenzfunktion Gauß-Funktion Gauß-Funktion Vorlesung 23 Physikerkonvention: Merkregel: Parseval: Plancherel: Faltung: Faltungstheorem:

20 Zusammenfassung: C6.3 DGL mit konstanten Koeffizienten - Fourier, Green Vorlesung 23 Kurznotation: Fourier-transformiert: (ZC6.3b.1) (ZC6.3b.2) mit Aufgelöst: mit Green'sche Funktion erfüllt: Fourier-tr. mit Faltungstheorem, angewandt auf (6): (ZC6.3b.5) = allgemeine Lösung für beliebigen Antrieb! Zusammenfassung: C7.6 Fluss einer DG Vorlesung 24 Autonome DGL in zwei Dimensionen: DGL für Feldlinie eines Vektorfelds Zusammenfassung: C7.7 Fixpunkte, Linearisierung von Differentialgleichungen hat Fixpunkt bei falls Für n=1: instabile Fixpunkte: stabile Fixpunkte:

21 Lineare Stabilitätsanalyse (n=1): Vorlesung 24 Lösung für kleine Auslenkungen: mit charakteristischen Zeitskala: Stabilität von Fixpunkten in höheren Dimensionen: Lösung für kleine Auslenkungen ist Summe über Eigenmoden von A: nur falls "A negativ definit" ist: Zusammenfassung: C6.4 Fourier - Konzeptionelle Grundlage Kernaussage: Fourier-Entwicklung ist Basiswechsel im Funktionenraum Zur Erinnerung: Eigenschaften einer Basis in Element: Skalarprodukt: Invariante Größe Vorlesung 25 In Komponenten ausgedrückt Standardbasis: Allgemeine Basis: Orthonormalität: Entwicklung: Koeffizienten: Basis- Wechsel Basis- Wechsel Vollständigkeit:

22 Analoge Strukturen existieren im Funktionenraum: Invariante Größe In Komponenten ausgedrückt Element: Skalarprodukt: Standardbasis: Allgemeine Basis: Orthonormalität: Entwicklung: Koeffizienten: Basis- Wechsel Basis- Wechsel Vollständigkeit: Zusammenfassung: V4.2 Flächen- und Flussintegrale Vorlesung 26 Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung: Fläche über C:

23 Zusammenfassung: V4.2 Divergenz, Satz v. Gauß Vorlesung 27 Divergenz (cartesisch): Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der Divergenz: "Ausfluss pro Volumenelement" Divergenz in krummlinigen Koordinaten (d=3): Zusammenfassung: V.4.3 Satz von Stokes Vorlesung 28 Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation pro gerichteter Fläche" Rotation in krummlinigen Koordinaten: analog für u & v Komponenten, zyklisch permutiert

24 Zusammenfassung: C8.1-2 Analytische Funktionen I Vorlesung 29 Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen (CRG): Def: Komplexes Wegintegral: Substitution: Wichtiges Beispiel: falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit: mit Zusammenfassung: C8.3 Analytische Funktionen II Vorlesung 30 Reihenentwicklungen: - wenn f analytisch ist: Taylor - wenn f einen Pol d. Ordnung p bei hat: Laurant habe mehrere isolierte Pole, und der Weg umschließe Pole, bei Residuensatz: Residuenformel:

25 Kontur schließen: Vorlesung 30 falls Pole innerhalb Diese Strategie funktioniert insbesondere für Integrale folgender Form: mit falls: falls falls

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Zusammenfassung : Fourier-Reihen

Zusammenfassung : Fourier-Reihen Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen)

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) L5.6 Symmetrische, heresche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) In diesem Kapitel kommen Matrizen in Zusammenhang Skalarprodukt vor.

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander: Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: 2) Vektoren: vollständig bestimmt durch Angabe einer und einer Beispiele: Übliche

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

L5 Matrizen I: Allgemeine Theorie

L5 Matrizen I: Allgemeine Theorie L5 Matrizen I: Allgemeine Theorie Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Mathe ist wie Liebe: Eine einfache Idee, aber sie kann kompliziert werden.

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Mathe ist wie Liebe: Eine einfache Idee, aber sie kann kompliziert werden. TO Rechenmethoden Wise 2011-2012 Jan von Delft 18.10.2011 Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei Das Wunder der Anwendbarkeit der Sprache der Mathematik für die

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Zusammenfassung: Eigenwerte, Eigenvektoren, Diagonalisieren Eigenwertgleichung: Bedingung an EW: Eigenwert Eigenvektor charakteristisches Polynom Für ist ein Polynom v. Grad, Nullstellen. Wenn EW bekannt

Mehr

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion sei

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n-

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n- I. Lineare Algebra Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung 1. Determinanten (siehe Fischer/Kaul I, S.329-339) Matrix. Determinanten von 2 2- und 3 3-Matrizen. Alternierende Multilinearformen

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

Lineare Algebra Zusammenfassung

Lineare Algebra Zusammenfassung Lineare Algebra Zusammenfassung Gruppen, Körper, Vektorräume Gruppen Def.: Eine Gruppe (G, )besteht aus einer nicht-leeren Menge G und einer Verknüpfung zwischen Elementen dieser Gruppe. Folgende Eigenschaften

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Vorlesung+ Übung: Mo/Mi/Fr. 8:15-9:45Uhr, SR 1, INF 205 Termin

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23 Inhaltsverzeichnis Einführung 17 Zu diesem Buch 17 Konventionen in diesem Buch 17 Törichte Annahmen über den Leser 17 Wie dieses Buch aufgebaut ist 18 Teil I: Zu den Grundlagen der linearen Algebra 18

Mehr

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung:

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung: Beispiel 1: Wegverformung Berechne: Lösung: [Man sagt: Folglich ist, mit existiert für alle hat eine "Singularität" oder "Pol".] analytisch auf Deswegen kann Wegunabhängigkeit (i.2) genutzt werden, um

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Grundlagen der Mathematik 2 Nachklausur

Grundlagen der Mathematik 2 Nachklausur Andreas Gathmann und Yue Ren Sommersemester 6 Grundlagen der Mathematik Nachklausur Bearbeitungszeit: 8 Minuten Aufgabe (6 Punkte): Es sei f : R R, (x,y) xye (x+y). (a) Bestimme alle lokalen Maxima und

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

TO Rechenmethoden Wise Jan von Delft Das Buch der Natur ist mit mathematischen Symbolen geschrieben.

TO Rechenmethoden Wise Jan von Delft Das Buch der Natur ist mit mathematischen Symbolen geschrieben. TO Rechenmethoden Wise 2013-2014 Jan von Delft 15.10.2013 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/13t0/ Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei Das

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Repetitorium A: Matrizen, Reihenentwicklungen

Repetitorium A: Matrizen, Reihenentwicklungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 5/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Einleitung 19. Teil I Einführung 23. Kapitel 1 Motivation 25

Einleitung 19. Teil I Einführung 23. Kapitel 1 Motivation 25 Inhaltsverzeichnis Einleitung 19 Konventionen in diesem Buch 19 Törichte Annahmen über den Leser 20 Was Sie in diesem Buch finden 20 Was Sie in diesem Buch nicht finden 20 Wie dieses Buch aufgebaut ist

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Prüfung EM1 28. Jänner 2008 A :=

Prüfung EM1 28. Jänner 2008 A := 1. Die Menge der Eigenwerte der Matrix ist Prüfung EM1 28. Jänner 2008 A := ( 0 1 ) 0 1 A. {1, 0} B. { 1} C. {0} D. {0, 1, 1} E. {0, 1} 2. Es seien V ein n-dimensionaler reeller Vektorraum, ein Skalarprodukt

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort Vorwort V I Lineare Gleichungssysteme und Matrizen 1 1 Der Begriff des Körpers 3 1.1 Mengen 3 1.2 Köiperaxiome 3 1.3 Grundlegende Eigenschaften von Körpern 5 1.4 Teilkörper 7 1.5 Aufgaben 8 1.5.1 Grundlegende

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

R: Rechenmethoden WiSe Jan von Delft Das Buch der Natur ist mit mathematischen Symbolen geschrieben.

R: Rechenmethoden WiSe Jan von Delft Das Buch der Natur ist mit mathematischen Symbolen geschrieben. R: Rechenmethoden WiSe 2015-2016 Jan von Delft 12.10.2015 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/15r/ Userid: Passwort: Das Buch der Natur ist mit mathematischen Symbolen geschrieben.

Mehr

R: Rechenmethoden WiSe Jan von Delft Das Buch der Natur ist mit mathematischen Symbolen geschrieben.

R: Rechenmethoden WiSe Jan von Delft Das Buch der Natur ist mit mathematischen Symbolen geschrieben. R: Rechenmethoden WiSe 2014-2015 Jan von Delft 06.10.2014 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/14t0/ Userid: Passwort: Das Buch der Natur ist mit mathematischen Symbolen geschrieben.

Mehr

Mathematik 1 für Studierende der Biologie Teil IV: Lineare Algebra

Mathematik 1 für Studierende der Biologie Teil IV: Lineare Algebra Mathematik 1 für Studierende der Biologie Teil IV: Lineare Algebra Christian Leibold 17. November 2014 Lineare Gleichungen und Matrizen Zwei-Dimensionale Lineare Gleichungssysteme Matrizen Determinanten

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

V: Vektor-Kalkulus. Euklidischer Raum (ER) = Ursprung + Euklidischer Vektorraum (Raum unserer Wahrnehmung) Punkt im ER:

V: Vektor-Kalkulus. Euklidischer Raum (ER) = Ursprung + Euklidischer Vektorraum (Raum unserer Wahrnehmung) Punkt im ER: V: Vektor-Kalkulus Euklidischer Raum (ER) = Ursprung + Euklidischer Vektorraum (Raum unserer Wahrnehmung) Punkt im ER: Differenzen v. Punkten sind Vektoren: V1 Kurven V1.1 Definition einer Kurve Intervall:

Mehr

V2 Felder (Funktionen mehrerer unabhängigen Variablen)

V2 Felder (Funktionen mehrerer unabhängigen Variablen) V2 Felder (Funktionen mehrerer unabhängigen Variablen) Orts- und zeitabhängige physikalische Größen werden durch "Felder" beschrieben. Beispiel: Maxwell-Gleichungen der Elektrodynamik: Vektor-Analysis:

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr