Strukturgeologie. Proseminar Ws 2004/05 Mo Prof. Dr. E. Wallbrecher. Teil 3

Größe: px
Ab Seite anzeigen:

Download "Strukturgeologie. Proseminar Ws 2004/05 Mo Prof. Dr. E. Wallbrecher. Teil 3"

Transkript

1 Strukturgeologie Proseminar Ws 2004/05 Mo Prof. Dr. E. Wallbrecher Teil 3

2 Makroskopische Deformations-Strukturen bruchlose (duktile) Deformation penetrative Deformation bruchhafte Deformation nicht penetrative Deformation

3 Druchlose Deformation: Falten Falten sind Krümmungen flächiger Vorzeichnungen Primäre Anlagerungsgefüge sind keine Falten Sattel, Antikline Mulde, Synkline Wenn die stratigraphische Abfolge unbekannt ist, verwendet man die Begriffe Antiform und Synform

4 Unterscheidung von Falten Form Lage im Raum

5 Aus: Wallbrecher, 1986 Elemente einer Falte

6 Faltenscharnier und Faltenschenkel Aus: Wallbrecher, 1986

7 Falten-Amplitude Amplitude

8 Aus: Wallbrecher, 1986 Faltenspiegel

9 gentle open closed tight Öffnungswinkel schwach isoklinal geschlossen offen eng

10 Geometrische Klassifikation 1 2 unregelmäßig zylindrisch Faltenprofile 3 konisch Umgezeichnet nach Wallbrecher, verschieden 2 kongruent 3 ähnlich

11 Zylindrische Falten Allgemeiner Zylinder: Alle Flächeninkrementesind // // zur Faltenachstse Flächennormalen liegen in in einer Ebene Tautozonalität Umgezeichnet nach Wallbrecher, 1986

12 Projektionsmethoden stereographische Projektion Projektions-Ebene P' Linear P

13 Darstellung in einer Projektion Faltenachse (β) π-kreis Umgezeichnet nach Wallbrecher, 1986

14 Gürtelverteilungen 71 Daten N π-kreis

15 Beispiele für Gürtelverteilungen N 624 Data N 613 Data N Meatiq Lineation Meatiq Foliation

16 Die Faltenachsenfläche symmetrische Falte asymmetrische Falte gebogene Faltenachsenfläche Umgezeichnet nach Wallbrecher, 1986 tautozonal unregelmäßig

17 Achsenflächenschieferung Psara/Chios Griechenland

18 Konische Falten κ

19 Symmetrie gleichschenklig ungleichschenklich Faltenprofil zylindrisch konisch gleichschenklig rhombisch monoklin ungleichschenklig monoklin triklin Umgezeichnet nach Wallbrecher, 1986

20 Die Lage von Falten im Raum bezogen auf die Faltenachse die Faltenachsenfläche

21 Faltenachse horizontal eintauchend vertikal (Schlingen)

22 Faltenachsenfläche aufrechte Falte vergente Falte liegende Falte

23 Vergenz und Faltenspiegel a: a: aufrecht, symmetrisch a d b g e c f b: b: vergent, symmetrisch c: c: aufrecht, asvmmetrisch d: d: vergent, asymmetrisch e: e: vergent, asymmetrisch f: f: vergent, asymmetrisch g: g: liegend, asymmetrisch Umgezeichnet nach Wallbrecher, 1986

24 Klinenz a b c d a: a: Südvergenz, keine Klinenz b: b: keine Vergenz, Nordklinenz c: c: Südvergenz, Südklinenz d: d: Südvergenz, Nordklinenz Umgezeichnet nach Wallbrecher, 1986

25 Vertikale Faltenachsen (Schlingen) Umgezeichnet nach Wallbrecher, 1986

26 Steile Faltenachsen Steile Faltenachsen in in Kalkschiefern (Platania/Volos Griechenland

27 vertikale Faltenachse Gebel Meatiq, Östliche Wüste, Ägypten

28 Aus: Means, Hobbs & Williams, 1976 Raumlagen von Falten

29 Darstellung einer Falte in der Projektion Aus: Wallbrecher, 1986

30 Falten in der Lagenkugel- Projektion Umgezeichnet nach Wallbrecher, 1986

31 Aus Wallbrecher, 1986 mögliche Verwechselungen

32 Sattel und Mulde in der Projektion Aus Wallbrecher, 1986

33 Der Öffnungswinkel in der Projektion Aus Wallbrecher, 1986

34 Aus Wallbrecher, 1986 Isoklinal-Falten

35 Faltenformen konzentrisch kongruent Umgezeichnet nach Wallbrecher, 1986

36 konzentrische Falten Abscherungs-Horizont Disharmonische Falten Umgezeichnet nach Wallbrecher, 1986

37 Die Isogonen

38 Faltenformen und Isogonen stark konvergierend konvergierend (konzentrische Falten) schwach konvergierend parallel (kongruente Falten) divergierend

39 Isogonen in einer Faltensequenz

40 Bestimmung der Schichtmächtigkeit α α d S S 1.0 konzentrische Falten d 0.5 mit S = 1 ist: d = cosα 0.0 a kongruente Falten 90

41 Faltenform (Fourier-Koeffizienten) Polynomform einer Kurve: y = f 2 ( x) = a + bx + cx + dx 3 + K harmonische Analyse: y = f α) = a + a cosα + a cos2α + cos3αk ( a3 + b 1 sin + b2 sin 2α + b3 α sin 3α K Faltenumbiegung = Ursprung: Cosinus-Terme fallen heraus. Gerade b-koeffizienten fallen ebenfalls heraus. y = b sin + b + b α sin 3α sin 5α

42 Bedeutung der Fourier-Koeffizienten y=b 1 sinx+b 3 sin3x y = b 1 sinx y = b 3 sin3x

43 Einengung: Faltung und Deformation 10% 30% 50%

44 Biegefaltung Sander 1948

45 Lage der Strain-Ellipsoide Undeformierte Schicht mit kugeligen Vorzeichnungen Biegefalte mit neutraler Lage lange Achse senkrecht auf Faltenachse neutrale Lage Lange Achse // zur Faltenachse Kreisschnitte Biege-Scherfalte (ohne neutrale Lage)

46 Form der Deformationsellipsen λ 3 λ 1 λ 3 λ 1 neutrale Lage

47 Faltung und Verkürzung 20% Verkürzung 50% Verkürzung

48 Veränderung von linearen durch Faltung Θ φ Θ ψ φ < Θ < ψ

49 Verhalten linearer Vorzeichnungen bei Biegefaltung unter N. L. neutrale Lage über neutraler Lage

50 Scherfalte

51 Ideale kongruente Falte gebildet durch Scherung auf Flächen schief zur gefalteten Lage. Die Scherrichtung muß nicht senkrecht auf der Faltenachse sein.

Übungen zur Allgemeine Geologie

Übungen zur Allgemeine Geologie Übungen zur Allgemeine Geologie heute: Lagerung von Gesteinen und Deformation Diskordanz Eifel: steil gestellte (gefaltete) Sand- und Siltsteine werden von Tephralagen diskordant überlagert Raumlage age

Mehr

PS Strukturgeologie II. Winter-Semester 2004/2005 Di Teil 6

PS Strukturgeologie II. Winter-Semester 2004/2005 Di Teil 6 PS Strukturgeologie II Winter-Semester 2004/2005 Di 12.15 13.45 Teil 6 Falten Geometrie gebogener Flächen Die Normalen in in den Berührungspunkten zweiertangenten an an eine gebogene Linie ergeben den

Mehr

Strukturgeologie. Proseminar WS 2004/2005 Montags Prof. Dr. E. Wallbrecher. Teil 1

Strukturgeologie. Proseminar WS 2004/2005 Montags Prof. Dr. E. Wallbrecher. Teil 1 Strukturgeologie Proseminar WS 004/005 Montags.00 3.30 Prof. Dr. E. Wallbrecher Teil Lehrbücher zur Strukturgeologie G. G. H. H. Eisbacher (99): Einführung in in die die Tektonik.- (Enke) R. R. J. J. Twiss

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

Flächen zweiter Ordnung

Flächen zweiter Ordnung 1 Flächen zweiter Ordnung Definition: Eine Fläche zweiter Ordnung ist die Gesamtheit aller Punkte, deren Ortsvektoren x der Gleichung x T A x + p T x + f = 0 genügen, wobei x 1 x = x x 3, A = Ausführliche

Mehr

Proseminar Strukturgeologie II

Proseminar Strukturgeologie II Proseminar Strukturgeologie II WS 2004/05 Di 12.00 13.30 Uhr Teil 3 Theorien zum Deckentransport Reibungswiderstand an Überschiebungen Guillaume Amontons (1663-1705) Reibungsgesetze (1699): 1. Gesetz:

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Strukturgeologie. Proseminar WS 2004/05 Mo Teil 5

Strukturgeologie. Proseminar WS 2004/05 Mo Teil 5 Strukturgeologie Proseminar WS 2004/05 Mo 12.00 13.30 Teil 5 Lineare Gefüge-Elemente L-Tektonite b-lineare δ-lineare Streckungslineare extremer L-Tektonit (Dobrovcany, Tschechien) Futteral-Falten (Sheath

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 10 8. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 10 8. Januar 2014 1 / 21 10. Konforme Abbildungen 10. Konforme Abbildungen

Mehr

FALTEN Falte Verfaltung Faltenzüge Faltengürtel Rutschfalten Fliessfalten Falten einer einzelnen Fläche - Geometrische Grundterminologie

FALTEN Falte Verfaltung Faltenzüge Faltengürtel Rutschfalten Fliessfalten Falten einer einzelnen Fläche - Geometrische Grundterminologie 207 FALTEN Das Wort Falte wird benutzt, wenn eine einzelne oder ein ganzer Stapel von ebenen Flächen, wie zum Beispiel Sedimentschichten, durch plastische (d.h. permanente) und duktile Verformung gebogen

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

6 Metrische Klassifikation der Quadriken

6 Metrische Klassifikation der Quadriken 6 Metrische Klassifikation der Quadriken A Wiederholung von Kap V, 5 Sei A = (a ij ) eine symmetrische n n Matrix. n x 1 q(x) := x t Ax = a ij x i x j, x =. i,j=1 ist dann ein quadratisches Polynom in

Mehr

Kreistreue der Möbius-Transformationen

Kreistreue der Möbius-Transformationen Kreistreue der Möbiustransformationen Satz Möbius Transformationen sind kreistreu. Beweis Verwende eine geeignete Zerlegung für c 0: a az + b cz + d = c (cz + d) ad c + b cz + d = a c ad bc c cz + d. Wir

Mehr

Mathematisches Denken. Übungsserie 1. γ : [0, 2] IR 2,t r(t) := 2t 1

Mathematisches Denken. Übungsserie 1. γ : [0, 2] IR 2,t r(t) := 2t 1 Studiengang Architektur Mathematisches Denken Übungsserie 1 HS 2007 Abgabe der (z.t. mit dem TR) gelösten Aufgaben: Freitag 26. Oktober 2007 in der Vorlesung 1. Durch die folgende Parameterdarstellung

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x): Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden

Mehr

Research Collection. Falten Strukturgeologie Educational Material. ETH Library. Author(s): Burg, Jean-Pierre. Publication Date: 2012

Research Collection. Falten Strukturgeologie Educational Material. ETH Library. Author(s): Burg, Jean-Pierre. Publication Date: 2012 Research Collection Educational Material Falten Author(s): Burg, Jean-Pierre Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007199303 Rights / License: In Copyright - Non-Commercial

Mehr

(x + 2)( x 1) x + 3 Hinweis: Verwenden Sie die Methode der kritischen Punkte! (5) Welche der folgenden 6 Aussagen sind wahr, welche sind falsch?

(x + 2)( x 1) x + 3 Hinweis: Verwenden Sie die Methode der kritischen Punkte! (5) Welche der folgenden 6 Aussagen sind wahr, welche sind falsch? Übungen und Klausuren zu Mathematik A, WS 1999/; Erstellungsdatum: 11. Februar 1999-1 - 13 1. Übungsblatt zu Mathematik A, WS 1999/ (1) Bestimmen Sie L = {x R : x 7x + 1 }. () Für welche reelle x ist x

Mehr

Mathematik Tutorium. x 2

Mathematik Tutorium. x 2 Mathematik Tutorium Fakultät Grundlagen Termin Algebra Aufgabe : Vereinfachen Sie die folgenden Ausdrücke: a) 5 ) : ) 5 b) n+ n c) an+ a n a n+ + a n d) ) ) : ) ) e) 5 f) 5 z + z 5 Aufgabe : Berechnen

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017 Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Vorlesung Allgemeine Geologie. SS 2005 Mo, Di, Mi Uhr Prof. Dr. E. Wallbrecher Teil 17

Vorlesung Allgemeine Geologie. SS 2005 Mo, Di, Mi Uhr Prof. Dr. E. Wallbrecher Teil 17 Vorlesung Allgemeine Geologie SS 2005 Mo, Di, Mi 8.15 9.00 Uhr Prof. Dr. E. Wallbrecher Teil 17 Die Strukturgeologie umfaßt: Deformation Transport von Lithosphärenteilen Rotation Der Bertachtungsbereich

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Quadratische Formen. und. Symmetrische Matrizen

Quadratische Formen. und. Symmetrische Matrizen Quadratische Formen und Symmetrische Matrizen 1 Ouverture: Lineare Funktionen von R n nach R 1 2 Beispiel: n = 2 l : (x 1, x 2 ) T 0.8x 1 + 0.6x 2 = < x, g > mit g := (0.8, 0.6) T. Wo liegen alle x = (x

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Kapitel V. Räumliche Geometrie. 1. Drehungen

Kapitel V. Räumliche Geometrie. 1. Drehungen Kapitel V Räumliche Geometrie 1. Drehungen Punkte in R 3 sind durch 3 Koordinaten (x 1,x 2,x 3 ) bestimmt. Wir benützen die Matrix-Schreibweise x 1 x = x 2 x 3 Eine Drehung um die Koordinatenachse x 3

Mehr

Ankathete Hypothenuse

Ankathete Hypothenuse Arbeitsauftrag: Trigonometrische Funktionen Bearbeitet folgendes Blatt und macht Euch mit den Trigonometrischen Funktionen und ihren Eigenschaften vertraut. 1.) Grundlagen - Wiederholung: Trigonometrische

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

Vorkurs Mathematik Intensiv. Vektoren, Skalarprodukte und Geraden in der Ebene Musterlösung

Vorkurs Mathematik Intensiv. Vektoren, Skalarprodukte und Geraden in der Ebene Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Vektoren, Skalarprodukte und Geraden in der Ebene Musterlösung Skalarprodukt, Kreuzprodukt, Norm Seien x, y R mit x

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 9.7.8 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 7 8 9 gesamt erreichbare P. 6 6 7 (5) (+5)

Mehr

Lösungen zur Serie 5

Lösungen zur Serie 5 Dr. P. Thurnheer Grundlagen der Mathematik I ETH Zürich D-CHAB, D-BIOL (Analysis B) FS 10 Lösungen zur Serie 5 1. a) Die erste Kurve ist eine Kardioide (Herzkurve). i) Wenn man t durch t erstezt, kriegt

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom Übungsaufgaben 8. Übung WS 17/18: Woche vom 27. 11. - 1. 12. 2017 Vektoranalysis: Differentialausdrücke in anderen Koordinaten 17.39, 17.43, 17.45 Skalare und Vektorfelder, grad, div, rot 19.1, 19.2 (a-d),

Mehr

6. Orbits und die Runge-Lenz Vektor

6. Orbits und die Runge-Lenz Vektor Übungen zur T: Theoretische Mechani, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physi.uni-muenchen.de 6. Orbits und die Runge-Lenz Vetor Übung 6.: Die Rücehr der Kanonenugel

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Modul 1 Der Würfel! 1

Modul 1 Der Würfel! 1 Modul 1 Der Würfel! 1 2 3 4 Der 2-1-1-Würfel 5 Der 2-1-1-Würfel 6 Der 5-3-2-Würfel 7 Der 5-3-2-Würfel 8 Der 5-3-2-Würfel 9 Der 5-3-2-Würfel 10 10-2-2-Würfel und 10-3-2-Würfel 11 10-2-2-Würfel und 10-3-2-Würfel

Mehr

BeVorStudium. Modul Mathematik II. Übungsblätter. Dr. Michael Seidl. Erstellt im Rahmen von OTH mind - BMBF Verbundprojekt

BeVorStudium. Modul Mathematik II. Übungsblätter. Dr. Michael Seidl. Erstellt im Rahmen von OTH mind - BMBF Verbundprojekt BeVorStudium Modul Mathematik II Übungsblätter 207 Erstellt im Rahmen von OTH mind - BMBF Verbundprojekt Projekt OTHmind an der OTH Amberg-Weiden Sommersemester 207 Modul Mathematik II (BeVorStudium):

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Proseminar Gefügeanalyse und Rheologie

Proseminar Gefügeanalyse und Rheologie Proseminar Gefügeanalyse und Rheologie WS 2004/05 Do 12.15 13.45 Teil 5 Der Begriff der Vorticity was ist das? wozu braucht man diesen Begriff? Erklärung der Vorticity Vorticity (von lat. vertex) ist eine

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 8 Funktionen von mehreren Variablen 81 Einführung Prof Dr Erich Walter Farkas Mathematik I+II, 81 Einführung 1 / 18 1 Definition

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 14. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 14. 07.

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Allgemeine Mineralogie - Kristallographie. Diamant

Allgemeine Mineralogie - Kristallographie. Diamant Allgemeine Mineralogie - Kristallographie Diamant Bravaisgitter Aus den fünf 2-D Gittern können durch Translation in die dritte Dimension insgesamt 14 Bravaisgitter erzeugt werden Einteilung der Bravais

Mehr

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 04 mit Lösungsvorschlägen. a 2, a 1, b 1,

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 04 mit Lösungsvorschlägen. a 2, a 1, b 1, Aufgabe 1 - Übungsblatt 04 mit Lösungsvorschlägen Berechnen Sie die Fourierkoeffizienten a 0, a 1, a 2, b 1, b 2 der im folgenden Diagramm dargestellte Rechteckspannung: Hinweis: Suchen Sie zunächst nach

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

5.4 Hauptachsentransformation

5.4 Hauptachsentransformation . Hauptachsentransformation Sie dient u.a. einer möglichst einfachen Darstellung von Kegelschnitten und entsprechenden Gebilden höherer Dimension mittels einer geeigneten Drehung des Koordinatensystems.

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

11. April Institut für Theoretische Physik. Das Toda-Gitter: periodische Lösungen. Daniel Westerfeld. Motivation. Vorbereitungen.

11. April Institut für Theoretische Physik. Das Toda-Gitter: periodische Lösungen. Daniel Westerfeld. Motivation. Vorbereitungen. Toda- Institut für Theoretische Physik 11. April 2012 Überblick Toda- 1 2 3 Toda- Toda- Betrachte eindimensionale Kette N identischer Teilchen. Wechselwirkung nur zwischen Nachbarn = Bewegungsgleichung:

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

Gefuegeanalyse und Rheologie. Proseminar Winter-Semester 2003/04 Do Teil 2

Gefuegeanalyse und Rheologie. Proseminar Winter-Semester 2003/04 Do Teil 2 Gefuegeanalyse und Rheologie Proseminar Winter-Semester 2003/04 Do 12.15 13.45 Teil 2 Anisotropie Hookesches Gesetz: σ = C e ij ijkl kl i, j, k, l = 1, 2, 3 formal 81 81 Komponenten. Da Da aber Spannungs-

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Das Gitter Kristalle bestehen

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

Klassische Theoretische Physik II

Klassische Theoretische Physik II v SoSe 28 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. H. Frellesvig, Dr. R. Rietkerk Übungsblatt 3 Ausgabe: 3.7.8 Abgabe: 2.7.8 bis 9:3 Aufgabe : Teller 8 Punkte Wir entwenden

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

Mantelflächen schiefer Körper

Mantelflächen schiefer Körper Mantelflächen schiefer Körper CAS-Maple-Tagung Karlsruher Institut für Technologie (KIT) 28. Februar 2012 StR Martin Renner Markgrafengymnasium, Gymnasiumstr. 1 3, 76227 Karlsruhe Inhalt Praxis Arbeit

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

4 Orthogonale Endormorphismen

4 Orthogonale Endormorphismen 4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

2 Geometrie und Vektoren

2 Geometrie und Vektoren Geometrie und Vektoren Vorbemerkung: Begriffe wie die folgenden werden hier als bekannt vorausgesetzt: Punkt, Strecke, Strahl, Gerade, Ebene, Kreis, Winkel, rechter Winkel, etc..1 Grundlegende Sätze Satz

Mehr

DFG-Projekt He1433/21-2

DFG-Projekt He1433/21-2 DFG-Projekt He1433/21-2 1 Lösung des GRWP mittels analytischer Fortsetzung (1) Marych (1969) und Moritz (1969) Analytische (harmonische) Fortsetzung von g von der Erdoberfläche auf die (normale) Niveaufläche

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 5 Quadriken Polarität Transformationen Klassifikation von Quadriken Geraden in Regelquadriken Die kubische Wendelinie (twisted

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

Kartografie I. Hans Walser Koordinatensysteme und Transformationen Lernumgebung

Kartografie I. Hans Walser Koordinatensysteme und Transformationen Lernumgebung Kartografie I Hans Walser Koordinatensysteme und Transformationen Lernumgebung Hans Walser: Koordinatensysteme und Transformationen ii Inhalt 1 Rechts- oder Linkssystem?... 1 Rechtssystem... 3 Polarwinkel...

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

SYMMETRIE FRANZ LEMMERMEYER

SYMMETRIE FRANZ LEMMERMEYER SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r =

Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r = Allgemeine Mechanik Musterl osung 11. Ubung 1. HS 13 Prof. R. Renner Hamilton Jacobi Gleichungen Betrachte die gleiche Aufstellung wie in 8.1 : eine Punktmasse m bewegt sich aufgrund der Schwerkraft auf

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr