U 2 F 2 = U r, U 2 = F a (U 1 + U r ) U 2 U 1. = V u R (337) 1 + jωτ. (1 + jωτ)(1 + jωτ) 1. Vgl. mit Gl. (317) und (322) liefert die Definition:

Größe: px
Ab Seite anzeigen:

Download "U 2 F 2 = U r, U 2 = F a (U 1 + U r ) U 2 U 1. = V u R (337) 1 + jωτ. (1 + jωτ)(1 + jωτ) 1. Vgl. mit Gl. (317) und (322) liefert die Definition:"

Transkript

1 Kapitel 6: Stabilität linearer Schaltungen 50 Anwendungsbeispiel (Verstärker mit SP-Kopplung) Für den dargestellten Verstärker mit einem frequenzabhängigen ückkopplungsnetzwerk läßt sich die Schleifenverstärkung wie folgt ermitteln: F a U U e Vu U e U U r C U r C Abb. 9: Verstärker mit SP-ückkopplung über frequenzabhängiges Netzwerk in F. F U F = U r, U = F a (U + U r ) U U = F = F = Z C = jc + jc Z C F a F a F F a = U U = V u (7) = + + Z = jc C jτ ( + jτ) + jτ + jτ Vgl. mit Gl. (7) und () liefert die Definition: F O = F a F = mit τ = C () ( + jτ)( + jτ) jτ + (9) (40) V U (jτ) + jτ + (jτ) (4)

2 Kapitel 6: Stabilität linearer Schaltungen 5 Gehe nach -4 von Blatt 4 vor: Schritt ) Konstruktion der OK von F O (j) 0 < a) Forme Gl. (4) um: F O = V U + jτ + jτ = V U + j(τ τ ) = V U u + jv (4) Das ist eine gebrochen linearen Abbildung der allgemeinen Form f(z) = az + b cz + d mit a = 0. (4) b) Wir konstruieren zunächst in Abb. (6.6) mit einfachen Überlegungen die Ortskurve des Nenners u + jv = + j(τ τ ). jv u+ jv = +j( τ τ ) 0 < < u τ τ τ + =0 Abb. 9: Konstruktion der OK von u + jv nach Gl. (4). Für 0 < durchläuft die Bildfunktion den gesamten Bereich von.... Aufgrund der Symmetrie zur reellen Achse wird der gesamte Bereich für negative nochmals durchlaufen.

3 Kapitel 6: Stabilität linearer Schaltungen 5 c) Inversion von u + jv: Hierzu dienen einige wichtige Sätze für Abbildungen im Komplexen: (i) Für gebrochen lineare Abbildungen der Form nach Gl. (4) gilt: Kreise werden auf Kreise abgebildet. Geraden sind Kreise im Unendlichen. (ii) Konstruktion einer Inversion erfolgt mit Hilfe einiger ausgezeichneter Punkte und den auf der Beziehung basierenden Hilfssätzen. u + jv = Z e = jϕ Z e jϕ () Winkel werden bei der Inversion an der reellen Achse gespiegelt ϕ ϕ. () Der längste Zeiger der Originalfunktion wird zum kürzesten Zeiger der gespiegelten Funktion und umgekehrt. () Geraden werden durch Inversion zu Kreisen (bzw. Kreissegmenten). Dies folgt aus (i). Beweis im Anhang. Durch die Anwendung dieser Sätze gelangt man zur Konstruktion des Kreises in der HE der Bildfunktion in Abb. 9 u+jv d) Multiplikation mit V u (vgl. Gl. (4)). Beispiel-Kurven für V u = {,, 6} in Abb. 9 eingezeichnet. Schritt ) Der Endwert für ist einfach zu bestimmen, da er sich als Inversion des längsten Zeigers auf der Geraden bei ϕ = 90 ergibt. Für läuft daher F O im Uhrzeigersinn auf der OK in den Nullpunkt: (vgl. Gl. (4)). lim F O(s) = jv u τ Schritt ) Da die Gerade u+jv zweimal durchlaufen wird, (Geraden schließen sich als Kreis mit = im Unendlichen) wird auch der Kreis der OK zweimal stetig durchlaufen.

4 Kapitel 6: Stabilität linearer Schaltungen 5 Schritt 4) F 0 hat keine instabile Pole (P = 0), da das Netzwerk für F (s) passiv und V u = const. Die OK der Schleifenverstärkung umläuft für V u > den Punkt -+j0: d.h. für V u > wird die rückgekoppelte Schaltung instabil! jv 0 u+jv=+j( τ ) τ = τ = τ u+jv = +τ = τ u Ortskurven F O(V u) V u =6,, von Außen nach Innen Abb. 9: Konstruktions der Ortskurve anch Glg.(4): ) Geradengleichung u + jv. ) Inversion von u + jv. ) Skalierung mit V u Pole auf der imaginären Achse Bei der Definition der Nyquist-Kurve auf S. 4 haben wir vorausgesetzt, daß die betrachtete Wirkungsfunktion (hier insbesondere die rückgekoppelte Schaltung mit H(s) nach Gl. ()) keine Pole und Nullstellen auf der imaginären Achse besitzt. Speziell bei der echnung oder Simulation mit idealen, verlustlosen Bauelementen können diese jedoch auf der imaginären Achse auftreten (vgl. z. B. Fostersche eaktanzsätze). Wir wollen daher zunächst untersuchen, welche Wirkung, ein Pol oder eine Nullstelle auf die Ortskurve der Bildfunktion besitzt. Ziel ist, anhand einer charakteristischen Eigenschaft im Verlauf der Ortskurve auf das Vorhandensein eines Pols oder einer Nullstelle auf der imaginären Achse schließen zu können. Dies ist insbesondere dann von Vorteil, wenn die Ortskurve bereits als Ergebnis z. B. einer Computersimulation vorliegt. Wir betrachten zur allgemeinen Herleitung der Charakteristika eine beliebige Wirkungsfunktion H(s), die wenn sie einen konjugiert komplexen Pol p und

5 Kapitel 6: Stabilität linearer Schaltungen 60 Beispiel zur Umfahrung von Polen mit K ǫ : Liegt die Wirkungsfunktion in analytischer Form vor und sind die Pole (und Nullstellen) bekannt, kann der Verlauf der Nyquist-Kurve um diese Punkte herum geführt werden. Die Vorgehensweise wurde auf S. 55ff. gezeigt und soll an einem Beispiel demonstriert werden: Gegeben sei die folgende rückgekoppelte Schaltung, deren Verstärker- Zweitor einen als Integrator beschalteten idealen Operationsverstärker enthalten soll. Die ückkopplung erfolgt durch einen Tiefpaß erster Ordnung: F a (j) C U + U U r F (j) U r C Abb. 9: Beispielschaltung zur Stabilitätsuntersuchung. Mit idealem OP gilt: U = U jc, C = F a = U U = j (5) F = U r U = + j, C = (5) Mit der Normierung := gilt dann für die Schleifenverstärkung F O = F a F = ( ) = j + j j ( + j) (54) Weitere Umformung nach eal- und aginärteil um F O in ausgezeichneten Punkten ( = ±, 0) bestimmen zu können F 0 = j = j j (+ ) (+ ) (+ ) (Für Endwertbestimmung ± ) (55)

6 Kapitel 6: Stabilität linearer Schaltungen 6 a) b) = = + +j +j =0 e = 0 = = + = +0 j e a). b) 0 +0 F 0 = = + Abb. 99: Konstruktion der Ortskurve der Schleifenverstärkung anhand Gl.(54). Der Verlauf für ±0 in der rechten Abb. a) b) ergibt sich aus Gl.(55). e F 0 Anhand der Abb.(99) konstruierten Ortskurve läßt sich erkennen, daß aufgrund des unbestimmten Verlaufs bei ±0 keine Aussagen über die Stabilität gemacht werden können, da unklar ist, auf welchem Weg sich die Ortskurve von = 0 nach = +0 schließt. Daher wird der Weg der Nyquistkurve im Nullpunkt so modifiziert, daß er in infinitesimal Abstand den Pol in einem Halbkreis umfährt anstelle durch ihn hindurchzulaufen. Der Halbkreis in Abb.(00) s = ǫe jϕ, ϕ = π... π (56) besitzt in den markanten Punkten nach Abb. 00 die Winkel: ϕ () = π ϕ () = 0 ϕ () = + π (57) Die Schleifenverstärkung mit der komplexen Frequenz (Gl. (55): j s) lautet auf dem Halbkreis bei ǫ 0: F O (s) = s(s + ) lim ǫ 0 F O(s) = lim ǫ 0 ǫe jϕ (ǫe jϕ + ) lim F O(s) ǫ 0 = lim ǫ 0 ǫe = jϕ e jϕ lim ǫ 0 ǫ (5) (59) Damit beschreibt F O (s) einen Halbkreis mit unendlich großem adius, der von () nach () im Uhrzeigersinn die rechte Halbebene umfährt. Die Ortskurve von F O (s) läßt sich damit, wie in Abb.(00) rechts vervollständigen.

7 Kapitel 6: Stabilität linearer Schaltungen 6 j s F O (s) K ε ε σ + e K SN Abb. 00: Links: Umfahrung des Pols im Nullpunkt auf K ǫ. echts:: Ortskurve der Schleifenverstärkung mit Halbkreis von () nach () aufgrund des Verlaufs von s auf K ǫ. Beurteilung der Stabilität mit dem Nyquistkriterium (vgl. S. 45):. Da > 0 hat F O (s) keine Pole in der rechten Halbebene P = 0.. Auf der gewählten, modifizierten Nyquist-Kurve ergibt sich kein Umlauf um -+j0.. Wegen ) und ) ist die Schaltung stabil. Beachten: Wir haben willkürlich den Pol bei s = 0 mit einem rechten Halbkreis umfahren. Aber auch der Weg der Nyquistkurve auf einem linken Halbkreis liefert das richtige Ergebnis: Für den linken Halbkreis in der s-ebene um s = 0 ergibt sich analog zu den zuvor eingestellten Überlegungen ein Halbkreis mit adius ǫ, der die gesamte linke Halbebene umschließt. Daher wird der Punkt + j0 einmal gegen den Uhrzeigersinn umlaufen und es gilt mit Q = : N = P Q = P. (60) Da durch den linken Halbkreis nun auch der Pol bei s=0 im Inneren der Nyquist-Kurve liegt, gilt jetzt P = und aus Gl. (60) folgt N = 0 d. h. das charakteristische Polynom + F O (s) hat keine Nullstelle in der rechten Halbebene Die Schaltung ist stabil!

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Zusammenfassung der 3. Vorlesung

Zusammenfassung der 3. Vorlesung Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs

Mehr

Lösungen zur 4. Übung

Lösungen zur 4. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet gelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung C. FEPEL 3 Ortskurven 3. Einleitung Durch ein Zeigerbild wird ein bestimmter Betriebszustand eines Wechselstromnetzes bei konstanten Parametern (Amplitude und Frequenz der einspeisenden sinusförmigen Quellspannungen

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Lineare Systeme als Übertragungsglieder Abstraktion vom physikalischen

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

7.8. Die Regel von l'hospital

7.8. Die Regel von l'hospital 7.8. Die Regel von l'hospital Der Marquis de l'hospital (sprich: lopital) war der erste Autor eines Buches über Infinitesimalrechnung (696) - allerdings basierte dieses Werk wesentlich auf den Ausführungen

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Musterlösung Klausur zur Linearen Algebra II

Musterlösung Klausur zur Linearen Algebra II Musterlösung Klausur zur Linearen Algebra II Samstag 8. Juli 6 -Uhr. a) Sei f : V W k-linear. Denieren Sie V und f : W V. b) Die Gruppe G operiere auf der Menge M. Denieren Sie die Bahn und die Isotropiegruppe

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass V. Geradengleichungen in Parameterform 5. Definition ---------------------------------------------------------------------------------------------------------------- x 3 v a x x x Definition und Satz :

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik Kapitel : Berechnungsverfahren für Netzwerke Berechnungsverfahren für Netzwerken. Überlagerungsprinzip. Maschenstromverfahren. Knotenpotentialverfahren 6. Zweipoltheorie 7.5

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe . Mathematikschulaufgabe. Stelle die folgende Produktmenge im Koordinatensystem dar: M = [ -2; +2 ] Q x [ -2; + ] Q 2.0 Gegeben ist die Funktion f: y = 2 + x G= Q x Q 2. Zeichne die Funktion in ein Koordinatensystem.

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Integration Flächenberechnungen Tet noch nicht fertig Vorabversion! Weitere Aufgaben folgen! Sammlung von Trainingsaufgaben Lösungen in 486 Datei Nr. 48 5 Stand 8. Dezember 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

Erstes Nyquistkriterium im Zeitbereich

Erstes Nyquistkriterium im Zeitbereich Erstes Nyquistkriterium im Zeitbereich Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Die Riemannsche Zetafunktion. 1 Einführung

Die Riemannsche Zetafunktion. 1 Einführung Die Riemannsche Zetafunktion Vortrag zum Seminar zur Funktionentheorie,..8 Michael Hoschek Mit meinem Vortrag möchte ich die wichtigste Dirichletsche Reihe, die Riemannsche Zetafunktion mit einigen besonderen

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Komplexe Zahlen in der Elektrotechnik

Komplexe Zahlen in der Elektrotechnik Komplexe Zahlen in der Elektrotechnik René Müller 6. September 22 Zusammenfassung Oftmals stellen Studenten den Sinn und Zweck ihrer mathematischen Grundausbildung in Frage, denn es fehlt vielerorts an

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Kalibratoren für Strom und Spannung

Kalibratoren für Strom und Spannung Kalibratoren für Strom und Spannung Kalibratoren werden überall dort eingesetzt, wo hochgenaue und hochstabile Spannungen und Ströme benötigt werden. in Anwendungsgebiet ist z.b. die Kalibrierung von Messgeräten.

Mehr

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66 INHALTSVERZEICHNIS 8. Einfiig in die Wecbselspainnungstechnik... 13 8.1. Beziehungen zur Gleichspannungstechnik... 13 8.2. Definition der Wechselspannung... 14 8.3. Arten der Wechselspannung... 15 8.3.1.

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematik für das Ingenieurstudium von Martin Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzeichnis schnell

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 5: Skalarprodukt 5.1 Inhalte Didaktik der Linearen

Mehr