15b Schwingungen. Violin Phase (1967)

Größe: px
Ab Seite anzeigen:

Download "15b Schwingungen. Violin Phase (1967)"

Transkript

1 15b Schwingungen Violin Phase (1967) 1

2 Zusammenfassung Frequenz Anzahl der Oszillationen eines Systems pro Sekunde 1 [ f ] [ 1Hz 1 s ] Periode Zeitdauer einer Oszillationen des Systems 1 ; f [ ] [ 1 s] F S Einfache harmonische Oszillation Ortsabhängigkeit Geschwindigkeit der Oszillation x( t) Acos( ωt + φ) d v( t) x( t) Aω sin( ωt + φ) A: Amplitude Aω : Geschwindigkeitsamplitude ωt + φ : Phase φ : Phasenwinkel ω : Kreisfrequenz π ω πf Hooksches Gestez N kx, [] k m m 1 k π f ω k π m k m Beschleunigung der Oszillation d a( t) x( t) Aω cos Aω : Beschleunigungsamplitude ( ωt + φ ) Energie der harmonischen Schwingung 1 KE mv 1 PE kx E KE + PE const

3 Kleine esoterische Frage Wovon hängt die Periode eines Pendels ab? Masse, Länge, Gravitation 3

4 Zusammenhang Rotation Kreisbewegung Objekt rotiert auf Scheibe Schwingungsbewegung Schatten führt Oszillation aus 4

5 Zusammenhang Rotation Eine einfache harmonische Schwingung kann angesehen werden als Projektion einer Kreisbewegung auf einen Referenzkreis Referenzkreis Konstante Winkelgeschwindigkeit Mechanik v ωr a v² r Mechanik ω² r² r ω² r x-komponente x Acos ( ) φ A < x < A für < t < x Acos t Oszillation von x in den Grenzen ( ω +φ) ( ω φ) v x Aω sin t + ( ω φ) Aω ² cos t + Eine Kreisbewegung kann dargestellt werden als Kombination von zwei einfachen harmonischen Schwingungen eine entlang der x-und eine entlang der y-achse a x 5

6 Mathematisches Pendel Oszillation mit geringer Amplitude unter Einfluss der Gravitation Bewegungsgleichung für die angentialkomponente F t d s m mg sin Θ s LΘ Kreisbogen Näherung Punktmasse d LΘ d Θ m ml mg sin Θ d Θ g sin Θ L Komponente der rücktreibenden Kraft Bis auf den Sinus entspricht das schon dem Ausdruck für das Hooksche Gesetz Näherung nur geringe Auslenkung sin Θ Θ sehr hilfreich wird oft genutzt für geringe Amplituden d Θ g L Θ Θ Θ max verwende Lösungsansatz für harmonische Schwingung cos ( ω t +φ) 6

7 Mathematisches Pendel Oszillation mit geringer Amplitude unter Einfluss der Gravitation Hooksches Gesetz d Θ Θ Θ max cos g L Θ Lösungsansatz harmonische Schwingung ( ω t +φ) Praktikumsversuch Koeffizientenvergleich Einsetzen des Lösungsansatzes in die Differentialgleichung d Θ ω Θ max cos d Θ ( ωt + φ ) g L Θ ω Θ Die Frequenz und die Periode eines mathematischen Pendels π L g hängt nicht von der Masse sondern nur von der Länge des π ω ω g L Fadens und der Gravitation ab. Am selben Ort (gleiches g) und gleichem L schwingen alle Objekte mit derselben Periode! 7

8 Anwendung Gravimeter Pendelexpeditionen Sir Edward Sabine ( ) Hinweise auf die Abplattung der Erde George Bidell Airy ( ) Versuche in Bergwerksschacht in Cornwall g-abweichung am Boden der Mine (383 m) von 1/1986 Gesteine beeinflussen über ihre unterschiedliche Dichte den Wert von g 8

9 F WS Flüssigkeitsschwingung im U-Rohr Lösung für harmonischen Oszillator Rücktreibende Kraft ist Gewicht der ausgelenkten Wassersäule A π URohr m k (x) ρ H O g l URohr A URohr m Schwingende Masse URohr A URohr l URohr ρ H : Gesamtlänge der Flüssigkeitssäule : Querschnittsfläche des U Rohrs k WS Hooksche Konstante F A ws x k A WS Gleichgewichtslage URohr URohr (x) ρ x ρ H O g H O g l URohr π r + h URohr Schwingung unabhängig von der Masse des Schwingers URohr Periodendauer π URohr π l URohr A π m k A URohr URohr URohr WS l g gρ URohr gρ H H 9

10 Drop it! Lösung des Problems abhängig von der Position der Feder, wenn die Masse landet Annahme: inelastischer Stoß Masse fällt aus geringer Höhe auf schwingende Feder bei Durchgang durch die Gleichgewichtslage t < t > : kurz vor dem Stoß : kurz nach dem Stoß x-komponente Impulserhaltung ist erfüllt Energie hat sich verringert x Mechanische Energie kurz vor dem Stoß E t< 1 < t ka PE also nur kinetische Energie E t< v < t 1 Mv k M < t ka A < t < t nutze Impulserhaltung Mv M + m v v < t > t ( ) M v M + m < t > t E t> 1 Überschussenergie emperaturerhöhung Mechanische Energie im inelastischen Stoß E t> M M 1 ( M + m) v t> M 1 vt> Mv + m M + m M Et> Et< M + m t< 1

11 Drop it! Masse fällt aus geringer Höhe auf schwingende Feder bei Durchgang durch die Gleichgewichtslage Veränderte Amplitude nach dem Stoß E 1 ka A M E M + m t> t< M ka M + m M A M + m je größer die die Masse der stoßenden Körpers, desto geringer ist die spätere Amplitude < t < t M + m π k Periode erhöht sich bei geringerer Amplitude x 11

12 Drop it! Masse fällt aus geringer Höhe auf schwingende Feder bei maximaler Amplitude Schwingende Masse ist am Umkehrpunkt in Ruhe Gesamte Energie gespeichert in elastischer Energie der Feder x-komponente Impulserhaltung ist erfüllt NULL kurz vor und kurz nach dem Stoß allerdings auch kinetische Energie ist NULL kurz vor und kurz nachdem Stoß x keine Änderung der Amplitude nach dem Stoß 1 Et< Et> ka< Periode erhöht sich bei gleicher Amplitude π M + m k 1

13 Physikalisches Pendel Bewegungsgleichung Aufhängepunkt mgd sin Θ d Θ d Θ I mgd Θ I Lösungsansatz Θ Θ max ω rägheitsmoment sin Θ Θ cos ( ωt + φ) mgd I Iα ω Θ Newtonsche Mechanik Drehmoment τ bewirkt, dass sich der Schwerpunkt bewegt τ Iα Periode des physikalischen Pendels π π ω Zusammenhang Linear Rotation r r r r F ma τ Iα I mgd Masse konzentriert in einem Punkt I md md π π mgd d g Das ist die Lösung für das physikalische Pendel Anwendung Bestimmung eines rägheitsmonents aus der Periodendauer 13

14 Physikalisches Pendel schwingender Stab Drehpunkt Periode dieses physikalischen Pendels rägheitsmoment eines Stabes π I Mg L 1 I ML 3 π L 3g 14

15 Wie schnell bewegen sich Dinosaurier? Anwendung Physikalisches Pendel Erinnerung an Kapitel Rotation rägheitsmoment eines Zylinders I Stab 1 ML 3 Physikalisches Pendel Länge des Dinisaurierbeins L3 m Abstand der Fußabdrücke A4 m v Geschwindigkeit des Saurier A 4 m m s s Rex km 5 h Rex Rex π π 1 ML 3 L Mg 3 3 m m 9.81 s² π 3 L g.84 s 15

16 urmspringerin 1 3 ml L vereinfachtes Modell Stab mit Länge L Ergebnis aus Kapitel Rotation Hebelarm L a Neue Situation verglichen mit den Problemen aus der Mechanik veränderliches Drehmoment, da auch die Kraft (-kx) sich ändert Auflagepunkt αr r L a α L d x a Lkx a dx t 3k m Feder x ω x τ LF sin 9 τ Iα τ 1 3 ml α ml α LF ml α Lkx Rotation r entspricht der Länge des Hebelarms k Linear rägheitsmoment eines Stabes Bewegungsgleichung Flugzeit und Auflagepunkt m π 3 4π m 3k je länger die urmspringerin in der Luft ist, desto geringer muss die Federkonstate des Brettes sein 16

17 Machsches Pendel Machsches Pendel Position der Masse A kann verändert werden Machsches Pendel in geneigter Position um diese Achse schwingt das Pendel Schwerpunkt Periode des Machschen Pendels Schwingungsperiode d CM π I M π A d M g A M Ad M I mgd A A W W ( M d M d ) A + M A A d A W M + M d W W + M W d W W d W d: Abstand der Achse zum Schwerpunkt d CM Annahme Punktmassen Spezialfall M d A A M d W W Winkelabhängigkeit Θ g g cosθ g cos const cosθ 1 const Periode vergrößert sich bei Neigung der Achse Messung von g möglich 17

18 orsionspendel orsionskonstante Lösung ist identisch zu den anderen Fällen τ κ Θ dθ I dθ κθ κ Θ I Im Gegensatz zu den anderen Fällen gibt es keine Einschränkung auf geringe Auslenkungen. Es muss nur erfüllt sein, dass das elastische Limit des Drahtes nicht überschritten wird. WICHIG Die Rückstellkonstante hängt von der Länge des Drahtes ab! Winkel der Auslenkung ω π κ I I κ Anwendung zusätzliches unbekanntes rägheitsmoment ' ' π ' I + I' I ' I' I I + I' κ 1+ 1 Periode verkürzt sich I' I 18

19 Reise zum Mittelpunkt der Erde (Science Fiction diesmal aber nicht Jules Verne) From Pole o Pole by George Griffith An Account of a Journey hrough the Axis of the Earth Collated From the Diaries of the Late Professor Haffkin and His Niece, Mrs. Arthur Princeps he Windsor Magazine Oktober 194 Ergänzung zum Kapitel Gravitation Newtons Schalentheorem für Objekte innerhalb der Erde Ein gleichförmige Schale von Materie übt keine Kraft auf einen Körper innerhalb aus mm inside F G r 4 3 M inside Vinsideρinside πr ρ 3 3 4π r 4π F Gmρinside Gmρ 3 r 3 F r inside inside r Gravitationskraft verschwindet im Zentrum der Erde 19

20 Fahrstuhl zum Mittelpunkt der Erde George Griffith ( ) - From pole to pole Gravitationskraft ausserhalb der Erde Re a g r² Gravitationskraft innerhalb der Erde a g r R e d r - g R e r π ω R g e g R π e m m 9.81 s² Zeit für eine Periode HRO HRO 84 min π ω 56 s Geschwindigkeitsamplitude Maximale Geschwindigkeit v max g ωre Re gre R 3 m vmax s kritische Geschwindigkeit eines niedrig fliegenden Erdsatelliten e

21 Hooksches Gesetz einfacher Ansatz für globale Probleme Für größere Auslenkung aus der Gleichgewichtslage ist diese einfache lineare Beziehung nicht notwendigerweise erfüllt Für nahezu ALLE physikalischen Systeme in der Natur, die in irgendeiner Weise aus ihrer Gleichgewichtslage bewegt werden, kann in erster Näherung ein Ansatz zur Beschreibung gewählt werden, der dem Hookschen Gesetz entspricht. Man muß sich aber darüber klar sein, dass diese Näherung möglicherweise nur in einem engen Bereich gültig ist. Einige Beispiele außerhalb der Mechanik siehe Beginn dieses Kapitels Vibration von Molekülen akustische Schwingungen im Festkörper (Phononen), Metallische Elektronen in Metallen Elektronen in einem Plasma Schwingungen der Kernbausteine (Protonen und Neutronen) u.v.a.m. Für geringe Auslenkungen ist die rücktreibende Kraft F proportional zur Auslenkung x Hooksches Gesetz 1

22 Harmonische Näherung ypischer Potentialverlauf In der Nähe der Gleichgewichtslage entspricht die Potentialkurve einer Parabel

23 Anwendung Lennard-Jones Potential für Moleküle Wechselwirkungspotential zwischen zwei Molekülen Harmonisches Potential Lennard-Jones Potential von einfach zu komplex Wechselwirkungspotential zwischen vielen Atomen wie zum Beispiel im Festkörper 3

24 Gedämpfte Schwingungen Beispiel für einen gedämpften Oszillator Beschreibung der Dämpfung erfolgt über einen zusätzlichen Reibungsterm in der Bewegungsgleichung R bv Reibungsterm ebenfalls negativ, da stets der Geschwindigkeit des Objektes entgegengerichtet neue Form der Bewegungsgleichung d d x kx bv x kx b d x So sieht der Lösungsansatz aus b x Aexp t cos t m ( ω +φ) 4

25 Gedämpfter harmonischer Oszillator Differentialgleichung d x kx b d x Lösung der Differentialgleichung b x Aexp t cos t m ( ω +φ) ω k m b m Bei geringer Dämpfung oszilliert das System mit der Frequenz Eigenfrequenz ω k m ω ω b m geringe Verschiebung der Schwingungsfrequenz Allerdings nimmt die Amplitude mit der Zeit ab und zwar mit der Zeitkonstante exp b m t 5

26 Gedämpfter harmonischer Oszillator Fallunterscheidung Wie beeinflusst die Reibung das Abklingverhalten? a R max 3 Fall überkritisch gedämpfte Schwingung bv max > ka und b > mω ω Fall ω ω Kritisch gedämpft b m kx bv b mω mω ω ω m 1 Fall Nahezu ungedämpfte Schwingung R bv < ka max max Reibungsterm R bv 6

27 Autofederung unterkritisch, kritisch oder überkritisch? 7

28 Brainstorming 8

29 Erzwungene Schwingungen m m dx dx F + b sinωt b dx F ma + kx F dx kx sinωt treibende Kraft der Oszillation Lösung für diesen Fall Amplitude steigt stark an, wenn ω ω Der Dämpfungsterm senkt den Wert der Amplitude. Ohne Dämpfung geht der Wert von A in Resonanz gegen eine unendlich hohe Amplitude A F m x Acos 1 ( ω ω ) ( ωt + φ) + ω m b Eigenfrequenz des Oszillators ohne Dämpfung, d.h. b ω k m 9

30 Getriebener harmonischer Oszillator Warum maximale Amplitude bei Anregung nahe der Eigenfrequenz? Geschwindigkeit v Betrachte die erste Ableitung x dx Acos ( ωt + φ) Aω sin ( ωt + φ) reibende Kraft F F sinωt Geschwindigkeit und Krafteintrag von außen haben die gleiche zeitliche Form Man sagt die treibende Kraft ist in Phase mit der Geschwindigkeit Starker Anstieg der Amplitude, wenn das System in der Nähe der Eigenfrequenz des ungedämpften Oszillators angeregt wird. Berechne die Arbeit von außen an dem Oszillator r W F r v Wenn treibende Kraft und Geschwindigkeit in Phase kann die maximale Arbeit ins System gepumpt werden 3

31 Resonanzen im menschlichen Körper 31

32 Nimitz Freeway Collapse Loma Prieta Earthquake, Oakland 17 Oktober 1989 Stärke des Erdbebens 7.9 auf der Richterskala (logarithmische Skala in der Amplitude!) stärkstes Beben in 37 Jahren Laterale Auslenkung circa 8 cm Einsturz erfolgte nur auf nicht kompaktiertem Bereich A-B 3

33 Nimitz Freeway Collapse Oakland 1989 Seismisches Signal des Erbebens, das zum Einsturz der Nimitz Freeways führte Laterale Auslenkung circa 8 cm Gravitationsbeschleunigung (9.81 m/s²) maximale Amplitude am Nimitz Freeway.6 g Zeit (s) Laterale (WE) Amplitude in der Nähe des Epizentrums.6 g Vertikale Amplitude in der Nähe des Epizentrums nur.1 g Oszillationsperiode etwa 1 Sekunde zusätzliche Frequenzkomponente von.6 Hz Mögliche Ursachen für den Einsturz A (statisch, nicht resonant ) untere Fahrbahnebene wird beschleunigt. Die Säulen sind nicht in der Lage das obere Deck in gleicher Weise zu beschleunigen (Designwert von. g überschritten ) B (dynamisch, resonant) Oszillationperiode des lokeren Bodenbereichs entspricht einer Resonanzfrequenz zwischen oberem und unterem Deck (.6 Hz) C zusätzlicher Beitrag durch Dominoeffekt 33

34 Milleniums Bridge London Amplituder der Brückenschwingung Zeit Selbstsynchronisation der Schrittfolge der Fußgänger (blau rechtes, rot linkes Bein) 34

35 Brückeneinsturz acoma Narrows Bridge 194 Schwingungsanregung der Brücke durch stetigen Wind, die die Brücke in die orsions-resonanzfrequenz treibt 35

Zusammenfassung. Einfache harmonische Oszillation. 1 f. Amplitude. d dt. Periode Zeitdauer einer Oszillationen des Systems

Zusammenfassung. Einfache harmonische Oszillation. 1 f. Amplitude. d dt. Periode Zeitdauer einer Oszillationen des Systems 15b Schwingungen 1 Zusaenfassung Frequenz Anzahl er Oszillationen eines Systes pro Sekune 1 [ f ] [ 1Hz 1 s ] Perioe Zeitauer einer Oszillationen es Systes 1 ; f [ ] [ 1 s] Lineare Oszillation (Hooksches

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Schwingungen. Außerplanmäßig nächste Woche Dienstag, :30 Uhr Vorlesung, Kleiner Hörsaal Physik Mittwoch, Uhr, Übung, Hörsaal Schutow

Schwingungen. Außerplanmäßig nächste Woche Dienstag, :30 Uhr Vorlesung, Kleiner Hörsaal Physik Mittwoch, Uhr, Übung, Hörsaal Schutow Außerplanäßig nächste Woche Dienstag, 8.4.08 7:30 Uhr Vorlesung, Kleiner Hörsaal Physik Mittwoch, 9.4.08 3 Uhr, Übung, Hörsaal Schutow Schwingungen www-bereich Lehre in Arbeitsgruppe Cluster und Nanostrukturen

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. 2 Physik 2. Schwingungen. SS 18 2. Sem. B.Sc. CH Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen Bedingungen 4.0 International Lizenz

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen Physik für Oberstufenlehrpersonen Frühjahrssemester 2018 Schwingungen und Wellen Zum Einstieg in das neue Semester Schwingungen Schwingungen spielen bei natürlichen Prozessen bedeutende Rolle: -Hören und

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Vorlesung 10+11: Roter Faden:

Vorlesung 10+11: Roter Faden: Vorlesung 10+11: Roter Faden: Heute: Harmonische Schwingungen Erzwungene Schwingungen Resonanzen Gekoppelte Schwingungen Schwebungen, Interferenzen Versuche: Computersimulation, Pohlsches Rad, Film Brücke,

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

(no title) Ingo Blechschmidt. 13. Juni 2005

(no title) Ingo Blechschmidt. 13. Juni 2005 (no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Übungen zu Physik I für Physiker Serie 12 Musterlösungen

Übungen zu Physik I für Physiker Serie 12 Musterlösungen Übungen zu Physik I für Physiker Serie 1 Musterlösungen Allgemeine Fragen 1. Warum hängt der Klang einer Saite davon ab, in welcher Entfernung von der Mitte man sie anspielt? Welche Oberschwingungen fehlen

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Schriftliche Vordiplomprüfung Physik

Schriftliche Vordiplomprüfung Physik Schriftliche Vordiplomprüfung Physik Prof. T. Esslinger / Prof. R. Monnier Dated: Mittwoch, 17. September 2003, 9:00 12:00 Uhr) Aufgaben I. ELEKTRON IM MAGNETFELD Ein Elektron Ladung e, Masse m) bewegt

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

Musterlösung Probeklausur Physik I, FS 2008

Musterlösung Probeklausur Physik I, FS 2008 Musterlösung Probeklausur Physik I, FS 8 May 7, 8 Schaukel Es soll betont werden, dass wir nur Rotationen der Unterschenkel am Knie betrachten. Vereinfacht kann man ansetzen, dass es sich um ein gekoppeltes

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Lösung zu Übungsblatt 11

Lösung zu Übungsblatt 11 PN1 - Physik 1 für Cheiker und Biologen Prof. J. Lipfert WS 2016/17 Übungsblatt 11 Lösung zu Übungsblatt 11 Aufgabe 1 Torsionspendel. Henry Cavendish nutzte zur Bestiung der Gravitationskonstante den unten

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p 1/2 Grundlagen der Physik 2 Schwingungen und Wärmelehre 30 04 2007 Othmar Marti othmarmarti@uni-ulmde Experimentelle Physik Universität Ulm (c) Ulm University p 2/2 Gedämpfter Oszillator

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoretische Physik I/II Prof. Dr. M. Bleicher Institut für Theoretische Physik J. W. Goethe-Universität Frankfurt Aufgabenzettel XI 27. Juni 2011 http://th.physik.uni-frankfurt.de/ baeuchle/tut Lösungen

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

16-1 Schwingungen Harmonische Schwingungen

16-1 Schwingungen Harmonische Schwingungen 16 Schwingungen Am 19. September 1985 verursachten seismische Wellen eines Erdbebens mit Zentrum an der Westküste von Meiko verheerende und weiträumige Schäden in Meiko-Stadt, ungefähr 400km vom Ursprung

Mehr

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen.

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen. Das ist das Paradebeispiel eines schwingenden, schwach gedämpften Systems. waren vor der Erfindung des Quarz Chronometers die besten Zeitgeber in Taschenuhren. Als Unruh bestimmten sie die Dauer einer

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch PN 1 Einführung in die alphysik für Chemiker und Biologen 15.1.006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Fachhochschule Hannover

Fachhochschule Hannover Fachhochschule Hannover 9..7 Fachbereich Maschinenbau Zeit: 9 min Fach: Physik II im WS67 Hilfsmittel: Formelsammlung zur Vorlesung. Betrachten Sie die rechts dartellte Hydraulikpresse zum Pressen von

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung

Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung Prof. T. Esslinger (Dated: Mittwoch, 5. Februar 4, 9: Uhr) Aufgaben I. IONEN IN EINER FALLE Eine Falle für elektrisch geladene Ionen wird durch

Mehr

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Besprechung am

Besprechung am PN Einführung in die Physi für Chemier Prof. J. Lipfert WS 206/7 Übungsblatt 0 Übungsblatt 0 Besprechung am 7.0.207 Aufgabe Ungedämpfter harmonischer Oszillator. Eine Masse m schwingt reibungsfrei an einer

Mehr

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme Fakultät für Physik Christoph Schnarr & Michael Schrapp Technische Universität München Übungsblatt 3 - Lösungsvorschlag Ferienkurs Theoretische Mechanik Sommer 00 Hamiltonformalismus und Schwingungssysteme

Mehr

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung 1. Schwingungen Fast alles schwingt, d.h. der Zustand ändert sich periodisch it der Zeit wie in Kreisbewegung. Bsp. Uhr, Kolben i Autootor, wippende Boote auf de Wasser. Haronische Schwingung die einfachste

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 00/003, Prof. Thomas Müller, Universität Karlsruhe Lösung 13; Letztes Lösungsblatt 1. Torsionspendel (a) Vergleichen Sie die Größen rehwinkel ϕ, Winkelgeschwindigkeit

Mehr

Grund- und Angleichungsvorlesung Schwingungen.

Grund- und Angleichungsvorlesung Schwingungen. 3 Grund- und Angleichungsvorlesung Physik. Schwingungen. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Themen 6 Parameter einer Schwingung Harmonischer Oszillator Gedämpfter harmonischer Oszillator Resonanz

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 016/17 Übung 4 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) A. Übungen A.1. Schwingung

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 15. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 24. Januar 213 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m] =

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Schwingungen & Wellen

Schwingungen & Wellen Schwingungen & Wellen 2 2.1 Harmonische Schwingung, Dämpfung, Resonanz I Theorie Schwingungen spielen eine große Rolle in allen Bereichen der Physik. In Uhren sind sie fundamental, in mechanischen Maschinen

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr