Beleg stationärer Schwingungserreger

Größe: px
Ab Seite anzeigen:

Download "Beleg stationärer Schwingungserreger"

Transkript

1 Fakultät Maschinenwesen Institut für Maschinenelemente und Maschinenkonstruktion Prof. Dr.-Ing. Berthold Schlecht Aufgabenstellung Beleg stationärer Schwingungserreger Es ist eine Baugruppe zur Erregung eines Schwingsiebes zu entwerfen. Angetrieben wird der Schwingungserreger über eine Kardanwelle durch einem Motor mit Bremse. Diese Teile sind nicht Bestandteil der Konstruktion, es müssen nur für weiterführende Arbeiten an der Gesamtanlage das Antriebsmoment und die Antrieibsleistung bestimmt werden. Gehäuse m Unwucht f zyl. Wellenende nach DIN 748 lang M an a) Prinzipskizze: Schwingsieb b) Vorgaben: - Die Lebensdauer der Maschinenelemente soll 5000 Stunden nicht unterschreiten. - Im Betrieb ist davon auszugehen, dass pro Minute zwei Anfahr- und Bremsvorgänge stattfinden wobei die Bremszeit näherungsweise dem Betrag der Anlaufzeit entspricht. - Als statische Mindestsicherheit der Welle kann S F = 1,3 zugelassen werden. - Die Dauerfestigkeit S D darf nicht kleiner als sein! - Die Baugruppe ist mit dem Maschinengestell durch 4 Schrauben verbunden. - Es ist ein geschlossenes Gehäuse vorzusehen, (geringe Stückzahlen sind zu erwarten)! - Wälzlager sind als Fest-Loslagerung einzusetzen (siehe Schema)! c) Belegumfang: - Entwurfsrechnung - Zusammenbauzeichnung mit Stückliste und Funktionsbeschreibung - Einzelteilzeichnung der Welle - Nachrechnung: C Wellensicherheit an zwei kritischen Stellen C Lagerneigung (zulässig bei Rillen-Kugellager: 10 ; Zylinderrollenlager: 4 ) C Antriebsleistung aus dem Anfahrvorgang C Welle-Nabe-Verbindung der Schwungmasse C Lebensdauer der Lager in Stunden (a 3 = 1) C Dauerfestigkeit der Schraubenverbindungen Übung Maschinenelemente 003 Schwingungserreger Bearbeiter: Dipl.-Ing. Roland Kupfer

2 Fakultät Maschinenwesen Institut für Maschinenelemente und Maschinenkonstruktion - - d) Varianten: Die Kennzahl zur Bestimmung des jeweiligen Tabellenwertes ergibt sich aus Buchstaben des Namens. 1. Buchstabe des Nachnamens. Buchstabe des Vornamens 3. Buchstabe des Nachnamens lfd. Nr.: Buchstabe Fliehkraft F ω [N] Anlaufzeit tã $ [s] Frequenz f [Hz] 1 A , 6 B 100 1,4 7 3 C ,6 8 4 D ,8 9 5 E 1800, F 000, 11 7 G 00,4 1 8 H 400, I 600, J 800 3, K , 7 1 L 300 3, M , N , O , P , 1 17 Q 400 4, R , S ,8 6 0 T ,0 7 1 U , 8 V 500 5,4 9 3 W , X , Y ,0 1 6 Z , 13 7 Ä - Ü 600 6,4 14 Übung Maschinenelemente 003 Schwingungserreger Bearbeiter: Dipl.-Ing. Roland Kupfer

3 Fakultät Maschinenwesen Institut für Maschinenelemente und Maschinenkonstruktion Name:... Vorname:... Anlage zum Beleg Bitte tragen Sie hier Ihre Belegvariante ein: Fliehkraft F ω : Anlaufzeit t A : Frequenz f: Gewählte Abmessungen und Ergebnisse: Exzentrizität e: mm Masse m für Stahl: kg Körperform der Unwucht: Abmessungen in mm: Anzahl der Massen: Volumen V: dm³ MassenträgheitsmomentÃΘ: kgm² Winkelbeschleunigung α: s - ² Beschleunigungsmoment M B: Nm Antriebsleistung (Beschl.) P N: kw Belastung der Welle: Fliehkraft F ω : N Massekraft F G : N Lagerkraft A Loslager: N Lagerkraft B Festlager: N max. Biegespannung: σ bmax = N/mm² max.torsionsspannung: τ tmax = N/mm² Mittelspannung Biegung: σ bm = N/mm² Mittelspannung Torsion: τ tm = N/mm² Amplitude Biegespannung: σ ba = N/mm² Amplitude Torsion: τ ta = N/mm² Wellen Ãbei M bmax G : à mm HUIÃ:HOOHQ Ã7RUVLRQÃG : ÃÃÃÃÃÃÃÃÃÃÃà PP :HOOHQZHUNVWRII 6WUHFNJUHQ]H N/mm² σ ADK : N/mm² τ ADK : N/mm² Vergleichsspannung Biegung: N/mm² Vergleichsspannung Torsion: N/mm² Kerbform I: Sicherheit Dauerbruch (Biegung) Sicherheit gegen bleibende Verformung (Biegung) S DIb = S DIIb = S FIb = S FIIb = Kerbform II: Sicherheit Dauerbruch (Torsion) Sicherheit gegen bleibende Verformung (Torsion) Loslager A: Festlager B: Lebensdauer L ha in Stunden: Lagerneigung ß A in Winkelmin.: Lebensdauer L hb in Stunden: Lagerneigung ß B in Winkelmin.: S DIτÃÃ= S DIIτÃ= S FIτ = S FIIτ = Welle-Nabe-Verbindung: übertragbares Drehmoment: Nm Gehäuseschrauben: Gestellschrauben: Sicherheit Dauerbruch: Sicherheit Dauerbruch: Übung Maschinenelemente 003 Schwingungserreger Bearbeiter: Dipl.-Ing. Roland Kupfer

4

5

6

7 Julius Roch MB Beleg Stationärer Schwingungserreger gegeben: F ω := 4400N t A := 5.s f:= 8Hz Bestimmung der Masse aufgrung der Fliehkraft Abstand von der Welle r r := 100mm n := f 60s min n = 480 min 1 m u := F ω 4 π f r m u = kg Abmaße der Unwucht ρ Stahl := 7.85 g cm 3 B u := 100mm L u := 00mm m u H u := B u L u ρ Stahl H u = mm 1

8 Julius Roch MB Massen und Trägheiten der Elemente Welle: geg.: d w := 40mm Lagerbreite B l := 18mm Lager 608 DIN Wellenende l DIN := 58mm Länge Welle l w := 10mm Länge Unwuchtmitnehmer L um := 50mm Durchmesser 38mm l wges := l DIN + l w + B l L um l wges = 54 mm π d w A w := 4 A w = mm V w := V w = mm 3 m w := l wges A w ρ Stahl V w m w =.506 kg m w d w J w := 8 J w = kg m

9 Julius Roch MB Unwuchtmitnehmer: H um := 90mm B um := 100mm V um := H um B um L um V um = mm 3 m um := ρ Stahl V um m um = g H um + B um J um := m um 1 J um = kg m Unwucht: H u := 111mm V u := H u B u L u andere Abmaße siehe Oben V u = mm 3 H u + B u J us := m u 1 J us = 0.03 kg m J u := J us + m u r J u = 0.07 kg m Resultierendes Trägheitsmoment J res := J u + J um + J w J res = 0.1 kg m 3

10 Julius Roch MB Resultierende Maße m res := m u + m um + m w m res = kg F g := m res g F g = N Resultierendes Volumen V res := V u + V um + V w V res =.989 dm 3 benötigte Antriebsleistung E ω := J res π f E ω = J P mech := E ω t A P mech = 0.05 kw entstehendes Drehmoment α a := π f t A α a = s M := J res α a M =.053 Nm 4

11 Julius Roch MB Wellenberechnung E := 10000MPa Flächenträgheitsmoment 4 π d w I xxwelle := 64 I xxwelle = mm 4 Durchbiegung der Welle an der Unwucht ( F ω + F g ) l 4 w 16 v F := 3E I xxwelle l w v F = mm α := atan α = ' v F l w α = Grad α zul := 10' Lebensdauer der Kugellager Kennwerte der Rillenkugellager von FAG 608 C := 9KN F ω + F g P := P = N 10 6 L hn := 60 min n h L hn = h C P 3 5

12 Julius Roch MB Wellensicherheit an der Uwucht Sicherheit gegen bleibende Verformung Material Kennwerte E95 σ B := 490MPa σ bw := 45MPa τ tw := 145MPa σ s := 95MPa d u := 45mm Durchmesser an der Schrumpfstelle ( ) M U := F ω + F g B l + l w L um + 1mm M U = Nm σ U := M U d w I xxwelle σ U = MPa β σbk :=.7 σ B 1000MPa ( ) K 3BK := 1 0. log β σbk 0.43 log 40mm 7.5mm log( 0) d u log 7.5mm K 3 := 1 0. log( β σbk ) log( 0) β σ := K 3BK β σbk K 3 β σ = 1.99 daraus folgt γ F := 1.05 Durchmesser des Wellen Halbzeugs K 1σs := log K := 1 0. log d u 7.5mm log( 0) d H 3mm d H := 50mm K 1σs = 0.95 K =

13 Julius Roch MB σ bfk := K 1σs K γ F σ B σ B τ tfk := K 1σs K γ F 3 σ bfk = MPa τ tfk = MPa τ := 16M 3 π d w τ = MPa Sicherheit gegen bleibende Verformung 1 S F := σ U + σ bfk τ τ tfk S F = Sicherheit gegen Dauerbruch R z := 10µm K v := 1 K Fσ := 1 0. log K σ := R z µm β σ K K Fσ 1 K v log σ U mm 0N 1 K Fσ = K σ =.167 σ bwk := σ bw K 1σs K σ σ bwk = MPa ψ σ := σ bwk σ B K 1σs σ bwk ψ σ = 0.13 σ mv := σ U σ mv = MPa σ badk := σ bwk ψ σ σ mv σ badk = MPa σ ba := σ U σ ba = MPa 7

14 Julius Roch MB τ mv := σ mv 3 β τ := β σ τ mv = MPa K Ft := 0.575K Fσ K Ft = K t := β τ K K Ft K t =.05 τ twk := τ tw K 1σs K t τ twk = MPa ψ tk := τ twk σ B K 1σs τ twk ψ tk = 0.07 τ tadk := τ twk ψ tk τ mv τ tadk = MPa τ ta := τ τ ta = MPa Sicherheit gegen Dauerbruch 1 S Dvorh := σ ba + σ badk τ ta τ tadk S Dvorh =

15 Julius Roch MB Wellensicherheit am Lager Sicherheit gegen bleibende Verformung ( ) M L := F ω + F g M L = Nm B l σ L := M L d w I xxwelle σ L = 6.63 MPa Berechnung von β σ r := 0.8mm t := d H d w t = 5mm α σ := r t r r d + 0. r w d w t 3 d w d H α σ =.688 φ := 4 G := 1 t + r.3 ( 1 + φ) r n := 1 + G mm 10 σ s K 1σs N mm φ = G = m n = β σ := α σ n β σ =.016 daraus folgt γ F := 1.1 Durchmesser des Wellen Halbzeugs K 1σs := log K := 1 0. log d w 7.5mm log( 0) d H 3mm d H := 50mm K 1σs = 0.95 K =

16 Julius Roch MB σ bfk := K 1σs K γ F σ B σ B τ tfk := K 1σs K γ F 3 σ bfk = MPa τ tfk = MPa τ := 16M 3 π d w τ = MPa Sicherheit gegen bleibende Verformung 1 S F := σ L + σ bfk τ τ tfk S F = Sicherheit gegen Dauerbruch R z := 10µm K v := 1 K Fσ := 1 0. log K σ := R z µm β σ K K Fσ 1 K v log σ L mm 0N 1 K Fσ = 1.35 K σ =.04 σ bwk := σ bw K 1σs K σ σ bwk = MPa ψ σ := σ bwk σ B K 1σs σ bwk ψ σ = σ mv := σ L σ mv = MPa σ badk := σ bwk ψ σ σ mv σ badk = MPa σ ba := σ L σ ba = MPa 10

17 Julius Roch MB Berechnung von β τ 1 α τ := r 38 r 1 + r + t d + w d w r t d w d H α τ = n := mm 10 r σ s K 1σs N mm n = 1.7 β τ := α τ n β τ = τ mv := σ mv 3 τ mv = MPa K Ft := 0.575K Fσ K Ft = K t := β τ K K Ft K t = 1.54 τ twk := τ tw K 1σs K t τ twk = MPa ψ tk := τ twk σ B K 1σs τ twk ψ tk = τ tadk := τ twk ψ tk τ mv τ tadk = 89.3 MPa τ ta := τ τ ta = MPa Sicherheit gegen Dauerbruch 1 S Dvorh := σ ba + σ badk τ ta τ tadk S Dvorh =

18 Julius Roch MB Welle Nabe Verbindung Übermaß µ := 0.1 R zi := 10µm R za := 10µm M A := M + m u g r M A =.19 Nm.6 M A p min := p min = MPa π d u L um µ d u Q A := Q B A = 0.45 um p min d u Z min := Z min = µm E 1 Q A ( ) U := 0.8 R zi + R za U = 16µm U min := Z min + U U min = µm Maximale Pressung Werkstoff Welle E95 σ SI := 95MPa Unwuchtmitnehmer E95 σ SA := 95MPa σ SI p Imax := p 1.3 Imax = 6.93 MPa 1 Q A σ SA p Amax := p Amax = MPa 3 + Q A p Amax d u Z max := Z max = µm E 1 Q A U max := Z max + U U max = µm Passungswahl Welle 45h7 A ob := 0µm A ub := 5µm Bohrung B ob := A ub + U max B ob = µm B ub := A ob + U min B ub = µm Bohrung 45F6 B ob := 41µm B ub := 5µm 1

19 Julius Roch MB Resultierende Spannung U max := B ob A ub U max = 66 µm U min := B ub A ob U min = 5 µm Z max := U max U Z max = 50 µm Z min := U min U Z min = 9 µm Z max E 1 Q A p max := p d max = MPa u Z min E 1 Q A p min := p d min = MPa u Übertragbare Momente π M min := p min d u L um µ M min = Nm M max := p max π d u L um µ M max = Nm d u t R := 93.15K F := Wärmeausdehnungskoeffizient α := 1000 K U max + F t := t R + t = K α d u t C := t 73.15K t C = 44.4 C Sicherheit Welle σ SI S F := S p F = max Unwuchtmitnehmer 1 Q A σ SA S F := S 4 p F = Q max A 13

20 Julius Roch MB Schraubenverbindung Gestellschrauben 4 Schrauben M A s := 58mm d s := 10mm l s := 0mm Masse Gehäuse m g := 75kg Nachgiebigkeit der Schrauben Schraubenkopf l ko := 0.4 d s l ko = 4mm π d s A N := 4 A N = mm δ K := l ko δ EA K mm = N N Zylindrisches Einzelelement l s δ zyl := δ EA zyl mm = N N Eingeschraubter Gewindeteil d W := 15.63mm d h := 10mm D A := 30mm P := 1.5mm µ G := 0.1 d := 9.06mm d 3 := 8.16mm σ 0. := 900MPa l G := 0.5 d s l G = 5mm l G δ G := δ EA G mm = s N Schraubennachgiebigkeit δ S := δ K + δ zyl + δ G δ S mm = N Nachgiebigkeit der Platte Fall für A Ersatz 3 π A ers 4 d W d π ls d W := h + 8 d W ( D A d W ) A ers = mm D A l s δ P := δ EA P mm = ers N 14

21 Julius Roch MB Φ K := δ P δ S + δ P Φ K = Schraubenkraft ( ) g m g + m res 0.1 F g := 4 Vorspannkraft Schraube 10.9 σ M := 500MPa F A := F g + F ω F A = 4.44 KN F M := σ M A s F M = 9 KN Dynamische Sicherheit (Ermüdungsbruch) σ a := Φ K F A A s σ a = MPa S := σ badk σ a S = 19.5 σ badk = MPa Statische Sicherheit F SA := Φ K F A F SA + F M σ s := A s F SA = 0.68 KN σ s = MPa 3 π d 3 W p := 16 d M G := F M M G τ := W p σ v := σ s + 3 τ P π d µ G M G =.04 Nm τ = MPa σ v = MPa S := σ 0. σ v S =

22 Julius Roch MB Erforderliches Anzugsmoment α A := 1.6 für Drehmomentenschlüssel ( ) F A F PA := 1 Φ K F KR := F M F PA 0.34 l s f z := mm d s f z F M := δ S + δ P F PA = KN F KR = 5.56 KN f z = µm F M = N ( ) F A F Merf := α A F KR + 1 Φ K + F M F Merf = 49.4 KN d M G1 := F Merf P π d d W M K1 := F Merf µ G M G1 = Nm M K1 = Nm M an := M G1 + M K1 M an = Nm 16

Maschinenelementebeleg SS 2005 "Getriebe"-Berechnungen

Maschinenelementebeleg SS 2005 Getriebe-Berechnungen Maschinenelementebeleg SS 005 "Getriebe"-Berechnungen berechnet und erstellt von KCalive Gruppe: A - F, Ä www.bombentrichter.de (ehem. mw.rb-x.de) Gliederung. Profilverschiebung. Zahnradgeometrien 3. Passfederlänge

Mehr

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft 1. Zeichen eindeutige Fehler in der oberen Hälfte: eine Körperkante uviel / falsch eine Körperkante u wenig Doppelpassungen am Lager Doppelpassung am Zahnrad Lagerung -> Loslagerung falsch, da falsche

Mehr

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I Klausur KT1 (alt KT) SS 011 Dr.-Ing. S. Umbach I 30.08.011 Name, Vorname: Unterschrift: Matrikel- Nr.: Klausurbedingungen: Zugelassene Hilfsmittel sind dokumentenechtes Schreibzeug und Taschenrechner.

Mehr

Konstruktions-/Zeichenaufgabe 4M WS 02/03

Konstruktions-/Zeichenaufgabe 4M WS 02/03 Konstruktions-/Zeichenaufgabe 4M WS 02/03 Konstruieren einer Spindellagerung für eine Tischfräse Technische Daten der Tischfräse: Antriebsleistung: Nenndrehzahl: Spindellänge: 6,3 KW 3000 Umdrehungen /

Mehr

Name. Vorname. Legi-Nr. Ermüdungsfestigkeit Welle-Nabe-Verbindung L/2

Name. Vorname. Legi-Nr. Ermüdungsfestigkeit Welle-Nabe-Verbindung L/2 Dimensionieren Prof. Dr. K. Wegener ame Vorname Legi-r. Zusatzübung 1: Passfederverbindung Voraussetzungen F F Flächenpressung zwischen Bauteilen M Last Ermüdungsfestigkeit Welle-abe-Verbindung F/ L/ F/

Mehr

Aufgabe: Punkte: Ist der Einsatzstahl 16MnCr5 im einsatzgehärteten Zustand schweißgeeignet? (kurze Begründung!)

Aufgabe: Punkte: Ist der Einsatzstahl 16MnCr5 im einsatzgehärteten Zustand schweißgeeignet? (kurze Begründung!) FH München Fachbereich 03 Diplom-Vorprüfung Maschinenelemente SS 2005 15. Juli 2005 Prof. Dr.-Ing. H. Löw Prof. Dr.-Ing. G. Knauer Dipl.-Ing. W. Wieser Name: Vorname:.. Semester:. Verwendetes Buch:. Auflage:..

Mehr

Martin Fingerhut / Hannes Mautz /7

Martin Fingerhut / Hannes Mautz /7 Martin Fingerhut / Hannes Mautz 005 1/7 Hochfahren einer Welle: I RED =M AN M LAST = M AN M LAST M AN M LAST =const. 0 t I hoch RED wobei M LAST = P N und I RED=I M I S I exz I exz =m e Kräfte am Ritzel:

Mehr

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte:

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte: B Konstruktion Tabelle1 Vorgegebene Werte: Drehzahl [1/min] Startleistung [kw] Planetengetriebe Eingang 3520 377 Planetengetriebe Ausgang 565 369 Eingriffswinkel α 20.00 0.3491 Verzahnungsqualität Q 5

Mehr

1 Schraubenberechnung

1 Schraubenberechnung 1 Schraubenberechnung Eine Dehnschraubenverbindung (Taillenschraube!) wird mit einem einfachen Drehmomentschlüssel angezogen. Damit soll eine Vorspannkraft F V = 60 kn erreicht werden. Durch Schwankungen

Mehr

Klawitter, Strache, Szalwicki

Klawitter, Strache, Szalwicki Klawitter, Strache, Szalwicki Maschinenelemente 1 SoSe 2014 Klausur Punkte: Gesamtnote: 23.06.2014 S.1/7 Bearbeitungszeit: 90 Minuten Zugelassene Hilfsmittel: R/M Formelsammlung Auflage: R/M Tabellenbuch

Mehr

Lösungen zu den Aufgaben aus PHYSIK UND TECHNIK. Heine-Prommersberger

Lösungen zu den Aufgaben aus PHYSIK UND TECHNIK. Heine-Prommersberger Lösungen zu den Aufgaben aus PHYSIK UND TECHNIK Heine-Prommersberger Lösungen zu den Aufgaben aus PHYSIK UND TECHNIK Heine-Prommersberger Handwerk und Technik 1 Einleitung 1.4 Aufgaben 1 und 2 Seite 15

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Klawitter, Strache, Szalwicki

Klawitter, Strache, Szalwicki Klawitter, Strache, Szalwicki Maschinenelemente 1 SS 2013 Klausur Punkte: Gesamtnote: 24.06.2013 S.1/7 Bearbeitungszeit: 90 Minuten Zugelassene Hilfsmittel: R/M Formelsammlung Auflage: R/M Tabellenbuch

Mehr

tgt HP 1981/82-1: Spannen beim Fräsen

tgt HP 1981/82-1: Spannen beim Fräsen tgt HP 1981/8-1: Spannen beim Fräsen Zum Spannen von größeren Werkstücken verwendet man Spanneisen. Teilaufgaben: 1 Welche Spannkraft F Sp ist erforderlich, um das Werkstück gegen ein Verschieben mit der

Mehr

1 Getriebeauslegung geometrische Auslegung Schmierstoffauswahl Welle-Nabe-Verbindungen... 3

1 Getriebeauslegung geometrische Auslegung Schmierstoffauswahl Welle-Nabe-Verbindungen... 3 Inhaltsverzeichnis Getriebeauslegung 3. geometrische Auslegung.................... 3.2 Schmierstoffauswahl...................... 3.3 Welle-Nabe-Verbindungen................... 3 2 Lagerlebensdazuerberechnung

Mehr

tgt HP 1982/83-2: Getriebewelle

tgt HP 1982/83-2: Getriebewelle tgt HP 198/83-: Getriebewelle Die Getriebewelle wird über das Zahnrad 3 mit einem Drehmoment M d 70 Nm angetrieben; über das Zahnrad werden 70% dieses Drehmoments abgeleitet. Die Welle ist in den Lagern

Mehr

Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999

Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999 . Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999 13. Januar 23 1 Riemenkräfte Abbildung 1 zeigt die Kräfte und Momente, die auf die freigeschnittene untere

Mehr

Auflage Ihres R/M Tabellenbuches: Erlaubte Hilfsmittel: Taschenrechner, R/M Formelsammlung und Tabellenbuch und

Auflage Ihres R/M Tabellenbuches: Erlaubte Hilfsmittel: Taschenrechner, R/M Formelsammlung und Tabellenbuch und Dr.-Ing. Lindner Prof. Dr.-Ing. Strache Dipl.-Ing. Szalwicki Maschinenelemente 1 WS 2011 Klausur Teil 1: Punkte Klausur Teil 2: Punkte Gesamtpunkte: Punkte Gesamtnote: 13.01.12 90 min S.1/6 Name: Auflage

Mehr

3 Schraubenverbindungen

3 Schraubenverbindungen 44 3 Schraubenverbindungen 3.1 Verschraubung Druckbehälter 3.1.1 Aufgabenstellung Verschraubung Druckbehälter Druckbehälter werden in den verschiedensten Anwendungsbereichen für unterschiedlichste Medien

Mehr

Prof. Dr. G. Knauer Prof. Dr. H.-J. Plewe

Prof. Dr. G. Knauer Prof. Dr. H.-J. Plewe Fachhochschule München Fachbereich 03 Maschinenbau Prof. Dr. G. Knauer Prof. Dr. H.-J. Plewe Diplomhauptprüfung M a s c h i n e n e l e m e n t e SS 04 Die Aufgabe umfaßt 9 Angabenblätter. Überprüfen Sie

Mehr

tgt HP 2005/06-2: Exzenterantrieb

tgt HP 2005/06-2: Exzenterantrieb tgt HP 2005/06-2: Exzenterantrieb Der Exzenter wird über eine Welle, die mit einem Getriebe und Motor verbunden ist, angetrieben. Die Kraft wird über Tellerstößel und Stange übertragen, an deren oberen

Mehr

Technische Universität Berlin. Institut für Konstruktion, Mikro- und Medizintechnik. Bereich Maschinenelemente. Prof. Dr.-Ing. H.

Technische Universität Berlin. Institut für Konstruktion, Mikro- und Medizintechnik. Bereich Maschinenelemente. Prof. Dr.-Ing. H. Technische Universität Berlin Institut für Konstruktion, Mikro- und Medizintechnik Bereich Maschinenelemente Prof. Dr.-Ing. H. Meyer Konstruktion 1: Probeklausur SoSe 09 1. Zeichnen Markieren Sie Fehler

Mehr

Maschinenelemente 1 WS 2013/14 Klausur Punkte: Gesamtnote:

Maschinenelemente 1 WS 2013/14 Klausur Punkte: Gesamtnote: Klawitter, Szalwicki Maschinenelemente 1 WS 2013/14 Klausur Punkte: Gesamtnote: 14.01.2014 S.1/7 Bearbeitungszeit: 90 Minuten Zugelassene Hilfsmittel: R/M Formelsammlung Auflage: R/M Tabellenbuch Auflage:

Mehr

Prüfung im Fach Konstruktion. - Teilprüfung , Bearbeitungszeit 120 Minuten

Prüfung im Fach Konstruktion. - Teilprüfung , Bearbeitungszeit 120 Minuten Fachhochschule Bonn-Rhein-Sieg University of Applied Sciences Fachbereich Angewandte Naturwissenschaften Prof. Dr.-Ing. Michael Heinzelmann Dr.-Ing. M. Stommel Prüfung im Fach Konstruktion - Teilprüfung

Mehr

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem Ermittlung unbekannter Kräfte im zentralen Kräftesystem.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem ( Lehrbuch: Kapitel.3.) Gegebenenfalls auftretende Reibkräfte werden bei den folgenden

Mehr

tgt HP 2008/09-5: Wagenheber

tgt HP 2008/09-5: Wagenheber tgt HP 2008/09-5: Wagenheber Das Eigengewicht des Wagenhebers ist im Vergleich zur Last F vernachlässigbar klein. l 1 500,mm I 2 220,mm I 3 200,mm I 4 50,mm F 15,kN α 1 10, α 2 55, β 90, 1 Bestimmen Sie

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

Kapitel 3 Festigkeitsberechnung

Kapitel 3 Festigkeitsberechnung Kapitel 3 Festigkeitsberechnung Alle Angaben beziehen sich auf die 19. Auflage Roloff/Matek Maschinenelemente mit Tabellenbuch und die 15. Auflage Roloff/Matek Aufgabensammlung. Das Aufgabenbuch kann man

Mehr

Zwischenwelle Markus Wolf

Zwischenwelle Markus Wolf Zwischenwelle Markus Wolf Mat.: 345 304 KC 3 Prof. Ing. P. Fröhlich WS 2003 / 04 Fachhochschule Wiesbaden FB: Maschinenbau Inhaltsverzeichnis 1) Aufgabenstellung... 3 2) Anforderungsliste... 4 3) Kräfte

Mehr

Vorbesprechung zur Übung 2

Vorbesprechung zur Übung 2 WS 09/10 Vorbesrechung zur Übung 2 Berechnung von Verbindungselementen Teil 1, am 08.12.09 (MB) / 16.12.09 (LB): 1. Allgemeiner Teil, Einführung zu Verbindungselementen Poweroint- Präsentation Überblick/Inhalt:

Mehr

tgt HP 2007/08-5: Krabbenkutter

tgt HP 2007/08-5: Krabbenkutter tgt HP 2007/08-5: Krabbenkutter Zum Fang von Krabben werden die Ausleger in die Waagrechte gebracht. Die Fanggeschirre werden zum Meeresboden abgesenkt. Nach Beendigung des Fanges werden die Ausleger in

Mehr

tgtm HP 2012/13-1: Hebevorrichtung

tgtm HP 2012/13-1: Hebevorrichtung tgtm HP 01/13-1: Hebevorrichtung (Pflichtaufgabe) Die dargestellte Hebevorrichtung ist an den Punkten A und D an einer Wand zu befestigen. Der Träger wird dabei mit Hilfe einer Stange im Punkt B waagerecht

Mehr

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013 TM Übung, Aufgaben an der Tafel 9.4.3, Prof. Gerling, SS 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Wir erheben keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

tgt HP 1999/2000-2: Turmdrehkran

tgt HP 1999/2000-2: Turmdrehkran tgt HP 1999/000-: Turmdrehkran tgt HP 1999/000-: Turmdrehkran Der skizzierte Turmdrehkran darf in der gezeichneten Lage eine maximale Last von 10 kn heben. Die Hubbewegung erfolgt über eine Seiltrommel,

Mehr

Aus Kapitel 27. Maschinenelemente. Aufgaben. = M b,max d 3 π/ m = 50 kg. Die Riemenscheibe ist mit F = 5kNvorgespannt. = 53,1 MPa.

Aus Kapitel 27. Maschinenelemente. Aufgaben. = M b,max d 3 π/ m = 50 kg. Die Riemenscheibe ist mit F = 5kNvorgespannt. = 53,1 MPa. 188 Aufgaben Kap. 27 Aus Kapitel 27 Aufgaben 27.1 Die folgende Abbildung zeigt eine Triebwerkswelle mit einer massiven Riemenscheibe. Welle und Riemenscheibe sind aus S355J. Der Wellendurchmesser kann

Mehr

Berechnung Kugelgewindetrieb

Berechnung Kugelgewindetrieb Erforderliches Antriebsmoment und Antriebsleistung Das erforderliche Antriebsmoment eines Gewindetriebes ergibt sich aus der wirkenden Axiallast, der Gewindesteigung und dem Wirkungsgrad des Gewindetriebes

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Aufgabe 1 Bremse (25 P)

Aufgabe 1 Bremse (25 P) Name, Vorname: Matrikel-Nr.: Unterschrift: Aufgabe 1 Bremse (5 P) Eine Trommel mit dem Massenträgheitsmoment J Tr soll zum Stillstand gebracht werden. Die Anfangswinkelgeschwindigkeit, mit der sich die

Mehr

Prof. Dr. G. Knauer Dipl.-Ing. W. Wieser

Prof. Dr. G. Knauer Dipl.-Ing. W. Wieser Fachhochschule München Fachbereich 03 Maschinenbau Prof. Dr. G. Knauer Dipl.-Ing. W. Wieser Teil II: Berechnungen Die Skizze zeigt eine Seiltrommel. 1 Die Seiltrommel (2) wird über das Zahnrad (1) angetrieben.

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM, Ing. K 8 11.7.14 Kinetik, Kinematik Genehmigte Hilfsmittel: Punkte Taschenrechner Literatur

Mehr

Lehrstuhl für Maschinenelemente Prof. Dr.-Ing. B.-R. Höhn WS 2009/2010

Lehrstuhl für Maschinenelemente Prof. Dr.-Ing. B.-R. Höhn WS 2009/2010 Lehrstuhl für Maschinenelemente TU München Prof. Dr.-Ing. B.-R. Höhn WS 2009/2010 Übung 1b: Festigkeitsrechnung Nachrechnung einer Getriebewelle Bild 1: Schematische Getriebedarstellung Bild 1 zeigt das

Mehr

tgt HP 1987/88-1: Drehschwenktisch für Schweißarbeiten

tgt HP 1987/88-1: Drehschwenktisch für Schweißarbeiten tgt HP 1987/88-1: Drehschwenktisch für Schweißarbeiten maximales Werkstückgewicht Gewichtskraft des Tischoberteiles Geiwchtskraft des Tischunterteiles F G1 = 18 kn F G = 6 kn F G3 = 8 kn Mit einem Drehschwenktisch

Mehr

tgt HP 2000/01-1: Bahnschranke

tgt HP 2000/01-1: Bahnschranke tgt HP 000/01-1: Bahnschranke Die Bahnschranke ( Abb.1 ) wird durch einen hydraulisch betätigten Kolben (Abb. ) um das Lager B geschwenkt. Bei geschlossener Schranke ist der Kolben wirkungslos. Abb.1 Daten:

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

:= (Energieprdoukt b x h) m 3

:= (Energieprdoukt b x h) m 3 - Feder: l F := 55 0 3 m (Länge der Feder) b F := 4 0 3 m (Breite der Feder) h F := 0.7 0 3 m (Dicke der Feder) E F 80 0 9 kg := (E-Modul) (=Pa) (Stahl) m s R m_federstahl := 800 0 6 Pa (Zugfestigkeit)

Mehr

Beispielaufgaben für die Klausur KONSTRUKTION 1. TU Berlin, Konstruktionstechnik und Entwicklungsmethodik

Beispielaufgaben für die Klausur KONSTRUKTION 1. TU Berlin, Konstruktionstechnik und Entwicklungsmethodik Beispielaufgaben für die Klausur KONSTRUKTION 1 Typische Verständnisaufgabe: Verspannung einer Schraubenverbindung a) Zeichnen Sie ein Verspannungsschaubild (ohne thermische Zusatzkraft) für δs / δp =

Mehr

Skript. Technische Mechanik. Festigkeitslehre

Skript. Technische Mechanik. Festigkeitslehre Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Verfahrens- und Chemietechnik Skript zur Vorlesung Technische Mechanik Teil Festigkeitslehre Prof. Dr. Werner Diewald Stand: März

Mehr

Kapitel 13 Kupplungen und Bremsen

Kapitel 13 Kupplungen und Bremsen Kapitel 13 Kupplungen und Bremsen Alle Angaben beziehen sich auf die 19. Auflage Roloff/Matek Maschinenelemente mit Tabellenbuch und die 15. Auflage Roloff/Matek Aufgabensammlung. Das Aufgabenbuch kann

Mehr

tgt HP 2011/12-5: Klappbrücke

tgt HP 2011/12-5: Klappbrücke tgt HP 2011/12-5: Klappbrücke Klappbrücken werden an Kanälen eingesetzt um Schiffe mit höheren Aufbauten die Durchfahrt zu ermöglichen. Das Hochklappen des Brückenbodens erfolgt durch eine Zahnstange und

Mehr

Berechnung Trapezgewindetrieb

Berechnung Trapezgewindetrieb Berechnung Berechnungen / Werte Seite Hinweis Erforderlicher Flächentraganteil A erf S. 34 Vergleich mit Traganteil in Muttertabellen Vorschubgeschwindigkeit s S. 34 - Antriebsdrehmoment M ta S. 37 - Reibwert

Mehr

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) WS 2010/11 Dr.-Ing. S. Umbach

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) WS 2010/11 Dr.-Ing. S. Umbach Name, Vorname: Matrikel- Nr.: Unterschrift: Klausurbedingungen: Zugelassene Hilfsmittel sind dokumentenechtes Schreibzeug und Taschenrechner. Die Bearbeitungszeit beträgt 120 Minuten. Ein Täuschungsversuch

Mehr

WWT Frank Sandig Agricolastr. 16, 2310A Freiberg. 1. Belegaufgabe.

WWT Frank Sandig Agricolastr. 16, 2310A Freiberg. 1. Belegaufgabe. Frank Sandig Agricolastr. 16, 310A 09599 Freiberg 4817 4.WWT sandigf@mailserver.tu-freiberg.de Maschinen- und Apparateelemente 1. Belegaufgabe Aufgabenstellung: Abgabezeitraum: 6.11. - 30.11.007 Übungsleiter:

Mehr

tgt HP 2013/14-1: Industrielift

tgt HP 2013/14-1: Industrielift tgt HP 013/1-1: Industrielift tgt HP 013/1-1: Industrielift Ein Industrielift mit höhenverstellbarer Plattform ist so weit ausgefahren, dass der Tragarm horizontal liegt. Der Tragarm besteht aus einem

Mehr

SIT-LOCK 6 - selbst zentrierend

SIT-LOCK 6 - selbst zentrierend 6 - selbst zentrierend Spannsatz mit einfachem Konus, einsetzbar für mittlere Drehmomente. Selbst zentrierend mit guter Konzentrizität. Eine geringfügige axiale Verschiebung der Nabe ist bei der Montage

Mehr

Achsen, Wellen und Zapfen

Achsen, Wellen und Zapfen Achsen, Wellen und Zapfen BBS Winsen (Luhe) Entwicklung und Konstruktion A. Berg Beispielaufgabe Für die Antriebswelle aus S25JR des Becherwerkes sind die Durchmesser zu berechnen und festzulegen. Die

Mehr

Klausur KT4 SS 2009 (54 P)

Klausur KT4 SS 2009 (54 P) Institut für Maschinenelemente und Konstruktionstechnik Klausur KT4 SS 009 Institut für Maschinenelemente und Konstruktionstechnik Klausur KT4 SS 009 Name, Vorname: Matrikel-Nr.: Unterschrift: Hinweis

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Grundlagen zur Berechung der Durchbiegung

Grundlagen zur Berechung der Durchbiegung Tel +41 41 494 94 94 decorative Holzwerkstoffe Fax +41 41 494 94 49 Willisauerstrasse 37 www.kronospan.com info@kronospan.ch Grundlagen zur Berechung der Durchbiegung Inhaltsverzeichnis 1. Vorbemessung

Mehr

2. Löten 2.1. a) die Lötfläche ist ausreichend, τ a = 1,67 N/mm 2 < τ a zul = 30 N/mm 2 b) Länge 11 mm 2.2. a) 12 kn b) hartgelötet 2.3.

2. Löten 2.1. a) die Lötfläche ist ausreichend, τ a = 1,67 N/mm 2 < τ a zul = 30 N/mm 2 b) Länge 11 mm 2.2. a) 12 kn b) hartgelötet 2.3. Lösungen zu Übungen Feinwerktechnische Konstruktion - V.04 Seite 7 2. Löten 2.. a) die Lötfläche ist ausreichend, τ a =,67 N/mm 2 < τ a zul = 30 N/mm 2 b) Länge mm 2.2. a) 2 kn b) hartgelötet 2.3. 2.4.

Mehr

Übung 2: Schrumpfsitz Besprechung , Abgabe Musterlösung

Übung 2: Schrumpfsitz Besprechung , Abgabe Musterlösung Dimensionieren Prof. Dr. K. Wegener ame Vorname Legi-r. Übung : Schrumpfsitz Besprechung 08.03.17, Abgabe 15.03.17 Musterlösung Voraussetzungen Druck-Beanspruchung rotationssymmetrischer Körper Welle-abe-Verbindung

Mehr

DIESE PRÄSENTATION SOLL HELFEN SICH IN DIE BERECHNUNG VON GLEITLAGERN BEI HYDRODYNAMISCHER SCHMIERUNG ZURECHTZUFINDEN UND SIE SCHNELL ZU ERLERNEN.

DIESE PRÄSENTATION SOLL HELFEN SICH IN DIE BERECHNUNG VON GLEITLAGERN BEI HYDRODYNAMISCHER SCHMIERUNG ZURECHTZUFINDEN UND SIE SCHNELL ZU ERLERNEN. DIESE PRÄSENTATION SOLL HELFEN SICH IN DIE BERECHNUNG VON GLEITLAGERN BEI HYDRODYNAMISCHER SCHMIERUNG ZURECHTZUFINDEN UND SIE SCHNELL ZU ERLERNEN. Ausgearbeitet von Ansgar Preuss Fsmt 2005 Für das Wiki

Mehr

tgt HP 1993/94-1: Getriebewelle

tgt HP 1993/94-1: Getriebewelle tgt HP 1993/94-1: Getriebewelle l 1 45 mm l 2 35 mm l 3 60 mm l 4 210 mm F 1 700 N F 2 850 N F 3 1300 N An der unmaßstäblich skizzierten Getriebewelle aus E295 sind folgende Teilaufgaben zu lösen: Teilaufgaben:

Mehr

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. DHBW STUTTGART Studiengang Mechatronik. Schweißverbindungen. 2. Semester. Blatt 1. Pressschweißverfahren

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. DHBW STUTTGART Studiengang Mechatronik. Schweißverbindungen. 2. Semester. Blatt 1. Pressschweißverfahren Pressschweißverfahren Blatt 1 Entscheidungshilfe zur Wahl des geeigneten Schweißverfahrens Stoßformen nach DIN 191-1 Blatt Blatt Stumpfnahtformen an Stahl und deren Vorbereitung nach DIN 969 (Auswahl)

Mehr

SERVOPLUS Kupplungen SERVOPLUS

SERVOPLUS Kupplungen SERVOPLUS INHALT Metallbalgkupplungen Seite Beschreibung 61 Standard Ausführung 62 Kupplungsauswahl 63 Technische Eigenschaften 63 Montageanleitung 63 Sicherheitsnormen 63 Metallbalgkupplungen Beschreibung Metallbalgkupplungen

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

3) Welche Festigkeitsnachweise müssen bei der Auslegung von Verzahnungen erbracht werden? Zahnfußfestigkeit

3) Welche Festigkeitsnachweise müssen bei der Auslegung von Verzahnungen erbracht werden? Zahnfußfestigkeit Musterlösung Fragenteil SoSe 6 ) ennen Sie jeweils Beispiele für Form und Stoffschlüssige Verbindungen Formschluss: Bolzen und Stifte, ietverbindungen, Passfeder, Stoffschluss: Schweißverbindungen, Lötverbindungen

Mehr

Klausur Maschinenlehre I. Kurzfragen

Klausur Maschinenlehre I. Kurzfragen FRITZ-SÜCHTING-INSTITUT FÜR MASCHINENWESEN DER TECHNISCHEN UNIVERSITÄT CLAUSTHAL Dr.- Ing. Günter Schäfer 18.02.2016 Name: Vorname: Matrikel.-Nr.: Klausur Maschinenlehre I WS15/16 Kurzfragen Mit meiner

Mehr

tgt HP 2004/05-1: Traktor

tgt HP 2004/05-1: Traktor tgt HP 200/05-1: Traktor Ein Traktor mit Seilwinde und Stützschild wird zur Holzernte eingesetzt. Daten l 1 600 mm F G1 16 kn l 2 1000 mm F G2 kn l 3 1600 mm l 1300 mm l 5 800 mm Teilaufgaben: 1 Ermitteln

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum BP I, S K5 Genehmigte Hilfsmittel: Fach Urteil Technische Mechanik Ergebnis: Punkte Taschenrechner Literatur

Mehr

tgt HP 1993/94-1: Getriebewelle

tgt HP 1993/94-1: Getriebewelle tgt HP 1993/94-1: Getriebewelle l 1 45 mm l 2 35 mm l 3 60 mm l 4 210 mm F 1 700 N F 2 850 N F 3 1300 N An der unmaßstäblich skizzierten Getriebewelle aus E295 sind folgende Teilaufgaben zu lösen: Teilaufgaben:

Mehr

Technische Mechanik I

Technische Mechanik I 1 Die Technische Mechanik ist ein Teilgebiet der Physik und wird definiert als Lehre von den Bewegungen und den Kräften. Sie lässt sich unterteilen in die Behandlung von Kräften an ruhenden Körpern (Statik,

Mehr

tgtm HP 2015/16-1: Bergbahn

tgtm HP 2015/16-1: Bergbahn tgtm HP 05/6-: Bergbahn tgtm HP 05/6-: Bergbahn (Pflichtaufgabe) Bei der Bergbahn e.k. soll ein neuer Wagentyp einer Standseilbahn überprüft werden. Die Abmessungen des Wagens lassen sich der abgebildeten

Mehr

Beleg Vorrichtungskonstruktion

Beleg Vorrichtungskonstruktion Beleg Vorrichtungskonstruktion Datum: 14.07.05 Inhaltsverzeichnis: - Aufgabenstellung S. 01-02 - Entwurfsskizzen Lage S. 03-04 - Entwurfsskizzen Spannung S. 05-06 - Fertigunsplan S. 07 - Funktionsbeschreibung

Mehr

Klausur zur studienbegleitenden Prüfungsleistung Konstruktion 1 Probeklausur. Datum: Zeit: 2 Stunden Raum:

Klausur zur studienbegleitenden Prüfungsleistung Konstruktion 1 Probeklausur. Datum: Zeit: 2 Stunden Raum: Technische Universität Berlin KONSTRUKTIONSTECHNIK UND ENTWICKLUNGSMETHODIK Fakultät V Verkehrs- und Maschinensysteme Prof. Dr.-Ing. Lucienne Blessing Name: Matrikel-Nr.: Studiengang: K1-Übungsgruppe:

Mehr

Inhaltsverzeichnis. 1 Getriebeauslegung Übersetzung Zähnezahlen Zahnradgeometrie Abtriebswelle 5.

Inhaltsverzeichnis. 1 Getriebeauslegung Übersetzung Zähnezahlen Zahnradgeometrie Abtriebswelle 5. Inhaltsverzeichnis 1 Getriebeauslegung 2 1.1 Übersetzung........................... 2 1.2 Zähnezahlen........................... 3 1.3 Zahnradgeometrie........................ 4 2 Abtriebswelle 5 Literatur

Mehr

Dimensionieren 2 Prof. Dr. K. Wegener Prof. Dr. M. Meier

Dimensionieren 2 Prof. Dr. K. Wegener Prof. Dr. M. Meier Dimensionieren 2 Prof. Dr. K. Wegener Prof. Dr. M. Meier Name Vorname Legi-Nr. Engineering-Case: Lagerung Getriebewelle Voraussetzungen: Lagerungen Problemstellung In Abb. 1.1 ist die Lagerung der Antriebswelle

Mehr

tgt HP 2016/17-1: PKW-Anhänger

tgt HP 2016/17-1: PKW-Anhänger tgt HP 016/17-1: PKW-Anhänger Beim Transport besonders langer Holzbretter bleibt, wie in der Zeichnung dargestellt, die Ladeklappe des PKW- Anhängers in horizontaler Stellung. Sie wird hierzu beidseitig

Mehr

Montageschienen MM-C. Technische Daten für Schienen-Profile MM (verzinkt)

Montageschienen MM-C. Technische Daten für Schienen-Profile MM (verzinkt) Montageschienen MM-C Technische Daten für Schienen-Profile MM (verzinkt) Achsendefinition Technische Daten für Schienen-Profile MM (max. Spannweite/Durchbiegung bei Einzellast) Wandstärke t 1,0 1,0 1.75

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Gestaltung von Wälzlagerungen

Gestaltung von Wälzlagerungen 09-01 Gestaltung von Wälzlagerungen Gesichtspunkte für die Lagerauswahl Lageranordnungen (Systeme) Los-/Festlager Schwimmende Lagerung Angestellte Lagerung Sitzpassungen Axiale Fixierungen Schmierung Dichtung

Mehr

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben Modulrüfung in Technischer Mechanik am 6. August 206 Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutlich lesbar. Zeichnungen müssen sauber und übersichtlich sein. Die

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Vor- und Nachteile unterschiedlicher Montageverfahren Ein Fallbeispiel an Kleinserien

Vor- und Nachteile unterschiedlicher Montageverfahren Ein Fallbeispiel an Kleinserien Vor- und Nachteile unterschiedlicher Montageverfahren Ein Fallbeispiel an Kleinserien Dipl.-Ing. Thomas Wernitz, Schraubfachingenieur (DSV) Leiter technische Lieferantenentwicklung 1 Inhalt Gliederung

Mehr

Beleg Maschinenelemente Statischer Sicherheitsnachweis

Beleg Maschinenelemente Statischer Sicherheitsnachweis Beleg Maschinenelemente tatischer icherheitsnachweis Inhaltsverzeichnis 1.Gegebene Kenngrößen:....pindelberechnung....1.Knicksicherheit.....Reibmomente.....Pressungen....4.Vergleichsspannungen....Knebel...

Mehr

Anleitung: Berechnung zweier mit Wä lzlägern verbundener Wellen

Anleitung: Berechnung zweier mit Wä lzlägern verbundener Wellen Anleitung: Berechnung zweier mit Wä lzlägern verbundener Wellen Diese Anleitung zeigt die Berechnung zweier gekoppelter Wellen mit Hilfe der MESYS Wellenberechnung. Die Software bietet verschiedene Ansichten

Mehr

1. Überschläglicher Wellendurchmesser

1. Überschläglicher Wellendurchmesser 1. Überschläglicher Wellendurchmesser Zunächst wird ein überschläglicher Wellendurchmesser ermittelt nach d wüb = 3 5 M (1) t tüb wobei das Torsionsmoment aus dem über das Getriebe als konstant angenommenen

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Statische und dynamische Analyse eines Schildersystems. Esslingen

Statische und dynamische Analyse eines Schildersystems. Esslingen Statische und dynamische Analyse eines Schildersystems für Gebrüder Hohl GmbH Esslingen Dipl.-Ing. Torsten Wehner Lerchenstraße 23 72649 Wolfschlugen wehner@zinsmath.de 3. Dezember 2002 Inhaltsverzeichnis

Mehr

Technische Universität Berlin AG KONSTRUKTION. Fakultät V Verkehrs- und Maschinensysteme

Technische Universität Berlin AG KONSTRUKTION. Fakultät V Verkehrs- und Maschinensysteme Technische Universität Berlin AG KONSTRUKTION Fakultät V Verkehrs- und Maschinensysteme Name, Vorname: Matrikel-Nr.: Studiengang: Bachelor/Diplom: Tutor: Probeklausur zur studienbegleitenden Prüfungsleistung

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM4, Ing.II K8 14.7.11 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner

Mehr

STATISCHE BERECHNUNG "Traverse Typ F14" Länge bis 6,00m GLOBAL TRUSS

STATISCHE BERECHNUNG Traverse Typ F14 Länge bis 6,00m GLOBAL TRUSS Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ F14" Länge bis 6,00m GLOBAL TRUSS Die statische Berechnung ist ausschließlich aufgestellt

Mehr

KISSsoft 03/2016 Tutorial 2

KISSsoft 03/2016 Tutorial 2 KISSsoft 03/2016 Tutorial 2 Zylindrischer Presssitz KISSsoft AG Rosengartenstrasse 4 8608 Bubikon Schweiz Tel: +41 55 254 20 50 Fax: +41 55 254 20 51 info@kisssoft.ag www.kisssoft.ag Inhaltsverzeichnis

Mehr

STATISCHE BERECHNUNG "Traverse Typ F23" Länge bis 10,00m GLOBAL TRUSS

STATISCHE BERECHNUNG Traverse Typ F23 Länge bis 10,00m GLOBAL TRUSS Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ F23" Länge bis 10,00m GLOBAL TRUSS Die statische Berechnung ist ausschließlich aufgestellt

Mehr

Fragenteil zur Klausur im Fach Maschinenelemente am Prof. Dr.-lng. Lohrengel

Fragenteil zur Klausur im Fach Maschinenelemente am Prof. Dr.-lng. Lohrengel Fragenteil zur Klausur im Fach Maschinenelemente am 16.0.017- Prof. Dr.-lng. Lohrengel Wichtige Hinweise, bitte vor der Bearbeitung der Klausur lesen!! Mit der Teilnahme an der Klausur erkennen Sie die

Mehr

Klausur KT4 WS 2008/2009 (95 P)

Klausur KT4 WS 2008/2009 (95 P) Name, Vorname: Matrikel-Nr.: Unterschrift: Klausur KT4 WS 008/009 (95 P) Aufgabe 1 Bremse (18 P) Eine rotierende zylindrische Walze wird durch eine Bandbremse zum Stillstand gebracht. Am rechten Ende des

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 y HTWG Konstanz 19.7.2017 1.) (5+4+2+2 Punkte) Am Riemen des Schaufelradbaggers wirkt der Haftreibungskoeffizient µ = ln(5 1/π ). Der Ausleger mit der Schaufel hat den dargestellten Querschnitt (tanα =

Mehr

1. Beispiel - Druckluftspeicher

1. Beispiel - Druckluftspeicher 1. Beispiel - Druckluftspeicher Gewebefilter mit Druckstoßabreinigung (für 180000 Nm³/h Abgas)- Druckluftspeicher Druckluftdruck Betrieb (max) p 0,6 MPa Erforderliches Speichervolumen V s 2 m³ Gesucht:

Mehr

Abb. 1 Beispiel eines Rührwerks

Abb. 1 Beispiel eines Rührwerks Konstruktionsaufgabe zu den Übungen KoWe WiSe 08/09 Thema: Konstruktion der Antriebswelle eines Koaxialrührwerkes Fakultät V Verkehrs- und Maschinensysteme Institut für Konstruktion, Mikro-, und Medizintechnik

Mehr

Gegeben: Motor: Motorkennlinien Arbeitsblatt 1.1

Gegeben: Motor: Motorkennlinien Arbeitsblatt 1.1 Gegeben: Motor: Motorkennlinien Arbeitsblatt 1.1 Fahrzeugdaten: Drehzahl-Geschwindigkeits-Diagramm (für geschlossene Wandler-Überbrückungskupplung) Arbeitsblatt 1.2 Antriebsstrang: Kennlinien des Trilok-Wandlers

Mehr