5. Eine weitere Klasse von q-fibonacci-zahlen und der Euler sche Pentagonalzahlensatz.

Größe: px
Ab Seite anzeigen:

Download "5. Eine weitere Klasse von q-fibonacci-zahlen und der Euler sche Pentagonalzahlensatz."

Transkript

1 5 Eie weitere Klae vo -Fiboacci-Zahle ud der Euler che Petagoalzahleatz I dieem Abchitt betrachte wir ei weitere Aalogo der Fiboacci-Polyome, für da auch ei chöe Aalogo der Luca-Polyome exitiert ud da eie ege Beziehug zum Euler che Petagoalzahleatz aufweit Wir betrachte wieder die ichtommutative Fiboacci-Polyome ud erier a die Reurioe ud F ( a, b) = af ( a, b) + bf ( a, b) (5) F( ab, ) = F ( aba, ) + F ( abb, ) (5) owie a die Formel (, ) (, ) = 0 F a b = C a b (53) Wir wolle u eie weitere Art vo Fiboacci-Polyome Fib ( x,, ) eiführe Dazu betrachte wir de Homomorphimu ψ, der durch ψ ( a) = xηψ, ( b) = η defiiert it Da it ψ ( a) ψ( b) = xηη = x η = ( η)( xη) = ψ( b) ψ( a) Daher it ( ) + + ψ C ( a, b) = ψ( b) ψ( a) η ( xη) x η = = Daher folgt au (53) + ψ ( F ( a, b) ) = x η = 0 (54) Ma beachte, da jetzt die Poteze vo η auch vo abhäge Dadurch werde eiige Dige omplizierter Wir erhalte aber auch hier eie explizite Dartellug, ämlich + Fib( x,, ) = ψ ( F( a, b) )() = x = 0 (55) Da gilt ach (5) Fib( x,, ) = xfib ( x,, ) + Fib ( x,, ) (56) ud ach (5) = + η = 0 Fib( x,, ) xfib ( x,, ) x η() = 0 = xfib ( x,, ) + x = xfib ( x,, ) + Fib ( x,, ) 70

2 E gilt alo Fib( x,, ) = xfib ( x,, ) + Fib ( x,, ) (57) Kombiiert ma (56) ud (57), o erhält ma Fib ( x,, ) = xfib ( x,, ) + xfib ( x,, ) + Fib ( x,, ) (58) 3 4 Bemerug + Für die etprechede Fiboacci-Zahle Fib( ) = Fib(,, ) = = 0 gibt e ur die Reurio 4 Ordug, die au (58) folgt, ämlich Fib ( ) = Fib ( ) + Fib ( ) + Fib ( ) (59) 3 4 Diee Folge begit mit ,,, +, + +,+ + +, , Nu uteruche wir, wie der Homomorphimu ψ, der durch ψ ( a) = xηψ, ( b) = η defiiert it, auf ei Wort c c C( a, b) wirt Seie i j die Idize mit ψ ( c c ) = x c i + + i η Da folgt ofort mit Idutio ach E ei für i i i i = a, da gilt ψ ( c c a) + + x η xη + + x = = η gezeigt It c = b, da ergibt ich ci j = b Da gilt bereit ud it ψ = η η = η = η ( ) i i i i i i i c c b + + x x x Wir öe Fib ( x,, ) ebefall auf egative Idize uter Beibehaltug der Reurrez erweiter E gilt da Fib ( x,, ) Fib ( x,, ) = ( ) (50) Wege (56) it da äuivalet mit Fib( x,, ) Fib+ ( x,, ) Fib+ ( x,, ) = x ( ) ( ) Da folgt jedoch au (57) 7

3 0 Für ψ ( C) ergibt ich ψ ( C) = η xη Sei B ( x, ) = ψ ( C) I Da it Fib ( x,, ) Fib( x,, ) B ( x, ) = Fib( x,, ) Fib+ ( x,, ) E gilt B( x, ) = xb ( x, ) + B ( x, ) De owohl Fib ( x,, ) al auch Fib( x,, ) erfülle diee Reurio Außer de bereit erwähte Reurio gibt e hier eie weitere, die gaz ader auieht ( ) Fib ( x,, ) = xfib ( x,, ) + ( ) D Fib ( x,, ) + Fib ( x,, ) (5) Zum Bewei vergleiche wir die Koeffiziete vo i Fib (,, ) x + Dabei ergibt ich + + ( ) [ ] = Diee Idetität it äuivalet mit + ( ) = + oder + + = Da folgt aber ofort au der Reurrezrelatio für die Biomialoeffiziete Da die Operatore x + ( ) D ud der Multipliatiooperator mit x ommutiere, ergibt ich Fib ( x,, ) = ( x + ( ) D) () (5) 7

4 Für = erfülle die Luca-Polyome dieelbe Reurrez wie die Fiboacci-Polyome Für die Carlitz che Fiboacci-Zahle gibt e eie derartige Luca-Zahle Für die hier betrachtete Aaloga exitiere jedoch ehr chöe Aaloga Wir defiiere die Luca-Polyome al die eideutig betimmte Polyome, welche die Reurrez ( ) Luc ( x,, ) = xluc ( x,, ) + ( ) D Luc ( x,, ) + Luc ( x,, ) (53) mit de Afagbediguge Luc0( x,, ) =, Luc( x,, ) = xerfülle Da ergibt ich ofort Luc( x,, ) = Fib ( x,, ) + Fib ( x,, ), (54) + we ma die zwei Afagwerte betrachtet Darau lät ich eie explizite Formel herleite: De [ ] [ ] Luc( x,, ) = x (55) Luc ( x,, ) = x x 0 + = = 0 [ ] [ ] = x x + = Weiter gilt ( ) [ ] [ ] [ ] D Luc ( x,, ) = x = [ ] x = [ ] Fib ( x,, ) Au der Formel (, ) F (, ) (, ) a b = C a b F a b folgt durch Awede vo ψ + = ψ ψ = η Fib ( x,, ) ( C ( a, c)) ( Fib ( a, b))() x Fib ( x,, ) 73

5 ud daher + (,, ) (, Fib, ) x = x Fib x (56) Geht ma dagege vo F (, ) (, ) (, ) a b = F a b C a b au, o erhält ma (,, ) = ψ( (, )) ψ( (, ))() Fib x F a b C a c Nu it ψ ( F ( a, b)) = ψ ( C ( a, b)) = 0 v ψ ( C ( a, b)) Jede Wort au i + + i hat die Getalt x η + i i ( ) i i Daher it v () = x = x Darau ergibt ich chließlich + = = 0 Fib ( x,, ) x Fib ( x,, ) (57) Für = it die Folge (,,) ( ) f = Fib = periodich mit Periode 6 ud begit mit 0,,, 0,, De ach (56) it f = f f mit f0 = 0, f = ud daher ergibt ich der Reihe ach 0,,, 0,,, 0,,, Da lät ich folgedermaße verallgemeier: Satz 5 Für x=, = gilt (3 ) (3 ) + 3 = 3+ = 3+ = Fib (,, ) 0, Fib (,, ) ( ), Fib (,, ) ( ) Bewei Wir verwede die Reurio (58) Diee gibt Fib (,, ) = Fib (,, ) Fib (,, ) + Fib (,, )

6 Darau ergibt ich Fib (,, ) = Fib (,, ) Fib (,, ) + Fib (,, ) 3( ) + 3( ) ( ) + 3( ) + Damit öe wir mit Idutio de Satz beweie Für die erte 4 Werte rechet ma ach, da e timmt Darau folgt Fib (,, ) = Fib (,, ) Fib (,, ) + Fib (,, ) 3( ) + 3( ) ( ) + 3 3( ) + (3+ ) ( )(3 ) 3( ) + = ( ) + ( ) = 0, Fib (,, ) = Fib (,, ) Fib (,, ) + Fib (,, ) 3( ) + 3( ) ( ) + 3( ) ( )(3 4) (3) 3( ) + = ( ) = ( ) ud Fib (,, ) = Fib (,, ) Fib (,, ) + Fib (,, ) 3( ) + 3( ) ( ) + 3( ) + (3) ( )(3 ) ( )(3 4) (3+ ) 3( ) 3( ) = ( ) ( ) + ( ) = ( ) Darau ergibt ich Satz 5 (3+ ) Fib3 + (,, ) = ( ) (58) De au (57) ergibt ich 3 Fib (,, ) = Fib (,, ) + Fib (,, ) = Fib (,, ) + Fib (,, ) = Fib (,, ) Fib (,, ) + Fib (,, ) ( ) + (3+ ) (3) = ( ) + ( ) + Fib (,, ) 3( ) + Geht ma i (58) mit, o erhält ma 0 + (3 ) ( ) = ( ) ( ) 75

7 Beachtet ma Formel (), o ergibt ich Satz 53 (Petagoalzahleatz vo L Euler) (3 ) 3 ( )( )( ) = ( ) Auch für die Polyome Fib ( x,, ) lät ich die erzeugede Futio eifach bereche Φ ( x,, z) = Fib ( x,, ) z = + xfib ( x,, ) z + Fib ( x,, ) z + 0 = + Φ + Φ = + η+ xz ( x,, z) z ( x,, z) ( xz z ) F( x,, z) η Darau folgt ( xzη z η) Φ ( x,, z) = ud daher ach der Formel für die geometriche Reihe Φ ( xz,, ) = () = ( zη+ xzη) () ( xzη z η) Wege ( ) η η = η η it xz z z xz z η xz η + = ( z ) ( xz ) z x 0 η η = 0 η = = Daher it m 0 ( η η) m Φ ( xz,, ) = z + xz () (59) Augerechet ergibt da + m+ m m m m Φ ( x, z, ) = ( zη+ xzη) () = z x m 0 m 0 = m m = z x z x 0 m = + = 0 Koeffizietevergleich liefert wieder, da (,, ) Fib + x = x it + 76

8 We wir m= + etze, öe wir die obige Umformug auch o chreibe: m+ m + m m Φ ( x, z, ) = z x z zx m 0 = 0 = 0 0 = + z ( xz) ( xz) E it alo 0 + z Φ ( xz,, ) = ( xz) ( xz) (50) Soweit it alle gaz aalog zum Fall der Polyome F ( x,, ) Aber hier habe wir da Glüc, da ich ( z η xzη ) + explizit aureche lät E gilt ja ( η η) z + xz () = z ( x+ z)( x+ z) ( x+ z) (5) Au (59), (50) ud (5) erhalte wir + z 0 ( xz) ( xz) 0 Φ ( x, z, ) = = z( x+ z)( x+ z) ( x+ z) (5) We wir dari x = ud = etze, ergibt ich z Φ(,, z) = Fib (,, ) z = ( ) ( ) ( z z ) = z z z z ( )( ) ( ) Nach Satz 5 it da gleichbedeuted mit (3 ) (3+ ) 3 3+ z z z z = Fib + z = z + z 0 0 ( )( ) ( ) (,, ) ( ) ( ) (53) Für = reduziert ich da auf + z z ( z) = = = + z z z + z + z ++ 3 z+ z + z 0 77

9 Die Reurio (57) gibt Φ = + Φ (54) ( xz) ( x,, z) z ( x,, z) Für x = ud = ergibt da ( z) Φ(,, z) = z Φ(,, z) ud au Φ ( x,, z) = + xzφ ( x,, z) + z Φ ( x,, z) für x = ud = erhalte wir Φ(,, z) = + z( z) Φ(,, z) Darau ergibt ich 3 Φ(,, z) = + z z Φ(,, z) Da it wieder äuivalet mit Fib+ 3(,, ) = Fib(,, ), worau wieder Satz 5 folgt Bemerug Aaloge Überleguge führte Euler zu eiem Bewei de Petagoalzahleatze Er am durch Berechug der erte Terme zur Vermutug, da ( )( )( ) = (3 ) (3+ ) = + ( ) + = gilt Um da zu beweie, führte er eie weitere Ubetimmte z ei ud betrachtete (3 ) (3+ ) 3 3 f (, z) = + () z + z = Für = reduziert ich da auf f (,) z = z z + z + z z z ++ = z z f(,) z Allgemei gilt f z z z f z 3 (, ) = (, ), wie ma leicht verifiziert Dadurch it f (, z ) eideutig fetgelegt Für = gilt z z z f z z z + (,) = = = = ( ) 3 + z z+ z z+ z = 78

10 Euler uchte eie ähliche Audruc für beliebige ud betrachtete gz z z z (, ) = + ( ) ( ) Da gilt N g(, ) = ( ) De N ( ) = ( ), = weil darau N+ N N N N+ N+ N+ ( ) = ( ) ( ) = ( ) ( ) = ( ) folgt = = Euler bewie u da 3 gz (, ) = z zgz (, ) gilt ud daher gz (, ) = f(, z) it Damit it der Petagoalzahleatz volltädig bewiee Uere obige Überleguge führe diret zu dieem Ergebi De j + + j j z ( z) ( z) = z ( ) ( z) j 0 0 j 0 j j + j+ + j+ j + j j = z ( ) z ( ) j = j j = (,, ), + z Fib 0 dh (3 ) (3+ ) z ( z) ( z) = ( ) z + z, 0 worau alle folgt 79

4. Die q-fibonacci-zahlen von I. Schur und L. Carlitz und die Identitäten von Rogers- Ramanujan

4. Die q-fibonacci-zahlen von I. Schur und L. Carlitz und die Identitäten von Rogers- Ramanujan 4 Die -Fiboacci-Zahle vo I Schur ud L Carlitz ud die Idetitäte vo Roger- Ramauja E gibt im weetliche zwei Aaloga der Fiboacci-Zahle ud Polyome, die ich al ützlich erwiee habe I dieem Kapitel tudiere wir

Mehr

und x D auftreten. Außerdem werden aller Wörter aus den Buchstaben 0 und 1 der Länge n mit genau k Elementen 1 gilt inv( w)

und x D auftreten. Außerdem werden aller Wörter aus den Buchstaben 0 und 1 der Länge n mit genau k Elementen 1 gilt inv( w) 3 q-stirligzahle I diesem Abschitt wird mit Hilfe vo Iversioe ud dem Maor Idex ei q Aalogo der Stirligzahle defiiert Es wird gezeigt, dass diese q Stirligzahle auch i atürlicher Weise beim Vergleich der

Mehr

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr.

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr. Zahlefolge Teil 3: Reihe Arithmetiche Reihe Geometriche Reihe Theorie ud Muterbeipiele E wird auch da Arbeite mit dem Summezeiche geübt! Datei Nr. 40050 Stad 7. September 06 Friedrich W. Buckel INTERNETBIBLIOTHEK

Mehr

Fibonacci-Zahlen, Gitterpunktwege und die Identitäten von Rogers-Ramanujan

Fibonacci-Zahlen, Gitterpunktwege und die Identitäten von Rogers-Ramanujan Fiboacci-Zahle, Gitterputwege ud die Idetitäte vo Roger-Ramaua Joha Cigler Faultät für Mathemati, Uiverität Wie A-090 Wie, Nordbergtraße 5 email: JohaCigler@uivieacat Zuammefaug Die vo I Schur etdecte

Mehr

Mathematische Randbemerkungen 12: Eine interessante Klasse von Polynomen. Johann Cigler

Mathematische Randbemerkungen 12: Eine interessante Klasse von Polynomen. Johann Cigler Matheatische Radbeeruge : Eie iteressate Klasse vo Polyoe Joha Cigler I Folgede öchte ich eiige Polyoe studiere, die sich i [9] bei der explizite Berechug der Darstellug vo ( + ) ergebe habe Es stellt

Mehr

Mathematische Randbemerkungen 1. Binomialkoeffizienten

Mathematische Randbemerkungen 1. Binomialkoeffizienten Mathematische Radbemeruge Biomialoeffiiete Der biomische Lehrsat ist eies der etrale Resultate der Aalysis I meier Vorlesug über Differetial- ud Itegralrechug habe ich ih daher gleich u Begi ausführlich

Mehr

Elementare q-identitäten

Elementare q-identitäten Elemetare -Idetitäte Joha Cigler Grudlage I diesem Kapitel werde die Grudlage der Aalysis, des so geate Quatum Calculus gelegt Es geht dabei um ei disretes Aalogo der Differetialrechug, bei dem die formale

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Mathematische Randbemerkungen 8: Einige q-hankeldeterminanten und damit verknüpfte Identitäten

Mathematische Randbemerkungen 8: Einige q-hankeldeterminanten und damit verknüpfte Identitäten Mathematische Radbemeruge 8: Eiige -Haeldetermiate ud damit verüpfte Idetitäte Joha Cigler Der Ausgagsput der folgede Bemeruge war der Versuch, die Haeldetermiate i+ + m det m für m zu bereche Ich suchte

Mehr

$Id: reell.tex,v /11/09 11:16:39 hk Exp $

$Id: reell.tex,v /11/09 11:16:39 hk Exp $ Mathemati für die Physi I, WS 2018/2019 Freitag 9.11 $Id: reell.te,v 1.56 2018/11/09 11:16:39 h Ep $ 1 Die reelle Zahle 1.5 Poteze mit ratioale Epoete Wir sid gerade mit de Vorbereituge zur allgemeie biomische

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)!

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)! Aufgabe.4 Die Verallgemeierug der biomische Formel für (x y ist der Biomische Lehrsatz: (x y x y, x, y R, N. (a Zeige Sie die Beziehug ( ( ( zwische de Biomialoeffiziete. (b Beweise Sie de Biomische Lehrsatz.

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12 FAKULTÄT FÜR MATHEMATIK, CAMPUS ESSEN Prof. Dr. Patrizio Neff 0.04.0 Lösugsvorschlag zur. Hausübug i Aalysis II im SS Hausaufgabe (8 Pute): Bereche Sie für die Futio f : R! R; f() : ep( ) a der Stelle

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

= = 1 0,5 0, 5 0,5 1,875 = = 1 0,5 0,5 0,5 0, 5 0, 5 1,96875

= = 1 0,5 0, 5 0,5 1,875 = = 1 0,5 0,5 0,5 0, 5 0, 5 1,96875 Tutorium Mathe MT Potezreihe & Taylorreihe. Uedliche Reihe Uedliche Reihe ket vielleicht der ei oder adere eher au Kobelaugabe, wie ie ab ud zu i Mathematikbücher zu ide id. Hier geht e u darum, wie ma

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 5 1. Die Beroullische Ugleichug besagt, dass für N 0 ud x R mit x 1 stets 1 + x 1 + x gilt. Wir wolle u aaloge Ugleichuge für

Mehr

Mathematische Randbemerkungen 9. Die Binomialidentität von N.H. Abel und einige q-analoga.

Mathematische Randbemerkungen 9. Die Binomialidentität von N.H. Abel und einige q-analoga. Mathematische Radbemeruge 9 Die Biomialidetität vo NH Abel ud eiige -Aaloga Joha Cigler 0 Eileitug NH Abel hat i [] folgede schöe Formel bewiese: x y x x a y a (0) ( ) ( ) ( ) 2 Die dabei auftretede Polyome,

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Beweis des ausgezeichneten numerischen Theorems über die Koeffizienten der Binomialpotenzen

Beweis des ausgezeichneten numerischen Theorems über die Koeffizienten der Binomialpotenzen Beweis des ausgezeichete umerische Theorems über die Koeffiziete der Biomialpoteze Leohard Euler p We dieser Charakter q die Koeffiziete der Potez x q bezeichet, der aus der Etwicklug des Bioms + x p etsteht,

Mehr

Einige Beispiele für Mengen im R n.

Einige Beispiele für Mengen im R n. Eiige Beispiele für Mege im R. Itervalle i R. Seie a, b R mit a < b. [a, b] : {x a x b} abgeschlossees Itervall (a, b : {x a < x < b} offees Itervall [a, b : {x a x < b} halboffees Itervall (a, b] : {x

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1 D-HEST, Mathematik III HS 15 Prof. Dr. E. W. Farkas R. Bourqui ud M. Sprecher Lösug 1 Das erste Kapitel der Vorlesug behadelt die Theorie der Fourier-Reihe. Bearbeite Sie bitte folgede Frage olie bis Diestag,

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

mit einem rationalen Kosinus-Wert: < q 1 !, ggt p 1 , p ,q 1 Dann hat auch jedes ganzzahlige Vielfache dieses Winkels einen rationalen Kosinus- Wert:

mit einem rationalen Kosinus-Wert: < q 1 !, ggt p 1 , p ,q 1 Dann hat auch jedes ganzzahlige Vielfache dieses Winkels einen rationalen Kosinus- Wert: Has Walser, [019010] Ratioaler Kosius 1 Wikel ud Vielfache Wir arbeite mit eiem Wikel α 1 mit eiem ratioale Kosius-Wert: cos( α 1 ) = p 1, p

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Übungsaufgaben 1. Reelle Zahlen. kd1 k2 D 1 n.n C 1/.2n C 1/ für jedes n 2 N gilt! 6. kd1 k2 D 1 D 1.1 C 1/.2 C 1/. C.n C 1/ 2

Übungsaufgaben 1. Reelle Zahlen. kd1 k2 D 1 n.n C 1/.2n C 1/ für jedes n 2 N gilt! 6. kd1 k2 D 1 D 1.1 C 1/.2 C 1/. C.n C 1/ 2 Übugsaufgabe 1 Reelle Zahle Aufgabe 1. Ma beweise, daß 1 1. /. / für jedes N gilt! Lösug. er Beweis soll idutiv über N geführt werde: Idutiosafag: Für 1 ergibt sich P 1 1 1 1.1 /. /. Idutiosschritt: Uter

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

Laguerre - Polynome. Vortrag zum Seminar zur Analysis, Evgeny Saleev

Laguerre - Polynome. Vortrag zum Seminar zur Analysis, Evgeny Saleev Laguerre - Polyome Vortrag zum Semiar zur Aalysis, 6.1.21 Evgey Saleev Die Laguerre-Polyome werde i der Quatemechai bei der Lösug der Schrödiger-Gleichug agewedet, isbesodere im Falle des Wasserstoffatoms.

Mehr

Eulersche Summationsformel

Eulersche Summationsformel Eulersche Summatiosformel ei Prosemiarvortrag Sve Grützmacher Betreut vo Dr. Kaste Cotets Vorwort Die eifache Formel 3 Die allgemeie Formel 5 4 Awedug 7 VORWORT Vorwort Dieser Prosemiarvortrag beschäftigt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Fakultät und Binomialkoeffizient Ac

Fakultät und Binomialkoeffizient Ac Faultät ud Biomialoeffiziet Ac 2013-2016 Die Faultät (atürliche Zahl): Die Faultät Faultät ist so defiiert:! = 1 2 3... ( - 1) ; 0! = 1 Die reursive Defiitio ist: Falls = 0, da! = 1; sost! = ( - 1)! JAVA-Methode(iterativ):

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

18 2 Zeichen, Zahlen & Induktion *

18 2 Zeichen, Zahlen & Induktion * 18 2 Zeiche, Zahle & Idutio * Ma macht sich z.b. sofort lar, dass das abgeschlossee Itervall [ 3, 4] die Eigeschafte if[ 3, 4] 3 mi[ 3, 4] ud sup[ 3, 4]4max[ 3, 4] besitzt, währed das offee Itervall 3,

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1 C Eicher Aaysis Study Ceter ETH Zürich HS 015 Summe Die Summe vo mehrere Zahe a 1, a,, a a mit Hife des Summezeiches geschriebe werde a 1 + a + + a a Hier heisst Laufvariabe oder Summatiosidex ud 1 bzw

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

Abb. 1: Woher kommen die schwarzen Quadrate?

Abb. 1: Woher kommen die schwarzen Quadrate? Has Walser, [0160916], [0161009] Umögliche pythagoreische Dreiecke Idee: Chr. Z., B. 1 Schwarze Quadrate Woher komme die beide schwarze Quadrate? Abb. 1: Woher komme die schwarze Quadrate? Sachverhalt

Mehr

3 Das Pascalsche Dreieck

3 Das Pascalsche Dreieck Goldeer Schitt Fiboacci Pascalsches Dreiec 3 Das Pascalsche Dreiec 3. Hocey, Taxifahre ud das Pascalsche Dreiec Was hat es mit dem Hoceyschläger auf sich? Wie viele Möglicheite hat ei Taxifahrer i New

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Kombinatorik und Polynommultiplikation

Kombinatorik und Polynommultiplikation Kombiatorik ud Polyommultiplikatio 3 Vorträge für Schüler SS 2004 W Pleske RWTH Aache, Lehrstuhl B für Mathematik 3 Eiige Zählprizipie ud Ausblicke Wir habe bislag gesehe, was die Multiomialkoeffiziete

Mehr

Leitfaden Bielefeld SS 2007 III-4

Leitfaden Bielefeld SS 2007 III-4 Leitfade Bielefeld SS 2007 III-4 8.2. Der allgemeie Fall. Satz. Sei N 1, sei ω eie primitive -te Eiheitswurzel ud K = Q[ω ]. Da gilt: (a) [K : Q] = φ(), (b) Φ ist irreduzibel, (c) O K = Z[ω ]. (d) Eie

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Taylorentwicklung. Manfred Hörz. Polynomfunktionen sind sehr leicht zu differenzieren und zu integrieren und sind wieder Polynomfunktionen: k a k

Taylorentwicklung. Manfred Hörz. Polynomfunktionen sind sehr leicht zu differenzieren und zu integrieren und sind wieder Polynomfunktionen: k a k Tayloretwiclug Mafred Hörz Die Liearombiatio vo Potezfutioe et ma Polyomfutioe oder gazratioale Futioe P ( : P (=a +a +a +...+a = a, heißt der Grad der Polyomfutio, a die Koeffiziete der Polyomfutio. Beispiel

Mehr

Fakultät und Binomialkoeffizient Ac

Fakultät und Binomialkoeffizient Ac Faultät ud Biomialoeffiziet Ac 2013-2016 Die Faultät (atürliche Zahl): Die Faultät Faultät ist so defiiert:! = 1 2 3... ( - 1), wobei 0! = 1 Die reursive Defiitio ist: Falls = 0, da! = 1; sost! = ( - 1)!

Mehr

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so:

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so: Asymptotische Notatio Ladaus asymptotische Notatio O, Ω, o, ω, Θ, wird vorausgesetzt siehe Folie auf webseite oder eischlägige Literatur (z.b. Corme, Leiserso, Rivest) Geometrische Reihe α 0 folgt aus

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Lösungsskizzen zum Übungsblatt 02

Lösungsskizzen zum Übungsblatt 02 Löugkizze zum Übugblatt 02 Hilfetellug zur Vorleug Aweduge der Mathematik im Witeremeter 205/206 Fakultät für Mathematik Uiverität Bielefeld Veröffetlicht am 0. November 205 vo: Mirko Getzi E-Mail: mirko.getzi@ui-bielefeld.de

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Das Pascalsche Dreieck

Das Pascalsche Dreieck Das Pascalsche Dreiec Falo Baustia Klassestufe 9 ud 0 09.09.08 Das Pascalsche Dreiec: Die erste vier Zeile des Pascalsche Dreiecs sid: Aufgabe: Setzt die ächste Zeile logisch fort. Lösug: 4 6 4 5 0 0 5

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar d) Die Beweismethode der vollstädige Iduktio Der Übergag vo allgemeie zu spezielle Aussage heisst Deduktio Beispiele: a) Allgemeie Aussage: Spezialisierug: Schluss: Alle Mesche sid sterblich Sokrates ist

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralüug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati Z Archimedische Aordug i R Mathemati für Physier (Aalysis ) MA90 Witersem 07/8 Lösugslatt http://www-m5matumde/allgemeies/ma90

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet.

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet. Fachbereich Mathemati Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 14. Otober 2008 Algebra 1. Übug mit Lösugshiweise Aufgabe 1 Es seie R,S Rige ud ϕ : R S ei Righomomorphismus.

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Aufgaben zu Kapitel 2

Aufgaben zu Kapitel 2 2 Sei a R ud seie a ud a Iverse vo a Da ist a = a = a ( aa ) = ( a a)a = a = a 22 Wege Aufgabe 4 bleibt lediglich (R2) ud (R3) zu zeige (R2): Die Multipliatio ist offebar assoziativ Das Eiselemet ist die

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Goldener Schnitt und Fünfecke. Ein Streifzug durch einige Wunder der Mathematik. Geeignet für Klasse 9 (teilweise) und 11 sowie Facharbeiten

Goldener Schnitt und Fünfecke. Ein Streifzug durch einige Wunder der Mathematik. Geeignet für Klasse 9 (teilweise) und 11 sowie Facharbeiten Aalysis Fiboacci-Folge Goldeer Schitt ud Füfecke Ei Streifzug durch eiige Wuder der Mathematik Geeiget für Klasse 9 (teilweise) ud sowie Facharbeite Datei Nr. 40070 Stad 8. Jauar 009 INTERNETBIBLIOTHEK

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Taylorreihen und ihre Implementierung mit JAVA: n 0

Taylorreihen und ihre Implementierung mit JAVA: n 0 Taylorreihe ud ihre Implemetierug mit JAVA: Taylorpolyome sid gazratioale Futioe T(), welche eie bestimmte adere Futio f() i der Umgebug eier vorgegebee Stelle approimiere. å T ( ) = a ( - ) = a + a (

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

3 Wichtige Wahrscheinlichkeitsverteilungen

3 Wichtige Wahrscheinlichkeitsverteilungen 26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei

Mehr

Vorbereitung auf 6. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 6. Übungsblatt (Präsenzübungen) - Lösungen Prof. Dr. Raier Dahlhaus Statisti Witersemester 06/07 Vorbereitug auf 6. Übugsblatt Präsezübuge - Lösuge Aufgabe P0 Bereche vo UMVU-Schätzer. Gegebe sei jeweils ei statistisches Modell R, B R, P θ, θ Θ

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Werte von Dirichlet-Reihen

Werte von Dirichlet-Reihen Vortrag zum Semiar zur Fuktioetheorie,..8 Adrea Schmitz I eiem der vorhergehede Vorträge zur Riemasche Zetafuktio ζ wurde festgestellt, dass diese Fuktio für alle gerade Argumete s > ud für alle gazzahlige

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung bg_ma_fg004_geozf.doc Aufgabe zur Übug ud Vertiefug GEOMETRISCHE ZAHLENFOLGEN Berufliche Gymaium / Utertufe () Stelle Sie fet, welche der gegebee Folge geometrich id: a : a b : 0;;;4;6;... c : ; 4; 8;

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

$Id: reell.tex,v /11/09 15:44:17 hk Exp $ $Id: funktion.tex,v /11/10 16:59:49 hk Exp $

$Id: reell.tex,v /11/09 15:44:17 hk Exp $ $Id: funktion.tex,v /11/10 16:59:49 hk Exp $ Mathemati für die Physi I, WS 2017/2018 Freitag 10.11 $Id: reell.te,v 1.50 2017/11/09 15:44:17 h Ep $ $Id: futio.te,v 1.26 2017/11/10 16:59:49 h Ep $ 1 Die reelle Zahle 1.5 Poteze mit ratioale Epoete I

Mehr

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis

Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2. Inhaltsverzeichnis Zahletheoretische Idetitäte ud die Eisesteireihe vom Gewicht 2 Vortrag zum Semiar zur Fuktioetheorie II, 3.2.203 Lukas Schürhoff Ihaltsverzeichis Wiederholug ud Vorbereitug 2 2 Zahletheoretische Idetitäte

Mehr

Christoph Hindermann. Vorkurs Mathematik Wichtige Rechenoperationen

Christoph Hindermann. Vorkurs Mathematik Wichtige Rechenoperationen Kapitel 2 Christoph Hiderma 1 2.1 Wiederholug: Die gebräuchlichste Zahlebegriffe Natürliche Zahle: N bzw. N 0 N ={1,2,3,...} N 0 ={0,1,2,3,...} Gaze Zahle: Z, Erweiterug der atürliche Zahle um die egative

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Einige wichtige Ungleichungen

Einige wichtige Ungleichungen Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe

Mehr