Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik

Größe: px
Ab Seite anzeigen:

Download "Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik"

Transkript

1 Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik G. Mahler Spezialvorlesung SS Einführung und Übersicht Warum und in welchem Sinn ist Kohärenz»untypisch«? Zur Begründung der Thermostatistik aus der Quantenmechanik Dekohärenz: Dynamik offener Systeme Coarse graining und der Zeitpfeil Quantenthermodynamische Maschinen Nichtgleichgewicht: Zum Problem der Wärmeleitung Fluktuationstheoreme Messprozesse und stochastische Entfaltung Nanomechanik Physik und Information: Maxwells Dämon u. a Quantencomputing versus klassische Rechner Literatur D. Giulini et. al: Decoherence and the appearence of a classical world in quantum theory, Springer J. Gemmer et. al: Quantum Thermodynamics, Springer H. P. Breuer et. al: The theory of open quantum systems, Oxford

2 Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik: 8. Nanomechanik Heiko Schröder Inhaltsverzeichnis Motivation und Übersicht. Begriff Nanomechanik Begriff Nanomechanik im Rahmen der Vorlesung minimales nanomechanisches Modell: harmonischer Oszillator 3. Bedeutung Definitionen Kohärente Zustände Treiber 4 3. phänomenologisch mikroskopisch quantenmechanisch notwendige Bedingung Faktorisierungs-Näherung 6 4. Aussage der Faktorisierungs-Näherung Verallgemeinerung auf halbgemischte Zustände Spin-HO-Modell 8 5. Modell Ergebnisse

3 Motivation und Übersicht. Begriff Nanomechanik Die Mechanik ist die Theorie von der Dynamik physikalischer Körper. Die betrachteten Größen sind Orte (x i ) und Impulse (p i ), oder auch Drehimpulse im Falle ausgedehnter Körper. Die Nanomechanik ist die entsprechende Theorie für nanoskopische Körper. Die Beschreibung baut auf der Quantenmechanik auf: ˆx i, ˆp i. Konkrete Fragestellungen der Nanomechanik sind die theoretische Beschreibung und der experimentelle Einsatz nanomechanischer bzw. nanoelektromechanischer Geräte (NEMS). Das Ziele sind die Messung extrem kleiner Kräfte und Strukturen, Vorstoß ins Quantenregime und direkte Messung quantenmechanischer Fluktuationen. (vgl. hierzu []) Obwohl natürlich im allgemeinen Sinne alles (Quanten-)Mechanik ist, wird bereits in diesem Kontext die Unterscheidung zwischen Schwingungen (Phononen) in nanoskopischen Körpern, die entweder als mechanische oder als thermische Freiheitsgrade anzusehen sind, gemacht. (ebenfalls []) [] ist ein ausführliches Lehrbuch zu den Grundlagen der Nanomechanik.. Begriff Nanomechanik im Rahmen der Vorlesung In der Thermodynamik spielen nicht nur Gleichgewichtsfragen, Relaxation, Wärme/ Wärmetransport, eine Rolle, sondern auch ein wichtiger Aspekt ist nartürlich auch Arbeit im thermodynamischen Sinne. In den vorangehenden Vorlesungen wurden aus einer rein quantenmechanischen Beschreibung heraus die Konzepte Gleichgewicht, Wärme und Relaxation behandelt. Auf derselben Basis soll nun das Konzept Arbeit im thermodynamischen Sinne behandelt werden. Der Begriff Mechanik soll jetzt also im thermodynamischen Sinne verstanden werden: Mechanik liegt vor, wenn ein System mechanisch im thermodynamischen Sinne auf ein anderes System wirkt, d.h. wenn es an ihm Arbeit verrichtet (Treiber). Nano bedeutet, dass der quantenmechanische Grenzfall betrachtet werden soll. Die zentrale Frage lautet in Analogie zu den vorhergehenden Vorlesungen: Wie muss die Umgebung, die Wechselwirkung zum System und der Anfangszustand des Gesamtsystems beschaffen sein, damit die Umgebung als Treiber auf das System wirkt?

4 minimales nanomechanisches Modell: harmonischer Oszillator. Bedeutung Bei dem quantenmechanischen harmonischen Oszillator handelt es sich um das einfachste nanomechanische Modell: Man kann sich z.b. einen schwingenden nanoskopischen Stab vorstellen, wobei die Beschreibung soweit vereinfacht wird, dass alle innere Struktur ignoriert wird.. Definitionen Hamilton-Operator: Definition der dimensionslosen Orts-/Impulsoperatoren: ˆX = Ĥ = ˆp m + mωˆx () mω h ˆx, ˆP = Hamilton-Operator mit den dimensionslosen Operatoren: hmω ˆp, [ ˆX, ˆP ] = ı () Ĥ = hω( ˆX + ˆP ) (3) Definition des Erzeuger-/Vernichter-Operators: â = ( ) ˆX + ı ˆP, â = ( ) ˆX ı ˆP (4) Hamiltonian mit Erzeugern/Vernichtern: Ĥ = hω(â â + ) (5) Definition der Energieeigenzustände (Fock-Zustände):.3 Kohärente Zustände Definition: Ĥ n = hω(n + ) n (6) α := ˆD(α) = e αâ α â = e α n= α n n! n (7) 3

5 Die besondere Bedeutung der kohärenten Zustände liegt darin, dass sie als quasiklassische Zustände angesehen werden können: Zwar sind Ort und Impuls nicht scharf, die Erwartungswerte von ˆx und ˆp verhalten sich aber genau wie der Ort und Impuls eines klassischen harmonischen Oszillators. Kohärente Zustände heißen kohärent, weil die Wellenpakete nicht auseinanderfließen, also zusammenhängend (=kohärent) bleiben. Vorstellung: verschwommener =unscharfer harmonischer Oszillator 3 Treiber 3. phänomenologisch Treiber / Treibende Umgebung : Ein System, das an einem anderen System Arbeit im thermodynamischen Sinne verrichtet. Was ist eigentlich Arbeit im thermodyn. Sinne? Phänomenologisch wird der Zustand eines thermodynamischen Systems beschrieben durch Zustandsvariablen, z.b. U, V, T, p, H,.... Unter diesen Variablen gibt es verallgemeinerte Wegvariablen, wie z.b. V, H,..., bei deren Veränderung Arbeit im thermodynamischen Sinne verrichtet werden muss (gegen die verallgemeinerten Kräfte p, M,... ). 3. mikroskopisch Auf quantenmechanischer Ebene ist, wie quantenmechanisch schon sagt, alles irgendwie mechanisch (im allgemeinen Sinne): Es gibt ja nur die Wechselwirkungen zwischen System und Umgebung, die zwischen den einzelnen Teilen der beiden Systeme wirkt. Diesen Wechselwirkungen sieht man nicht an, ob sie nun Arbeit oder Wärme ins System bringen. Insbesondere werden beide Energien über dieselben Wechselwirkungen ins System befördert. Ob das jetzt Wärme ist, wenn die Wand an einer Wellenfunktion im Innern rüttelt, oder Arbeit, ist also nicht von vorneherein klar. Die Statistische Physik liefert uns aber einen Hinweis, wie man Wärme von Arbeit unterscheiden kann: du = T ds pdv = E i dp i + p i de i i i }{{}}{{} =d Q=T ds =d W (8) Die Zuordnung der Terme zur Wärme/Arbeit ist im Rahmen der Statistischen Physik möglich, solange der Prozess reversibel durchgeführt wird. ([3], S. 679ff) Man sieht hier, dass 4

6 Wärme = Änderung der Besetzungszahlen p i Arbeit = Änderung der Energien der Mikrozustände E i 3.3 quantenmechanisch Das kann man natürlich direkt auf die Quantenthermodynamik übertragen werden: Ganz allgemein lässt sich für die innere Energie eines Systems sagen: U = Ĥ = tr{ˆρĥ} = i ρ }{{} ii E i (9) =p i wenn die E i die Energieeigenwerte des Systems sind. Durch Bilden des Differenzials kommt man direkt zu (8). Da das Treiben eines Systems also gleichbedeutend ist mit der Änderung von den Energieeigenwerten des betrachteten Systems, lautet die Frage nach Bedingungen, die ein Treiber erfüllen muss: Wie muss die Umgebung, die Wechselwirkung mit dem System und der Anfangszustand des Gesamtsystems beschaffen sein, so dass die einzige Wirkung der zeitlichen Entwicklung des Gesamtsystems ist, die Energieeigenwerte des Systems zu verändern? 3.4 notwendige Bedingung Der Hamilton-Operator des betrachteten Systems muss also offensichtlich explizit zeitabhängig werden, denn ein konstanter Hamiltonian bedeutet keine Änderung der Energieeigenwerte. Konkreter: Die Gesamtdynamik des Gesamtsystems muss so beschaffen sein, dass sich ein effektiver zeitabhängiger lokaler Hamilton- Operator für das System ergibt. Mathematisch formuliert: Betrachte ein zweigeteiltes System (Syst. + Umgebung): Ĥ = Ĥ ˆ + Ĥ + ˆ Ĥ () Die Zeitentwicklung des Gesamtsytems ist gegeben durch die Liouville-von- Neumann-Gleichung (LvNGl) d dt ˆρ (t) = ī [Ĥ, ˆρ (t)] () h Die Zeitentwicklung des Zustands des Systems (= System ) ergibt sich daraus durch partielle Spurbildung: d dt ˆρ (t) = tr { [Ĥ, ˆρ (t)] } () 5

7 und die formulierte Bedingung ist dann gegeben durch: d dt ˆρ (t) = tr { [Ĥ, ˆρ (t)] } =! ī [Ĥeff ] h (t), ˆρ (t) (3) Diese Bedingung ist natürlich nicht hinreichend für einen idealen Treiber, weil z.b. durch nicht-adiabatische (im quantenmechanischen Sinn) Änderung der Energieeigenfunktionen es Übergänge im System geben kann: Zu schnelles Treiben, Treiben ins Nicht-Gleichgewicht. einfaches, aber drastisches Beispiel: Spin mit Ausgangszustand: Ĥ eff (t) = Θ( t)ˆσ z + Θ(t)ˆσ x (4) ˆρ (t < ) = = ( Dabei soll der Spin-runter-Zustand bzgl. ˆσ z sein. Die Energieeigenbasis ändert sich bei t = instantan und die neue Energieeigenbasis ist gegeben durch die Transformation T auf das neue Eigensystem, bestehend aus den Eigenvektoren von ˆσ x : ( ) T = ) (5) (6) Zustand nach t = in der neuen Basis hρ (t > ) = T.ˆρ (t < ).T = ( ) (7) Offensichtlich ist der Zustand kein Gleichgewichtszustand mehr. Sichere Aussagen über Arbeit und Wärme hängen dann stark vom System ab (wg. Irreversibilität/Nicht-Gleichgewicht). 4 Faktorisierungs-Näherung 4. Aussage der Faktorisierungs-Näherung Die Faktorisierungs-Näherung liefert eine hinreichende Bedingung für die Existenz eines effektiven, zeitabhängigen, lokalen Hamilton-Operators. [4] Definition der Purity: Falls P (ˆρ ) =, dann P (ˆρ) := tr{ˆρ } (8) P (ˆρ ) = P (ˆρ ) (9) 6

8 Aussage der Faktorisierungs-Näherung: Gegeben sei ein zweigeteiltes System, das in einem reinem Produkt-Zustand starten soll: Ĥ = Ĥ ˆ + Ĥ + ˆ Ĥ () Ψ() = Φ () Φ () () Solange P (ˆρ i ) gilt, ist die Zeitentwicklung des Systems in gute Näherung (Fehler ist quantifizierbar, s. [4]) gegeben durch die Gleichungen ı h d ) dt Φ,(t) = (Ĥ, + Φ, (t) Ĥ Φ, (t) Φ, (t) () }{{} H, eff (t) Die Interpretation der Gleichungen ist: Solange die Bedingungen für die Näherung gegeben ist, kann die Zeitentwicklung der Systeme in guter Näherung mit den effektiven, zeitabhängigen, lokalen Hamilton-Operatoren H,(t) eff beschrieben werden. Der Beweis ist auch in [4] zu finden. 4. Verallgemeinerung auf halbgemischte Zustände Als halbgemischte Zustände sollen Zustände der Form bezeichnet werden. ˆρ = ˆρ Φ () Φ () (3) Die Verallgemeinerung ist notwendig, da mit der Faktorisierungs-Näherung die Frage nach dem Treiben thermischer Systeme bearbeitet werden soll. Ein System, dass in einem thermischen Zustand vorliegt, befindet sich aber immer in einem gemischten Zustand. Man kann zeigen: Solange P (ˆρ (t)) gilt und wenn das System in dem Anfangszustand ˆρ () = ˆρ () Φ () () Φ () () (4) gestartet ist, gilt in guter Näherung ı h d dt ˆρ (t) = [Ĥ + Φ (t) Ĥ Φ (t), ˆρ (t)] (5) ı h d ) dt Φ (t) = (Ĥ + tr {(ˆρ (t) ˆ)Ĥ} Φ (t) (6) Wieder ist eine Beschreibung mit einem effektiven, zeitabhängigen, lokalen Hamilton- Operator möglich. Dies ist natürlich noch nicht gleichbedeutend mit dem Vorliegen eines Treibers im thermodynamischen Sinne, denn damit ist nur die notwendige Bedingung erfüllt. 7

9 5 Spin-HO-Modell 5. Modell Ein sehr einfaches Modell zur Veranschaulichung der besprochenen Konzepte stellt das Spin + Harmonischer Oszillator -Modell dar. Das Modell wird beschrieben durch den Hamilton-Operator ( h = ) Ĥ = κˆσ z ˆ + γˆσ z ˆX }{{} Ĥ system + (ˆ ω ˆX + ˆ ˆP ) }{{} und besteht aus einem Spin, der über ˆσ z an die dimensionslose Ortskoordinate des Oszillators ankoppelt. Warum wird der Wechselwirkungsterm mit in Ĥsystem hineingenommen? Im Rahmen der Thermodynamik ist die innere Energie eines Systems gegeben als: du = SdT pdv. pdv ist offensichtlich ein Wechselwirkungsterm mit der Wand des Containers. Genauso ist auch der Wechselwirkungsterm hier im Modell auffassbar und muss daher mit in Ĥsystem hineingenommen werden. Als Anfangszustand wird ˆρ () = ˆρ system () ˆρ env () = gewählt, wobei α ein kohärenter Zustand ist. 5. Ergebnisse Ĥ env ( ɛ ɛ (7) ) α α (8) Mit den verwendete Parametern (ω =, γ =.5, κ =., α =, ɛ =.7) ergibt sich folgendes Bild:. PSfrag replacements P (ˆρenv) time 8

10 Sfrag replacements Ĥsystem PSfrag replacements Ĥenv time time Erklärung: Die Purity des Oszillators bleibt sehr nahe bei, d.h. die Voraussetzung für die Faktorisierungs-Näherung ist erfüllt. Im Spin finden keine Übergänge statt. Daher kann die Veränderung der System-Energie tatsächlich mit dem effektiven, zeitabhängigen, lokalen Hamilton-Operator Hsystem eff = (κ + γ ˆX )ˆσ z beschrieben werden und die Dynamik kann als ein nahezu ideales Treiben des Systems gedeutet werden: Es ändert sich nichts weiter als die Aufspaltung des Spins, also seine Energieeigenwerte. Literatur [] K. C. Schwab and M. L. Roukes, Physics Today 58, 36 (6). [] Andrew N. Cleland, Foundations of Nanomechanics. From Solid-State Theory to Device Applications (Springer-Verlag Berlin Heidelberg New York, 3). [3] B. Diu, C. Guthmann, D. Lederer, and B. Roulet, Grundlagen der Statistischen Physik (Walter de Gruyter, 994). [4] J. Gemmer and G.Mahler, Eur. Phys. J. D 7, 385 (). 9

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer

Mehr

100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück,

100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück, 100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück, 28.10.2004 Primäres Gesetz oder angepaßte Beschreibung? Quantenmechanik: Klassische Mechanik: i h h2

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Tomographie eines Zweiniveau-Systems

Tomographie eines Zweiniveau-Systems Tomographie eines Zweiniveau-Systems Martin Ibrügger 15.06.011 1 / 15 Übersicht Motivation Grundlagen Veranschaulichung mittels Bloch-Kugel Beispiel / 15 Motivation Warum Tomographie eines Zweiniveau-Systems?

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

7. Kritische Exponenten, Skalenhypothese

7. Kritische Exponenten, Skalenhypothese 7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Der Entropiebegriff in der Thermodynamik und der. Statistischen Mechanik

Der Entropiebegriff in der Thermodynamik und der. Statistischen Mechanik Der Entropiebegriff in der Thermodynamik und der Statistischen Mechanik Kurt Schönhammer Institut für Theoretische Physik Universität Göttingen Inhaltsangabe Zur historischen Enwicklung der Thermodynamik

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Theoretische Physik F Statistische Physik

Theoretische Physik F Statistische Physik Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Theoretische Physik F Statistische Physik Sommersemester 2010 2 Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität)

Mehr

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter Informationen zur Klausur 2. Teilklausur Freitag, den 28.1.2011 Schwingungen (2.7) Wellen (2.8) Wärmelehre kin. Gastheorie (3.1) Wärme (3.2) Wärmetransport (3.3) 1. Haupsatz (isotherm, adiabatisch, isochor,

Mehr

Übungen zur Quantenmechanik

Übungen zur Quantenmechanik Übungen zur Quantenmechanik SS11, Peter Lenz, 1. Blatt 13. April 011 Abgabe (Aufgabe ) bis 18.4.07, 1:00 Uhr, Übungskästen RH 6 Aufgabe 1: Gegeben sei ein Wellenpaket der Form Ψ( x, t) = 1 8π 3 Ψ( [ (

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Physik des Geonium-Atoms (Präzisionsmessung des gyromagnetischen Faktors des Elektrons)

Physik des Geonium-Atoms (Präzisionsmessung des gyromagnetischen Faktors des Elektrons) Physik des Geonium-Atoms (Präzisionsmessung des gyromagnetischen Faktors des Elektrons) Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner. Dezember 5

Mehr

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v.

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v. Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe 24.06.09 Abgabe 01.07.09 Besprechung n.v. Aufgabe 1 (Auswahlregeln) Die Wechselwirkung (engl. interaction)

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

UNIVERSITÉ DE FRIBOURG SUISSE FACULTÉ DES SCIENCES. propädeutischen Fächer

UNIVERSITÉ DE FRIBOURG SUISSE FACULTÉ DES SCIENCES. propädeutischen Fächer UNIVERSITÉ DE FRIBOURG SUISSE FACULTÉ DES SCIENCES UNIVERSITÄT FREIBURG SCHWEIZ MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Auszug aus dem Studienplan für die propädeutischen Fächer und die Zusatzfächer

Mehr

Allgemeine Mechanik Musterlösung 11.

Allgemeine Mechanik Musterlösung 11. Allgemeine Mechanik Musterlösung 11. HS 2014 Prof. Thomas Gehrmann Übung 1. Poisson-Klammern 1 Zeigen Sie mithilfe der Poisson-Klammern, dass folgendes gilt: a Für das Potential V ( r = α r 1+ε ist der

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg

Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Vortragender: Imran Khan Betreuer: Dr. Christine Silberhorn, Dipl. Phys. Andreas Eckstein Datum: Gliederung 1. Einführung

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Phasengleichgewicht und Phasenübergänge. Gasförmig

Phasengleichgewicht und Phasenübergänge. Gasförmig Phasengleichgewicht und Phasenübergänge Siedetemperatur Flüssig Gasförmig Sublimationstemperatur Schmelztemperatur Fest Aus unserer Erfahrung mit Wasser wissen wir, dass Substanzen ihre Eigenschaften bei

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Theoretische Physik I: Weihnachtszettel Michael Czopnik

Theoretische Physik I: Weihnachtszettel Michael Czopnik Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop 2. Februar 2011 Prof. Dr. Halfmann, Prof. Dr. Walser Quantenoptik und nichtlineare

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie: Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 04. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 04. 06.

Mehr

Wellenfunktion. Kapitel 1. 1.1 Schrödinger - Gleichung

Wellenfunktion. Kapitel 1. 1.1 Schrödinger - Gleichung Kapitel 1 Wellenfunktion Diejenigen, die nicht schockiert sind, wenn sie zum ersten mal mit Quantenmechanik zu tun haben,habensie nicht verstanden. ( If you are not confusedby quantum physics then you

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Elke Scheer (Experimentalphysik) Raum P 1007, Tel. 4712 E-mail: elke.scheer@uni-konstanz.de Prof. Dr. Guido Burkard (Theoretische Physik) Raum P 807, Tel.

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

Die Macht und Ohnmacht der Quantenwelt

Die Macht und Ohnmacht der Quantenwelt Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Algorithmen für Quantencomputer II Der Shor Algorithmus

Algorithmen für Quantencomputer II Der Shor Algorithmus Der Shor Algorithmus Hauptseminar Theoretische Physik Universität Stuttgart, SS 2011 Inhalte des Vortrags Motivation: wie findet man Primfaktoren auf klassischem Wege? Zwei Sätze der Zahlentheorie und

Mehr

Kapitel 2. Atome im Magnetfeld quantenmechanische Behandlung. 2.1 Normaler Zeeman-Effekt

Kapitel 2. Atome im Magnetfeld quantenmechanische Behandlung. 2.1 Normaler Zeeman-Effekt Kapitel 2 Atome im Magnetfeld quantenmechanische Behandlung 2.1 Normaler Zeeman-Effekt Zur quantentheoretischen Behandlung des normalen Zeeman-Effekts verwenden wir, dass sich ein Magnetfeld B aus einem

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Fazit: Wellen haben Teilchencharakter

Fazit: Wellen haben Teilchencharakter Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Seminar zur Nanoelektronik 2008: Quantencomputer. Jan-Philip Gehrcke. Julius-Maximilians-Universität Würzburg. 17. Juli 2008

Seminar zur Nanoelektronik 2008: Quantencomputer. Jan-Philip Gehrcke. Julius-Maximilians-Universität Würzburg. 17. Juli 2008 Seminar zur Nanoelektronik 2008: Quantencomputer Jan-Philip Gehrcke Julius-Maximilians-Universität Würzburg 17. Juli 2008 Übersicht 1 Motivation Quantencomputer 2 Logische Operationen 3 Anforderungen bei

Mehr

De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik

De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Physikalisches Institut Albert- Ludwigs- Universität Freiburg De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Thomas Filk Physikalisches Institut, Universität Freiburg Parmenides Center

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert?

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert? FAQ Entroie S = k B ln W 1.) Ist die Entroie für einen Zustand eindeutig definiert? Antwort: Nein, zumindest nicht in der klassischen Physik. Es sei an die Betrachtung der Ortsraum-Entroie des idealen

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel Modelle für elektronische Zustände Einfachstes klassisches

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Ergänzende Materialien zum Seminar Theoretische Mechanik WS 2005/06

Ergänzende Materialien zum Seminar Theoretische Mechanik WS 2005/06 Ergänzende Materialien zum Seminar Theoretische Mechanik WS 2005/06 Dörte Hansen 4. Dezember 2005 1 Lagrangepunkte oder: Das restringierte 3-Körper-Problem der Himmelsmechanik 1.1 Motivation Die Trojaner

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Einführung in die Grundlagen der Theoretischen Physik

Einführung in die Grundlagen der Theoretischen Physik Günther Ludwig Einführung in die Grundlagen der Theoretischen Physik Band 1: Raum, Zeit, Mechanik 2., durchgesehene und erweiterte Auflage Vieweg Inhalt Zur Einführung 1 /. Was theoretische Physik nicht

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Kraft = Impulsstrom F = d p dt = dm dt v = dn

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Wärmetransport im Supertube Quantum Technology Group

Wärmetransport im Supertube Quantum Technology Group Wärmetransport im Supertube 08.10.2011 Version 2 1 Inhaltsverzeichnis 1. Einleitung 2. Beschreibung des Wärmetransportes 2.1 Einleitung der Wärme durch einen Wärmetauscher 2.2 Transport der Wärme innerhalb

Mehr

Ferienkurs Experimentalphysik Probeklausur - Musterlösung

Ferienkurs Experimentalphysik Probeklausur - Musterlösung Ferienkurs Experimentalphysik 4 010 Probeklausur - Musterlösung 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was

Mehr

11 Lagrangesche Mechanik

11 Lagrangesche Mechanik 11 Lagrangesche Mechanik In diesem Kapitel werden wir den ersten Schritt zu einer allgemeinen Formulierung aller heute bekannten fundamentalen physikalischen Theorien machen. Allerdings ist dieser erste

Mehr