Wiederholung: physikalische Verfahren

Größe: px
Ab Seite anzeigen:

Download "Wiederholung: physikalische Verfahren"

Transkript

1 Wiederholung: physikalische Verfahren PVD (Physical Vapour Deposition) Aufdampfen Sputtern Dioden-System Trioden-System Magnetron-System ( balanced/unbalanced ) Ionenstrahl-System Ionenplattieren DC-Glimm-Entladung HF-Glimm-Entladung Magnetron-Entladung ogen (Arc)-Entladung Ionen-Cluster-Strahl Reaktive Varianten der obigen Verfahren

2 Wiederholung: Raten und Abkühlraten PVD Effusionszelle, Ionenkanone Sputtern Verdampfen Hochrate Magnetron Hochrate Elektronenkanone R[nm/s] R T[K/s] E teilchen =0.eV R T[K/s] E teilchen =ev Diese extrem hohen erzielbaren Abkühlraten zeigen, dass PVD - Prozesse (abgesehen vom direkten Übergang Gasphase Festkörper) oft als Nichtgleichgewichtsprozesse gesehen werden können.

3 Vakuumphysik Zentrale egriffe: Mittlere freie Weglänge: Strecke, welche ein Gasteilchen (oder ein eschichtungsteilchen) ohne Stoss mit einem anderen Teilchen zurücklegt. Auftreffrate: Anzahl der Teilchen, welche pro Flächeneinheit und Sekunde auf eine Oberfläche aus einem Gas mit konstantem Druck auftreffen. edeckungszeit: Zeit bis zur Ausbildung einer vollständigen, dichtgepackten Monolage.

4 Mittlere Freie Weglänge I Stoss zweier Teilchen und mit Radius r = R/: R r Werden beide Teilchen als punktförmig gedacht, so kommt es immer dann zum Stoss, wenn sich Teilchen innerhalb einer Scheibe mit der Fläche = R befindet. wird als Stossquerschnitt bezeichnet.

5 Mittlere Freie Weglänge II Das Teilchen bewegt sich geradlinig eine Strecke l durch ein Gas. Innerhalb eines Zylinders des Volumens V = l wird es mit jedem dort vorhandenen Teilchen stossen. l Im Zylinder befinden sich N = n V Teilchen, bei geradliniger ewegung entspricht das genau der Stosszahl.

6 Mittlere Freie Weglänge III Ein Stoss tritt dann auf wenn für die Stosszahl gilt N =. Damit ergibt sich die mittlere freie Weglänge zu: N n V n n n R 4 n r Makroskopische Information: Teilchendichte n, aus allgemeiner Gasgleichung. Mikroskopische Information: Stossquerschnitt enthält Energieabhängige Atom/Molekülradien bzw. ganz allgemein Wirkungsquerschnitte der Stosspartner.

7 Mittlere Freie Weglänge IV ewegungszustände des Umgebungsgases: Energiereiches eschichtungsteilchen: Relativbewegung vernachlässigt Gasteilchen: Relativbewegung nicht vernachlässigt 4 n r 4 n r

8 Mittlere Freie Weglänge - Rechenbeispiel 4 n r p = 0. Pa k =, J/K T = 300K r = m k T 4 p r p V N k T N V [J / K] 300[K] [J m ].50 [m 4.6 cm n ] k p T

9 Mittlere Freie Weglänge - Faustformel p=5mmpa p = Pa = 5 mm p = 0-4 Pa = 50 m 00 0 He Mittlere Freie Weglänge [m] 0, 0,0 E-3 H O CO ; Ar; N E Druck [Pa]

10 Mittlere Freie Weglänge: Dimensionierung CERN LHC: U = 4.3 = 7 km p[pa] p=5mmpa [mm] 5 p[pa] 5 [mm] Pa.80 9 mbar Innerhalb des LHC muss Ein Druck von ca. 0-9 mbar herrschen, um Stossfreiheit zu gewährleisten.

11 Gasphasentransport Clausius'sches Weglängengesetz: N(x) N(0) exp x Dieser Ausdruck besagt: Eine signifikante Anzahl an Stössen ereignet sich bereits vor Erreichen der mittleren freien Weglänge. Stossfrei wird nur von ca. 37% der Teilchen erreicht. Auch die mittlere freie Weglänge ist nur eine statistische Masszahl.

12 Gasphasentransport - Statistik 0 0 x exp x exp x d d d d n etrachte grosses Ensemble von Einzelsituationen: ilde den Erwartungswert der Stossdistanzverteilung:

13 Flächenstossrate I Ausgangssituation: Gasmoleküle treffen auf Oberfläche Gesucht: Anzahl der Gasmoleküle, die pro Sekunde auf die Einheitsfläche auftreffen.

14 Flächenstossrate II Vorgangsweise: Zylinder mit Einheitsdeckflächen, Höhe u. Nur Teilchen mit einer Geschwindigkeitskomponente u in Richtung e, welche durch die Zylinderdeckfläche durchtreten erreichen in der Einheitszeit die Oberfläche. u e Differentielle Flächenstossrate: dz u u n (u) du Zylinder volumen Teilchen dichte

15 Flächenstossrate III Differentielle Flächenstossrate: du (u) n u dz dichte Teilchen volumen Zylinder u Totale Flächenstossrate: 0 0 u du (u) u n dz Z Maxwell-Verteilung einer Geschwindigkeitskomponente: T k m u e T k m m (u)

16 Flächenstossrate IV erechnung der totalen Flächenstossrate: T k m m p T k p n V N m T k T k m n du e u T k m n du (u) u n dz Z m T k 0 T k m u 0 0 u

17 Flächenstossrate - Rechenbeispiel Z = Z(p,T,m)= = p m m k T p = 0. Pa m= kg (O ) k =, J/K T = 300K Z = s - cm - etwa 70 ML/s

18 Flächenstossrate - graphisch

19 Vakuumtypen ezeichnung Druck [Pa] Mittl. freie edeckung Weglänge [mm] O, 300K [ML/s] Grobvakuum Atm Feinvakuum Hochvakuum (HV) Ultrahochvakuum (UHV) Extremes UHV (XHV) < mm 500 m mm km (!)

20 Pumpentypen Gasfördernd: + Rotationspumpe Grobvakuum/Feinvakuum + Diffusionspumpe Hochvakuum + Turbomolekularpumpe Hochvakuum Gasbindend: + Kühlfallen Feinvakuum + Kryopumpen Hochvakuum/UHV + Sublimationspumpen UHV + Getterpumpen UHV reaktive Gase + Ionengetterpumpen UHV inerte Moleküle (Aktivierung)

21 Strömungstypen Strömung durch ein Rohr, Durchmesser d: Laminar/Turbulent: Grobvakuum/Feinvakuum d d Teilchenstösse wahrscheinlich, globale Strömung Molekular: Hochvakuum, UHV d d Wandstösse wahrscheinlich, keine Strömung

22 Strömungstypen und Pumpsysteme Effizient im laminaren ereich: + Gasfördernde Pumpen: Rotationspumpe Wasserstrahlpumpe + Rotorbasierende Pumpen, aber nicht Turbomolekularpumpen Effizient im molekularen ereich: + Gasfördernde Pumpen: Diffusionspumpe Turbomolekularpumpe + Gasbindende Pumpen

23 Designkriterien für Vakuumsysteme Mittlere freie Weglänge : + Auswahl des Pumpentypes + Pumpgeschwindigkeit + Dimensionierung der Leitungsdurchmesser Flächenstossrate Z: + edeckungszeiten (z.. Oberflächenanalytik) + Einbau von Verunreinigungen (Verhältnis der Aftreffrate der eschichtungsteilchen und der Restgasteilchen)

24 Einbau von Verunreinigungen Haftkoeffizient : ZDes Z Z... Z Des... Auftreffrate Desorptionsrate Hoher Haftkoeffizient (Z Des 0): Reaktive Gase: O H 0 langkettige Kohlewasserstoffe (Pumpenöle) Geringer Haftkoeffizient << (Z Des Z): Inerte Gase: Edelgase N CH 4 Kohlewasserstoffe ohne reaktive Gruppen

25 Einbau von Verunreinigungen: eispiel eschichtungsmaterial: Al, m = kg eschichtungsrate Al: 0 nm/s = At/(m s - ) Verunreinigung: O, m = kg Haftkoeffizient : ca. für Al und O Tempertur: 300K Gesucht: Restgasdruck, bei dem % Sauertoff in die Schicht eingebaut wird Z Z O Al p m 9 O p m O k m m k O T O T.0 5 Pa

26 Designkriterien: Zusammenfassung Mittlere freie Weglänge : eeinflusst im wesentlichen die Gasdynamik. ereits bei relativ hohen Drücken (0 - Pa) erreicht die Mittlere freie Weglänge die geometrischen Dimensionen der eschichtungsanlage ( m). Flächenstossrate Z: Ist der wesentliche Parameter für die Schichtreinheit. Der Restgasdruck muss zumindest im mittleren Hochvakuum liegen, damit abgeschiedene Schichten eine hinreichende Reinheit aufweisen.

Versuch V1 Vakuum. durchgeführt von Matthias Timmer Christian Haake. Betreuung Herr Katsch. am

Versuch V1 Vakuum. durchgeführt von Matthias Timmer Christian Haake. Betreuung Herr Katsch. am Versuch V1 Vakuum durchgeführt von Matthias Timmer Christian Haake Betreuung Herr Katsch am 29.04.2004 Übersicht Hintergrund Grundlagen Unterschiede der Vakua Pumpen Druckmessung Versuch Kalibrierung des

Mehr

f) Ideales Gas - mikroskopisch

f) Ideales Gas - mikroskopisch f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches

Mehr

Einführung. Einführung B

Einführung. Einführung B Einführung 1 Ultrahochvakuumtechnologie (UHV) Aufdampfen und Molekularstrahlepitaxie Grundlagen der Teilchenoptik und Spektroskopie Chemische Analyse: Auger-Elektronenspektroskopie (AES) Mikrosonde (EDX)

Mehr

Vakuum-, Hochfrequenztechnik und Strahlinstrumentierung

Vakuum-, Hochfrequenztechnik und Strahlinstrumentierung Vakuum-, Hochfrequenztechnik und Strahlinstrumentierung Im Rahmen des Schülerpraktikums der ISH am CERN 2015 1 Agenda Vakuumtechnik Definition Erzeugung Erhaltung Strahlinstrumentierung Wire Scanner Beam

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Erik Ehrhardt, Til Gärtner, Frederick Gerber VAKUUMTECHNIK UND BEAM INSTRUMENTATION

Erik Ehrhardt, Til Gärtner, Frederick Gerber VAKUUMTECHNIK UND BEAM INSTRUMENTATION Erik Ehrhardt, Til Gärtner, Frederick Gerber VAKUUMTECHNIK UND BEAM INSTRUMENTATION Inhalt Vakuum Definition Pumpen Messapparate Beam Instrumentation Quellen Impressionen Vakuum-was ist das eigentlich?

Mehr

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell 2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell Mit den drei Zustandsgrößen Druck, Temperatur und Volumen konnte der Zustand von Gasen makroskopisch beschrieben werden. So kann zum Beispiel

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Vakuum - Mehr als Nichts? Was ist Vakuum? Luftdruck Vakuumpumpen Druckmessung Anwendungen

Vakuum - Mehr als Nichts? Was ist Vakuum? Luftdruck Vakuumpumpen Druckmessung Anwendungen Zum 400. Geburtstag von Otto von Guericke Vakuum - Mehr als Nichts? Was ist Vakuum? Luftdruck Vakuumpumpen Druckmessung Anwendungen Was ist Vakuum? Vakuum: Luftdruck geringer als Normaldruck Druck p

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Vakuumphysik and Vakuumtechnologie

Vakuumphysik and Vakuumtechnologie Vakuumphysik and Vakuumtechnologie Was ist Vakuum? Wozu brauchen wir Vakuum? Wie erzeugt man Vakuum? Wie misst man Vakuum? Grundlagen der Vakuumphysik Kinetische Gastheorie Aspekte zur Vakuumtechnolgie,

Mehr

Wiederholung: praktische Aspekte

Wiederholung: praktische Aspekte Wiederholung: praktische Aspekte Verkleinerung des Kathodendunkelraumes! E x 0 Geometrische Grenze der Ausdehnung einer Sputteranlage; Mindestentfernung Target/Substrat V Kathode (Target/Quelle) - + d

Mehr

V 1. pdv mit p = = p 0 V 0 ln p 1. m = C H2 O T ln p 1. = P a 150m J 8K ln P a

V 1. pdv mit p = = p 0 V 0 ln p 1. m = C H2 O T ln p 1. = P a 150m J 8K ln P a 2 Lösungen Lösung zu 46. Nutze den 1. Hauptsatz du = Q + W = Q pdv. Bei einem isothermen Prozess ändert sich die innere Energie nicht: du = 0, was wir schon in mehreren Aufgaben zuvor benutzt haben. Also

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung E2: Wärmelehre und Elektromagnetismus 3. Vorlesung 16.04.2018 https://xkcd.com/1978/ Heute: - Gleichverteilungssatz - 1. Hauptsatz - Volumenarbeit - Wärmekapazität - Wärmekapazität des idealen Gases -

Mehr

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz)

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Versuch Nr. 58 Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Stichworte: Kinetische Gastheorie, ideales Gas, charakteristische Größen zur Beschreibung von Gasen (s.u.), Hagen-Poiseuille'sches

Mehr

Themengebiet: Mechanik

Themengebiet: Mechanik Seite 1 Themengebiet: Mechanik 1 Literatur D. Meschede, Gerthsen Physik, Springer, Berlin M. Wutz, H. Adam, W. Walcher, Theorie und Praxis der technik, Vieweg 2 Grundlagen Historisch gesehen bezeichnet

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Wiederholung: Ionenplattieren. !HV (bis ca. 1kV) Optionales Ionisationssystem. Substrat. Quelle + +

Wiederholung: Ionenplattieren. !HV (bis ca. 1kV) Optionales Ionisationssystem. Substrat. Quelle + + Wiederholung: Ionenplattieren Substrat!HV (bis ca. 1kV) Optionales Ionisationssystem Quelle Ionisiertes Zusatzgas Quellmaterial, ionisiert oder neutral Wiederholung: Ionenplattieren - Ionenspezies Getrennte

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov #6 am 17.01.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Das Interstellare Medium Der Stoff zwischen den Sternen

Das Interstellare Medium Der Stoff zwischen den Sternen Das Interstellare Medium Der Stoff zwischen den Sternen Lord of the Rings Sonne Roter Überriese Nördliche Hemisphäre Nördliche Hemisphäre Südliche Hemisphäre Die 150 nächsten Sterne 60 Lichtjahre

Mehr

Pumpwirkung durch Bindung der Gas- oder Dampfteilchen an Oberflächen

Pumpwirkung durch Bindung der Gas- oder Dampfteilchen an Oberflächen Folie 1 Sorptionspumpen Pumpwirkung durch Bindung der Gas- oder Dampfteilchen an Oberflächen 10. Adsorptionspumpen Adsorptionspumpen arbeiten mit Materialen als Adsorbens, die sehr große Oberflächen, bezogen

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Kapitel 10 - Gase. Kapitel 10 - Gase. Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller Bewegung

Kapitel 10 - Gase. Kapitel 10 - Gase. Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller Bewegung Kapitel 0 - Gase Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller ewegung Druck Kraft pro Fläche in Pa(scal) oder bar Normdruck = 760mm = 0,35 KPa =,035 bar = atm Messung

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Vakuum (1) Versuch: P Vorbereitung - Inhaltsverzeichnis

Vakuum (1) Versuch: P Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum 2 Gruppe Mo-16 Sommersemester 2006 Jens Küchenmeister (1253810) Julian Merkert (1229929) Versuch: P2-42 Vakuum (1) - Vorbereitung - Vorbemerkung In diesem Versuch beschäftigen

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Parameter für die Habitabilität von Planeten - Atmosphäre

Parameter für die Habitabilität von Planeten - Atmosphäre Parameter für die Habitabilität von Planeten - Atmosphäre Gliederung Definition von Habitabilität Erdatmosphäre Zusammensetzung Aufbau Einfluss der Atmosphäre auf die Temperatur Reflexion Absorption Treibhauseffekt

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Kristallwachstum. Epitaxie C10.2-1. Epi (altgr): gleiches Material z.b. Si auf Si. anderes Material z.b. Ge auf Si

Kristallwachstum. Epitaxie C10.2-1. Epi (altgr): gleiches Material z.b. Si auf Si. anderes Material z.b. Ge auf Si Kristallwachstum Epitaxie Taxis (altgr): Epi (altgr): Ordnung oben Homoepitaxie gleiches Material z.b. Si auf Si Heteroepitaxie anderes Material z.b. Ge auf Si Prof. Dr. H. Baumgärtner C10.2-1 C10.2-1

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Alle Atome haben Massen ungefähr einem vielfachen der Masse des Wasserstoff Atoms.

Alle Atome haben Massen ungefähr einem vielfachen der Masse des Wasserstoff Atoms. 02. Atom Page 1 2. Das Atom Atom: kleinster unveränderbarer Bestandteil eines chemischen Elements Charakteristische Eigenschaften von Atomen: Masse, Volumen, Ladung 2.1 Bestimmung der Atommasse expt. Befund:

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

6. Boltzmann Gleichung

6. Boltzmann Gleichung 6. Boltzmann Gleichung 1 6.1 Herleitung der Boltzmann Gleichung 2 6.2 H-Theorem 3 6.3 Transportphänomene G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 6 3. Juni 2013 1 / 23

Mehr

Vakuum (VAK)

Vakuum (VAK) Inhaltsverzeichnis TUM Anfängerpraktikum für Physiker Vakuum (VAK) 25.2.26. Einleitung...2 2. Ideale Gase...2 3. Verwendetes Material...2 4. Versuchsdurchführung...2 4.. Eichung der Pirani-Manometer...2

Mehr

2. Herstellung definierter Probenoberflächen

2. Herstellung definierter Probenoberflächen 2. Herstellung definierter Probenoberflächen 2.1 Ultrahochvakuum (UHV) mittlere Geschwindigkeit der Gasteilchen (kin. Gastheorie): -6 für H:~ 2000 m/s 2 Bei einem Druck von 10 mbar ist die OF in weniger

Mehr

Wiederholung: Verdampfen von Legierungen

Wiederholung: Verdampfen von Legierungen Wiederholung: Verdampfen von Legierungen 100 10 log(r /R ) A B Legierungszusammensetzung: A:B=1:1 A ist das flüchtigere Material (p > p ) 0 0 A B n = n + n 0 n = n + n A B Teilchenzahl bei t = 0 Anzahl

Mehr

Zur Erinnerung. Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung. Grenzflächenspannung. Kapillarität

Zur Erinnerung. Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung. Grenzflächenspannung. Kapillarität Zur Erinnerung Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung Grenzflächenspannung Kapillarität Makroskopische Gastheorie: Gesetz on Boyle-Mariotte Luftdruck Barometrische

Mehr

Im Rahmen der kinetischen Gastheorie ergab sich der Druck als Kraft/Wandfläche = (Impulsübertrag an die Wand)/(Wandfläche Zeit).

Im Rahmen der kinetischen Gastheorie ergab sich der Druck als Kraft/Wandfläche = (Impulsübertrag an die Wand)/(Wandfläche Zeit). Gasgesetze, Druck und Vakuum Im Rahmen der kinetischen Gastheorie ergab sich der Druck als Kraft/Wandfläche = (Impulsübertrag an die Wand)/(Wandfläche Zeit). Die SI-Einheit des Drucks ist 1 N/m 2 = 1 Pa

Mehr

Kinetische Theorie. Übersicht: Voraussetzungen: Verteilungsfunktionen Grundgleichungen: Kollissionen

Kinetische Theorie. Übersicht: Voraussetzungen: Verteilungsfunktionen Grundgleichungen: Kollissionen Kinetische Theorie Übersicht: Verteilungsfunktionen Grundgleichungen: Boltzmann Vlasov Fokker-Planck Kollissionen neutral trifft neutral neutral trifft geladen geladen trifft geladen Voraussetzungen: keine

Mehr

Maxwell-Boltzmann Verteilung. Mykola Zotko Frankfurt am Main

Maxwell-Boltzmann Verteilung. Mykola Zotko Frankfurt am Main Maxwell-Boltzmann Verteilung James Clerk Maxwell 1831-1879 Ludwig Boltzmann 1844-1906 Maxwell-Boltzmann Verteilung 1860 Geschwindigkeitsverteilung - eine Verteilungsfunktion, die angibt, mit welcher relativen

Mehr

Lehrbuch Mikrotechnologie

Lehrbuch Mikrotechnologie Lehrbuch Mikrotechnologie für Ausbildung, Studium und Weiterbildung von Sabine Globisch 1. Auflage Lehrbuch Mikrotechnologie Globisch schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Gasteilchen füllen den verfügbaren Raum vollständig aus.

Gasteilchen füllen den verfügbaren Raum vollständig aus. Die mechanischen Eigenschaften der Gase Gasteilchen sind frei beweglich. Gasteilchen füllen den erfügbaren Raum ollständig aus. Durch Stöße der Gasteilchen gegen die Gefäßwände entsteht der Druck, den

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Inhaltsverzeichnis 4.3 Kinetische Gastheorie................................. 4.1 4.3.1

Mehr

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik Kompressionsfaktor z,00 1,75 1,50 1,5 1,00 0,75 0,50 0,5 H CH 4 CO 0 0 0 40 60 80 Druck in MPa ideales Gas Nach dem idealen Gasgesetz gilt: pv nrt = pv m RT = 1 (z) Nennenswerte Abweichungen vom idealen

Mehr

Aufdampfen und Molekularstrahlepitaxie

Aufdampfen und Molekularstrahlepitaxie Aufdampfen und Molekularstrahlepitaxie Eine der klassischen Methoden frische, saubere Oberflächen im UHV zu präparieren ist das Aufdampfen und Kondensieren dünner Filme. a) Polykristalline Filme Polykristalline

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Vorbereitung: Vakuum. Christine Dörflinger Frederik Mayer Gruppe Do

Vorbereitung: Vakuum. Christine Dörflinger Frederik Mayer Gruppe Do Vorbereitung: Vakuum Christine Dörflinger (christinedoerflinger@gmail.com) Frederik Mayer (fmayer163@gmail.com) Gruppe Do-9 12. Juli 2012 1 Inhaltsverzeichnis 0 Allgemeines 3 0.1 Vakuum..............................................

Mehr

Leybold Vakuum -Taschenbuch

Leybold Vakuum -Taschenbuch 51809 Leybold Vakuum -Taschenbuch Herausgegeben von K.Diels und R.Jaeckel Zweite neubearbeitete und erweiterte Auflage Mit 264 Abbildungen Springer-Verlag Berlin / Göttingen / Heidelberg 1962 Inhaltsverzeichnis

Mehr

Technologien der Elektronik (FMT) Aufbau- und Verbindungstechnik der Elektronik (ME) ET (FMT) / ET (ME)

Technologien der Elektronik (FMT) Aufbau- und Verbindungstechnik der Elektronik (ME) ET (FMT) / ET (ME) Institut für Aufbau- und Verbindungstechnik der Elektronik Fakultät Elektrotechnik und Informationstechnik Technische Universität Dresden Praktikum Modul Versuch Technologien der Elektronik (FMT) Aufbau-

Mehr

Übungsblatt 1 zur Vorlesung Atom- und Molekülphysik

Übungsblatt 1 zur Vorlesung Atom- und Molekülphysik Übungsblatt 1 zur Vorlesung Atom- und Molekülphysik Kapitel 1 bis inklusive 2.3 1. Zu Kapitel 1 Wie viele Atome enthält eine Kupfermünze mit einer Masse von 3,4g benutzen Sie eine Masse von 63,5 atomaren

Mehr

1 Atmosphäre (atm) = 760 torr = 1013,25 mbar = Pa 760 mm Hg ( bei 0 0 C, g = 9,80665 m s -2 )

1 Atmosphäre (atm) = 760 torr = 1013,25 mbar = Pa 760 mm Hg ( bei 0 0 C, g = 9,80665 m s -2 ) Versuch Nr.51 Druck-Messung in Gasen (Bestimmung eines Gasvolumens) Stichworte: Druck, Druckeinheiten, Druckmeßgeräte (Manometer, Vakuummeter), Druckmessung in U-Rohr-Manometern, Gasgesetze, Isothermen

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 2

Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Daniel Weiss 17. Oktober 2010 Inhaltsverzeichnis Aufgabe 1 - Zustandsfunktion eines Van-der-Waals-Gases 1 a) Zustandsfunktion.................................

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Fernerkundung der Erdatmosphäre

Fernerkundung der Erdatmosphäre Fernerkundung der Erdatmosphäre Dr. Dietrich Feist Max-Planck-Institut für Biogeochemie Jena Max Planck Institut für Biogeochemie Foto: Michael Hielscher Max Planck Institut für

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

1. Mai 2006, Ausgabe 23. Prinzipien der Vakuumerzeugung 4pvd, Dr.-Ing. Stefan Esser. Sehr geehrter Leser!

1. Mai 2006, Ausgabe 23. Prinzipien der Vakuumerzeugung 4pvd, Dr.-Ing. Stefan Esser. Sehr geehrter Leser! Dies ist Ihr persönlicher 4pvd Newsletter. Wir hoffen, diese Informationen sind nützlich für Sie. Wenn Sie diesen Newsletter nicht mehr erhalten möchten, senden Sie eine Email an unsubscribe@4pvd.de Sehr

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i Mikroskopische Simulation der Molekülbewegungen Moleküldynamik Statistische Mechanik Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen Makroskopische igenschaften des Systems (nergie, Temp, Druck,

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Ende WS 01/0 Heift / Kurtz Name: Vorname: Matrikel-Nr: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

Das reale Gas. Zustandsdiagramm des realen Gases:

Das reale Gas. Zustandsdiagramm des realen Gases: . Vorlesung Folie Das reale Gas Abeichungen vom Verhalten des idealen Gases bei Druck- und Temperaturbedingungen im Bereich der Verflüssigung. Folge von: Wechselirkungskräfte zischen den Teilchen achsen

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Information. Sehr geehrter Kunde,

Information. Sehr geehrter Kunde, Information Sehr geehrter Kunde, damit Sie Ihre gewünschten Produkte schnell finden, empfehlen wir Ihnen die Suchfunktion Ihres PDF-Betrachters zu nutzen (dafür einfach Strg + F drücken). Hier können Sie

Mehr

gibb BMS Physik Berufsmatur v [m/s]

gibb BMS Physik Berufsmatur v [m/s] v [m/s] gibb MS Physik erufsmatur 2010 1 ufgabe 1 Multiple Choice Kreuzen Sie alle korrekten Lösungen direkt auf dem latt an. Es können mehrere ntworten richtig sein. a) Ein Hebel ist im Gleichgewicht,

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Teil I. Theoretische Grundlagen und Methoden

Teil I. Theoretische Grundlagen und Methoden Teil I Theoretische Grundlagen und Methoden 9 Kapitel 2 Adiabatische Expansion und Clusterbildung In der Literatur werden die unterschiedlichsten Techniken zur Bildung von Clustern beschrieben 1. Als

Mehr

1 Innere Rotation von Alkanen

1 Innere Rotation von Alkanen 1 Innere Rotation von Alkanen a Unter Verwendung der Energieniveaus des harmonischen Oszillators schreibt sich die Zustandssumme Q = g n e εn/kbt = = e hω/2k BT = a 0 x n e hωn+ 1 2 /k BT e hωn/kbt = e

Mehr

Strömungswiderstand eines Rohres für Gase

Strömungswiderstand eines Rohres für Gase S25 Name: Strömungswiderstand eines Rohres für Gase Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

Physikalische Aspekte der Respiration

Physikalische Aspekte der Respiration Physikalische Aspekte der Respiration Christoph Hitzenberger Zentrum für Biomedizinische Technik und Physik Themenübersicht Physik der Gase o Ideale Gasgleichung o Atmosphärische Luft o Partialdruck Strömungsmechanik

Mehr

Chemische Thermodynamik ENTROPIE LÖSUNGEN

Chemische Thermodynamik ENTROPIE LÖSUNGEN L-Üb29: Die Standardentropie der Edelgase steigt in regelmässiger Weise mit der molaren Masse. Diese schöne Regelmässigkeit kommt daher, dass die Edelgase nur Translationsenergie besitzen und keine Schwingungsenergie

Mehr

Kapitel 1: Pneumatische Grundbegriffe

Kapitel 1: Pneumatische Grundbegriffe Alle Inhalte dieser Präsentation, insbesondere Texte, Fotografien und Grafiken, sind urheberrechtlich geschützt (Copyright). Bitte fragen Sie uns, falls Sie die Inhalte dieser Präsentation verwenden möchten.

Mehr

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

1Raum-Zeit-Materie-Wechselwirkungen

1Raum-Zeit-Materie-Wechselwirkungen 1Raum-Zeit-Materie-Wechselwirkungen 1. 11 1.1 Der Raum 1.2 Raum und Metermaß 1.3 Die Zeit 1.4 Materie 1.5 Wechselwirkungen 1.1 Der Raum Wir sehen: Neben-, Über- und Hintereinander von Gegenständen Objektive

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

2.4 Modifikation von Oberflächen

2.4 Modifikation von Oberflächen 2.4 Modifikation von Oberflächen Physikalische und chemische Gasphasenabscheidung Ziel: Aufbringen von definierten dünnen Filmen auf Oberflächen Anschließend: Strukturierung der Filme mit Lithographie,

Mehr

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =?

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =? Kapitel 5 Kanonisches Ensemble 5.1 Herleitung Abgesehen von der Legendre-Transformation S(E,, N) F (T,, N) besteht noch eine weitere Möglichkeit, die freie Energie zu berechnen, und zwar wiederum mittels

Mehr

Oberflächendiagnostik von synthetischen Polymerproben in einem Niedertemperaturplasma

Oberflächendiagnostik von synthetischen Polymerproben in einem Niedertemperaturplasma Oberflächendiagnostik von synthetischen Polymerproben in einem Niedertemperaturplasma Jan Schäfer, Jürgen Meichsner Mühlleithen, Sächsisches Erzgebirge 2004 Niedertemperaturplasma (RF Reaktor, Plasmarandschicht)

Mehr

Braun sche Röhre. Einleitung. Funktionsprinzip

Braun sche Röhre. Einleitung. Funktionsprinzip Einleitung Die Braun sche Röhre wurde 1897 von Karl Ferdinand Braun in Karlsruhe erfunden. Mit ihr lassen sich schnell veränderliche Spannungen durch die Ablenkung von Elektronenstrahlen, die auf einem

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Wie ist der Druck p allgemein definiert. Wie groß ist der Luftdruck unter Normalbedingungen ungefähr? Welche Einheit hat er?

Wie ist der Druck p allgemein definiert. Wie groß ist der Luftdruck unter Normalbedingungen ungefähr? Welche Einheit hat er? Wie ist der Druck p allgemein definiert? Welche Einheit hat er? Wie groß ist der Luftdruck unter Normalbedingungen ungefähr? Was kann man sich anschaulich unter dem Stempeldruck in einer Flüssigkeit vorstellen?

Mehr

Quantitative Bestimmung der massenaufgelösten Ionenflüsse aus Wasserstoff-Argon-Plasmen

Quantitative Bestimmung der massenaufgelösten Ionenflüsse aus Wasserstoff-Argon-Plasmen Quantitative Bestimmung der massenaufgelösten Ionenflüsse aus Wasserstoff-Argon-Plasmen Maik Sode, Th. Schwarz-Selinger, W. Jacob, D. Wünderlich, U. Fantz Arbeitsgruppe Reaktive Plasmaprozesse, Bereich

Mehr

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre

Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre Lösungen zu den Aufgaben Besuch aus dem Weltall ein kleiner Asteroid tritt ein in die Erdatmosphäre Achtung Fehler: Die Werte für die spezifische Gaskonstante R s haben als Einheit J/kg/K, nicht, wie angegeben,

Mehr

1. Gase: Lernziele. P. Atkins, J. de Paula, Physikalische Chemie, Wiley- VCH Verlag GmbH& Co, 2013, 1.2

1. Gase: Lernziele. P. Atkins, J. de Paula, Physikalische Chemie, Wiley- VCH Verlag GmbH& Co, 2013, 1.2 1. Gase: Lernziele o o o o o o o o o o Die Zustände der Gase Der Nullte Haupsatz der Thermodynamik; Temperaturskala Das Boylesche Gesetz-, das Gay-Lussacsche Gesetz; die Avogadrosche Hypothese Das perfekte

Mehr

VCH Verlag GmbH& Co, 2010, 1.2

VCH Verlag GmbH& Co, 2010, 1.2 1. Gase: Lernziele o o o o o o o o o o Die Zustände der Gase Der Nullte Haupsatz der Thermodynamik; Temperaturskala Das Boylesche Gesetz-, das Gay-Lussacsche Gesetz; die Avogadrosche Hypothese Das perfekte

Mehr

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Physik 1 für Chemiker und Biologen 13. Vorlesung

Physik 1 für Chemiker und Biologen 13. Vorlesung Physik 1 für Chemiker und Biologen 13. Vorlesung 30.01.2017 Diese Woche (30.1.-3.2.): Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle Relativitätstheorie Übungen: Besprechung

Mehr