FIR- gegen IIR-Filter

Größe: px
Ab Seite anzeigen:

Download "FIR- gegen IIR-Filter"

Transkript

1 y[n-] b + b b -a -a x[n-] + + y[n] y Rekurive IIR-Filter [ n] bi x[ n i] ai y[ n i] H i Y X i + M i b i M i i a i i Kriterium Filterordnung (für vergleichbare Steilheit) naloge Sytem P- Schema nachmachen FIR- gegen IIR-Filter Gröer FIR icht möglich (Pole im Urprung ) Kleiner möglich IIR ichtrekurive FIR-Filter Stabilität Stet tabil u.u. intabil b + x[n-] b b + + y[n] y [] n bi x[ n i] H ( ) i Y X ( ) ( ) i b i i Linear Phaengang Gruppenlaufeit Häufgite Struktur Einfach möglich Möglich frequenunabhängig ranveraltruktur Müham (nur akaual) frequenvariabel Kakade von Biquad Stempel-Matrien-Schema : analoge P, BP, BS, HP Filter g Synthee von IIR- Filtern ranformation P HP,BP,BS Stempel- Matrien-Schema analoger Referen-P g Frequengang Impulantwort bilineare -ranformation P-Schemata nforderung x Verhalten & Implementierung g : Grenfrequen : btatintervall

2 IIR-Filterentwurf: naloge Prototypen DSV, 5/, Rur, Filterentwurf, 5 IIR-Filterentwurf: naloge Prototypen DSV, 5/, Rur, Filterentwurf, 6 pproximation von Brickwall -Filtern it im nalogen gelöt Beipiel: Butterworth-P. Ordnung H(f) + ( ) f/f DB IIR-Filterentwurf -rafo (bilinear) H P () [ > H BP () ] > H() > b-,a-filterkoeffiienten P-HP/BP/BS-rafo (chtung: BP und BS haben doppelte Ordnung) 3 Vergleich mit Filter 4. Ordnung > max db, f DB kh, min 3 db, f SB kh min 3 db Butterworth-Filter Steilheit: klein IH(f)I: monoton φ(f): ichtlinearität klein Chebycheff-Filter Steilheit: mittel IH(f)I: Rippel im DB oder SB φ(f): ichtlinearität mittel Elliptiche Filter (Cauer) Steilheit: gro IH(f)I: Rippel im DB und SB φ(f): ichtlinearität gro Beelfilter Steilheit: ehr klein IH(f)I: monoton φ(f): ichtlinearität ehr klein Synthee von IIR- Filtern ranformation P HP,BP,BS Stempel- Matrien-Schema analoger Referen-P Butterworth : flach Beel: linearphaig cheby- : teil, Ripple-DB g cheby- : teil, Ripple-SB Cauer :teilt, Ripple-DB/SB Frequengang Impulantwort e Bilineare -ranformation ln Potenreihe 3 5 ln ach dem erten Glied abgebrochen bilineare -ranformation P-Schemata + + nforderung x Verhalten & Implementierung g : Grenfrequen : btatintervall icht lineare ranformation!! Genauer je kleiner - wird

3 Mapping der Bilineare -ranformation Zuammenhang wichen: analoge Frequenache digitale Frequenache σ + j ( σ D + jd ) + e -Ebene j ± e -Ebene jd (Inneneite) ± D yquit -Ebene -Ebene j e j D Beipiel : yquit -ranformation π j yquit j Im D tan D arctan bilineare - ranformation -Ebene Im Re Dreht nur einmal rund um dem Einheitkrei kein liaing-effekt!! Im -Ebene Re e e jπ 5 Vererrung der Frequenache (warping) Vorvererrung (prewarping) -Ebene Re π π arctan D arctan π j arctan e j D e,4 + j,9 Bilineare ranformation -rafo f-rafo: -f / + jπf analog j(/ ) tan(πf digital ) f analog f DB f / f digital IH a (f)i IH(f)I DSV, 5/, Rur, Filterentwurf, kein liaing! aber Frequentauchung! prewarping f analog Synthee von IIR- Filtern ranformation P HP,BP,BS Stempel- Matrien-Schema analoger Referen-P bilineare -ranformation g nicht linear: Vorvererrung eineindeutige (d.h. umkehrbare) bbildungder - in die -Ebene kein liaing-effekt Frequengang Impulantwort + P-Schemata f DB f / f digital nforderung x Verhalten & Implementierung g : Grenfrequen : btatintervall

4 Übung: P.Ordnung Löung: P.Ordnung H () + ) Wie ehen ie au? + ) Betimmen H D () Durch die bilineare -ranformation 3) Wie ieht da Blockchema (oder Signalfludiagramm) au? H D Frequengang Impulantwort P-Schemata +? H () + H D H D + + H D Im -Ebene Re +? + Charakteritich für die bilineare ranformation: ulltelle bei y[n-] + ereten durch b b -a x[n-] + + y[n] nalog Löung: P.Ordnung / Digital Synthee von IIR- Filtern ranformation P HP,BP,BS Stempel- Matrien-Schema analoger Referen-P bilineare -ranformation nforderung x Verhalten & Implementierung g Matlab Funktionen ur Verfügung für die Berechnung von IIR digitalen Filtern heorie um Ergebni um teuern und kontrollieren Frequengang Implementierung Parametern Berückichtigen : Impulantwort - Struktur,, Quantiierung P-Schemata ndere Methoden für IIR Filter Synthee : -Impul-invariant -pproximation in -Bereich g : Grenfrequen : btatintervall

5 IIR-Filterentwurf im -Bereich DSV, 5/, Rur, Filterentwurf, 7 Direkttruktur DSV, 5/, Rur, LD-Syteme, 8 Ziel H(f) oll möglicht gut mit Vorgabe übereintimmen (leat-quare) Filterkoeffiienten von H() variieren bw. optimieren (CD) Beipiel Yule-Walker-Filter. Ordnung mit Durchlabereichen Direkte Umetung der Differenengleichung b - - b -a x[n-] y[n-] y[n] x[n-] b -a M y[n-m] Realiierung FIR-Filter mit Direkttruktur - x[n-] - x[n-] b b b - b RR+X Y y[n] Direkttruktur DSV, 5/, Rur, LD-Syteme, 9 ranponierte Direkttruktur DSV, 5/, Rur, LD-Syteme, -a w[n] - b o b y[n] b o w [n] - -a y[n] -a M w[n-] b b - w [n] -a M Schritt : (irkulärer) w-buffer {w[n-],..., w[n-]} mit ullen initialiieren Schritt : w[n] - a w[n-] -- a M w[n-m] Schritt : y[n] b w[n] ++ b w[n-] augeben Schritt 3: w-buffer chieben, w[n] peichern (beer: im Ringbuffer älteten Wert w[n-] mit w[n] überchreiben) Schritt 4: neuen Eingangwert x[n+] leen und mit Schritt weiterfahren b y[n] b + w [n-] w [n] b - a y[n] + w [n-] w - [n] b - - a M- y[n] + w [n-] w [n] b - a M y[n]

6 Kakadierung von Biquad DSV, 5/, Rur, LD-Syteme, Fetkomma-Filter (Beipiel) DSV, 5/, Rur, LD-Syteme, ( ) ( ) ( ) ( ) H() K K H () H L() ( p ) ( p ) ( p ) ( p ) K L L L L... y[n] b b - K L L - b -a - b L - -a L Filterpeifikation Filterart (elliptiche) P Filterordnung 4 btatfrequen f 8 H Eckfrequen DB f DB H Eckfrequen SB f SB 3 H max. Rippel im DB R p 3 db min. Rippel im SB R 4 db Wortbreite W8 Bit P-Dartellung UF H () H () H () H () b -a Pol-ulltellenpaarung (ormalfall): a) letter Biquad enthält komplexe Polpaar am nächten beim Einheitkrei und dau nächtgelegene konjugiert komplexe ulltellenpaar. b) übrig gebliebenen Pole und ulltellen werden nach Regel a) kombiniert. b L -a L Biquad-Kakade H () H () k k H() k H () k H () Skalierung k max(ih (f)i) < k k max(ih (f) H (f)i) < Fetkomma-Filter (Beipiel) DSV, 5/, Rur, LD-Syteme, 3 FIR-iefpa-Filter im Vergleich DSV, 6/, Hrt, Filterentwurf, 4 Biquad FIR-iefpa-Filter im Vergleich: Filterordnung3 Grenfrequen.3 Übergangbereich.3 fir fir firl firrco Biquad Kakade Spec erfüllt! mplitudengang, db Direktform Spec nicht erfüllt! normierte Frequen

7 FIR-Hochpa-Filter im Vergleich DSV, 6/, Hrt, Filterentwurf, 5 IIR-iefpa-Filter im Vergleich DSV, 6/, Hrt, Filterentwurf, 6 FIR-Hochpa-Filter im Vergleich: Filterordnung3 Grenfrequen.7 Übergangbereich.3 fir fir firl IIR-iefpa-Filter im Vergleich: Filterordnung8 Grenfrequen.3 Rippel3dB Stoppband4dB butter cheby cheby ellip mplitudengang, db mplitudengang, db normierte Frequen normierte Frequen IIR-Hochpa-Filter im Vergleich DSV, 6/, Hrt, Filterentwurf, 7 IIR-Filter Implementation mit Fetkomma DSP DSV, 7/6, Qtm, Fetkomma-DSP, 8 IIR-Hochpa-Filter im Vergleich: Filterordnung8 Grenfrequen.7 Rippel3dB Stoppband4dB butter cheby cheby ellip Struktur : Biquad-Kakade in Direktform- Koeff Berechnung im Matlab tfo mplitudengang, db H() Y() X() + b k k M k k k a k b + b + + a + Quantiierungfehler weniger tark b + a M M normierte Frequen ( ) ( ) ( ) ( ) H() K K H () H L() ( p ) ( p ) ( p ) ( p ) L L L L

8 IIR-Filter Implementation mit Fetkomma DSP DSV, 7/6, Qtm, Fetkomma-DSP, 9 IIR-Filter Implementation mit Fetkomma DSP DSV, 7/6, Qtm, Fetkomma-DSP, 3 ( ) ( ) ( ) ( ) H() K K H () H L() ( p ) ( p ) ( p ) ( p ) L L L L IIR-Filter Implementation mit Fetkomma DSP Skalierung um Überlauf u vermeiden DSV, 7/6, Qtm, Fetkomma-DSP, 3 IIR-Filter Implementation mit Fetkomma DSP Skalierung eine einelnen Biquad DSV, 7/6, Qtm, Fetkomma-DSP, 3.. Überlauf von w[n] und y[n] vermeiden ufpaen mit der Skalierung der a k Koeffiienten weil a

9 IIR-Filter Implementation mit Fetkomma DSP Skalierung eine einelnen Biquad DSV, 7/6, Qtm, Fetkomma-DSP, 33 IIR-Filter Implementation mit Fetkomma DSP DSV, 7/6, Qtm, Fetkomma-DSP, 34 Löung : alle Koeffiienten halbieren Weiter: (Überlauf von w[n] und y[n] vermeiden) y IIR-Filter Implementation mit Fetkomma DSP DSV, 7/6, Qtm, Fetkomma-DSP, 35 IIR-Filter Implementation mit Fetkomma DSP DSV, 7/6, Qtm, Fetkomma-DSP, 36 ( ) ( ) ( ) ( ) H() K K H () H L() ( p ) ( p ) ( p ) ( p ) L L L L C-Code: Compiler-Intrinic für ättingende Logik Matlab Skript. Filter Koeffiienten berechnen, und Frequengang kontrollieren. uwählen der Filternorm 3. Skalierung der Eingangignal vor der Kakade 4. Skalierung der b-filter-koeff der Biquad 5. Skalierung de ugangignal nach der Kakade 6. Koeffiienten umrechen in Q.4 7. Frequenganganeigen ur Kontrolle

10 IIR-Filter Implementation mit Fetkomma DSP IIR-Filter Implementation mit Fetkomma DSP DSV, 7/6, Qtm, Fetkomma-DSP, 37 DSV, 7/6, Qtm, Fetkomma-DSP, 38 C-Code: Variable und Data ypen? C-Code: Variable und Data ypen? IIR-Filter Implementation mit Fetkomma DSP IIR-Filter Implementation mit Fetkomma DSP C-Code: DSV, 7/6, Qtm, Fetkomma-DSP, 39 C-Code: Biquad-Schleife Berechnung DSV, 7/6, Qtm, Fetkomma-DSP, 4 Biquad-Schleife Berechnung

Inhalt SiSy Dqtm DiskSys, 3 LTI. SiSy Overview. Kontinuierliches System SiSy Dqtm DiskSys, 4. Einführung LTD Systeme

Inhalt SiSy Dqtm DiskSys, 3 LTI. SiSy Overview. Kontinuierliches System SiSy Dqtm DiskSys, 4. Einführung LTD Systeme SiSy Overview SiSy2 28 Dqtm DikSy, SiSy2 28 Dqtm DikSy, 2 Signal tep / impule / rect / inc Sytem u(t) U(ω) LI DGl; BSB; ZVD; h(t); g(t); G(ω); G() y(t) Y(ω) LD Syteme continuou / dicret periodic / aperiodic

Mehr

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1. Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1. Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt 8 Muterlöungen rundlagen de Filterentwurf 3 8. Entwurf eine paiven Filter mit kriticher

Mehr

Differenzengleichung (Beispiel) DSV 1, 2005/01, Rur, LTD-Systeme, 1. Differenzengleichung DSV 1, 2005/01, Rur, LTD-Systeme, 2

Differenzengleichung (Beispiel) DSV 1, 2005/01, Rur, LTD-Systeme, 1. Differenzengleichung DSV 1, 2005/01, Rur, LTD-Systeme, 2 Diffrnznglichung (Bispil DSV, 5/, Rur, LTD-Systm, Diffrnznglichung DSV, 5/, Rur, LTD-Systm, Linar, zitinvariant, analog Systm => Diffrntialglichungn R τ = RC = b x[n ] a y[n ] x(t C y(t τ dy(t/dt + y(t

Mehr

Übung 6: Analyse LTD-Systeme

Übung 6: Analyse LTD-Systeme ZHAW, DSV, FS2009, Übung 6: Analyse LTD-Systeme Aufgabe : Pol-Nullstellendarstellung, UTF und Differenzengleichung. Die folgenden Pol-Nullstellen-Darstellungen charakterisieren verschiedene LTD- Systeme,

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie eil - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt Muterlöungen - Laplace-ranformation zeitkontinuierlicher Signale... 3. Berechnung der Laplace-ranformierten

Mehr

Kapitel 5: FIR- und IIR-Filterentwurf

Kapitel 5: FIR- und IIR-Filterentwurf ZHW, DSV 1, 2005/01, Rur 5-1 Kapitel 5: FIR- und IIR-Filterentwurf Inhaltsverzeichnis 5.1. EINLEITUNG...2 5.2. FREQUENZGANG...3 5.3. FILTERSPEZIFIKATION...5 5.4. FIR-FILTER...6 5.4.1. TYPISIERUNG...6 5.4.2.

Mehr

Analyse zeitkontinuierlicher Systeme im Frequenzbereich

Analyse zeitkontinuierlicher Systeme im Frequenzbereich Übung 3 Analye zeitkontinuierlicher Syteme im Frequenzbereich Diee Übung bechäftigt ich mit der Analye von Sytemen im Frequenzbereich. Die beinhaltet da Rechnen mit Übertragungfunktionen, den Begriff der

Mehr

8. Übung Grundlagen der analogen Schaltungstechnik Filtersynthese

8. Übung Grundlagen der analogen Schaltungstechnik Filtersynthese 8. Übung Grundlagen der analogen Schaltungtechnik Filterynthee Analye eine Filter. Ordnung (Aufgabe 7) 0 V V R C 3 0. C R v OPI 4 V.0 E.0 E.0 E0.0 E.0 E Frequency M agnitude d B P hae d e g 0-0 -0-30 -00-5

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Filterentwurf. Aufgabe

Filterentwurf. Aufgabe Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich

Mehr

Diplomhauptprüfung. "Regelung linearer Mehrgrößensysteme" 17. März Aufgabenblätter

Diplomhauptprüfung. Regelung linearer Mehrgrößensysteme 17. März Aufgabenblätter Diplomhauptprüfung "Regelung linearer Mehrgrößenyteme" 7. Mär 008 Aufgabenblätter Die Löungen owie der volltändige und nachvolliehbare Löungweg ind in die dafür vorgeehenen Löungblätter einutragen. Nur

Mehr

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN ÜBUNG : Z-TRANSFORMATION, SYSTEMSTRUKTUREN 8. AUFGABE Bestimmen Sie die Systemfunktion H(z) aus den folgenden linearen Differenzengleichungen: a) b) y(n) = 3x(n) x(n ) + x(n 3) y(n ) + y(n 3) 3y(n ) y(n)

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Matlab-Praktika zur Vorlesung Analoge und digitale Filter 1. Betrachtet wird ein Tiefpass. Ordnung mit

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

Formelsammlung Signale & Systeme (ET054)

Formelsammlung Signale & Systeme (ET054) Formelammlung Signale & Syteme (ET054) DGL Mache(n) auftellen und nur Abhängigkeiten zur Auganggröße übrig laen. Bauelemente it = ut ut=i t it =c u t ut= 1 C i t dt Allgemein it = 1 L ut dt ut=l it a 0

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

8. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese

8. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 8. Vorleung Grundlagen der analogen Schaltungtechnik Filterynthee H()= 86 6 8 3 38 39 8 3 Nulltellen (o): Pole (x): 5 3, 5 3 3, 3, 3 x Re( ), y Im( ), z H( ) mit j Im - - Re - - Magnitude db 3.E3.E.E.E.E.4...8

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs FIL: Digitale Filter und Filterentwurf Teil - Linearphasige Filter 6 FIL: Überblick Linearphasige Filter FIR-Filterentwurf Halbbandfilter IIR-Filterentwurf Filtertopologien

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann rban Brunner Inhalt 5 Muterlöungen Syteme im Laplace-Bereich 3 5. Löen einer homogenen linearen Differentialgleichung...

Mehr

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen 21. November 2016 Siehe Skript, Kapitel 8 Kammeyer & Kroschel, Abschnitt 4.1 1 Einführung Filterstrukturen: FIR vs. IIR 2 Motivation: Grundlage

Mehr

Regelungs- und Systemtechnik 1. Kapitel 5: Entwurf von Regelungssystemen im Frequenzbereich

Regelungs- und Systemtechnik 1. Kapitel 5: Entwurf von Regelungssystemen im Frequenzbereich egelung- un Sytemtechnik apitel 5: Entwurf von egelungytemen im Frequenzbereich rof. Dr.-Ing. u Li Fachgebiet Simulation un Optimale rozee SO roblemartellung: Da Sytem wir von einem Signal mit einer betimmten

Mehr

Gegeben sei die Operationsverstärker-Schaltung nach Abb. 1.1 mit kffl[0; 1]. Alle OP s sind als. Abbildung 1.1: Operationsverstärkerschaltung

Gegeben sei die Operationsverstärker-Schaltung nach Abb. 1.1 mit kffl[0; 1]. Alle OP s sind als. Abbildung 1.1: Operationsverstärkerschaltung Klauur Impultehnik I & II 08.04.2003 Aufgabe 1: 16 Punkte Gegeben ei die OperationvertärkerShaltung nah Abb. 1.1 mit kffl[0; 1]. Alle OP ind al ideal anzunehmen, d.h. e gilt: Z e!1, Z a! 0, v 0!1. R k

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

Systemtheorie. Vorlesung 27: Schaltungstechnische Realisierung von Filtern. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 27: Schaltungstechnische Realisierung von Filtern. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 7: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Passive LC-Schaltungen erster Ordnung Übertragungsfunktionen, die durch die Entwurfsverfahren bestimmt werden,

Mehr

Praktikum Digitale Signalverarbeitung

Praktikum Digitale Signalverarbeitung im WS 006/07 am 03..006 und 7..006 Gruppenmitglieder (NT8.4): Breitschaft, Marco 74 480 Milewski, Mario 744 55 Uhl, Michael 7 560 Betreuer: Dipl. Ing. Sörgel.0.007 Inhaltsvereichnis 4. VERSUCHSVORBEREITUNG...3

Mehr

Systemtheorie. Vorlesung 25: Butterworth-Filter. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 25: Butterworth-Filter. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 5: Butterworth-Filter Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übersicht Für den Filterentwurf stehen unterschiedliche Verfahren zur Verfügung Filter mit

Mehr

[2] M. Meier: Signalverarbeitung, ISBN , Vieweg Verlag, Oktober 2000.

[2] M. Meier: Signalverarbeitung, ISBN , Vieweg Verlag, Oktober 2000. Digitale Signal-Verarbeitung 1 Kapitel 5: FIR- und IIR-Filterentwurf Inhaltsverzeichnis 5.1. EINLEITUNG... 2 5.2. FILTERSPEZIFIKATION... 3 5.3. FIR-FILTER... 4 5.3.1. TYPISIERUNG... 4 5.3.2. ENTWURF MIT

Mehr

Kybernetik Stabilität

Kybernetik Stabilität Kybernetik Stabilität Mohamed Oubbati Intitut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 22. 05. 2012 Definition Stabilität Definition 1 Ein Sytem, da nach einer Anregung

Mehr

Regelungstechnik (A)

Regelungstechnik (A) Intitut für Elektrotechnik und Informationtechnik Aufgabenammlung zur Regelungtechnik (A) Prof. Dr. techn. F. Gauch Dipl.-Ing. C. Balewki Dipl.-Ing. R. Berat 08.01.2014 Übungaufgaben in Regelungtechnik

Mehr

Digitale Signalverarbeitung mit MATLAB- Praktikum

Digitale Signalverarbeitung mit MATLAB- Praktikum Martin Werner Digitale Signalverarbeitung mit MATLAB- Praktikum Zustandsraumdarstellung, Lattice-Strukturen, Prädiktion und adaptive Filter Mit 118 Abbildungen, 29 Tabellen und zahlreichen Praxisbeispielen

Mehr

Entwurf zeitdiskreter Systeme. Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 2012/13

Entwurf zeitdiskreter Systeme. Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 2012/13 Entwurf zeitdiskreter Systeme Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 0/3 Inhalt Einführung Entwurf auf der Basis zeitkontinuierlicher Systeme Impulsinvarianz Bilinear-Transformation

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Kapitel 1. Globale Beleuchtung. 1.1 Ray Tracing Schatten, Reflexion und Brechung

Kapitel 1. Globale Beleuchtung. 1.1 Ray Tracing Schatten, Reflexion und Brechung Kapitel 1 Globale Beleuchtung Biher haben wir nur Licht von Lichtquellen berückichtigt. Gegentände werden aber auch durch indirekte Licht beleuchtet, da durch diffue oder direkte Reflexion entteht. Effekte

Mehr

Digitale Signalprozessor - Architekturen im Überblick

Digitale Signalprozessor - Architekturen im Überblick Fakultät Informatik Institut für technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Digitale Signalprozessor - Architekturen im Überblick Dresden, 3. Februar 2010 Dirk

Mehr

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe, Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge

Mehr

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1 Aufgabe : a) Au und K = und T = 2 folgt: Mit und K R = 2, T n = 2 : G S () = K T G S () = 2 G R () = K R T n T n G R () = 2 G 0 () = G R ()G S () = F ω () = / + / = b) Y () = F ω ()W() Die Sprungantwort

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Regelungstechnik I (WS 17/18) Übung 5

Regelungstechnik I (WS 17/18) Übung 5 Regelungtechnik I (WS 17/18) Übung 5 Prof. Dr. Ing. habil. Thoma Meurer, Lehrtuhl für Regelungtechnik Aufgabe 1. Gegeben it die Übertragungfunktion der Regeltrecke ĝ() = 2 3 +.1 ( + 1). Betimmen Sie mittel

Mehr

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 6 Analoge Filter 3 6. Motivation..................................

Mehr

Übung 8: Aufgaben zu LC- und RC-Filter

Übung 8: Aufgaben zu LC- und RC-Filter = Übung 8: Aufgaben zu LC- und RC-Filter Aufgabe : Basisband LC-Filter für Funk-Modem Ein Frequency Hopping Funksignal (ähnlich Bluetooth) mit Mbit/s Datenraste belegt nach dem Dehopping im Basisband einen

Mehr

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Syteme Teil II: Sytemtheorie für Informatiker Dr. Mohamed Oubbati Intitut für Neuroinformatik Univerität Ulm SS 2007 Warum Sytemtheorie? Informatiker werden zunehmend mit Sytemen konfrontiert,

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

Lineare Differentialgleichung 2.Ordnung - Beispiel Autofeder

Lineare Differentialgleichung 2.Ordnung - Beispiel Autofeder HL Saalfelen Autofeer Seite 1 von 8 Wilfrie Rohm Lineare Differentialgleichung.Ornung - Beipiel Autofeer Mathematiche / Fachliche Inhalte in Stichworten: Numeriche Löen einer linearen Differentialgleichung.Ornung

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Übungsaufgaben zur Lehrveranstaltung Analoge und digitale Filter Filter. Ordnung. Betrachtet wird ein

Mehr

Übungsblatt - Stabilität des Standardregelkreises

Übungsblatt - Stabilität des Standardregelkreises Prof. Dr.-Ing. Jörg Raich Dr.-Ing. Thoma Seel Fachgebiet Regelungyteme Fakultät IV Elektrotechnik und Informatik Techniche Univerität Berlin Integrierte Verantaltung Mehrgrößenregelyteme Übungblatt - Stabilität

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

IIR-Filter. SigProc-7-IIR 1

IIR-Filter. SigProc-7-IIR 1 IIR-Flter SgProc-7-IIR FIR IIR IIR-Flter haben komplzertere Blockdagramme, snd schwerer zu entwerfen und analyseren, haben kene lneare Phase, aber se snd selektver! Magntude 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

1.1) ja(j!)j 6= f (!) ) Die Strecke verhält sich wie ein Allpaß. (1 P) Abbildung 1: Gruppenlaufzeit

1.1) ja(j!)j 6= f (!) ) Die Strecke verhält sich wie ein Allpaß. (1 P) Abbildung 1: Gruppenlaufzeit Muterlöung zur Klauur Impultechnik I & II 050900 Löung Aufgabe : 7 Punkte ) ja(j!)j 6 f (!) ) Die Strecke verhält ich wie ein Allpaß ( P) ) Die Gruppenlaufzeit wird betimmt durch g d d! :(P) T t g p T

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

3. Quantisierte IIR-Filter R

3. Quantisierte IIR-Filter R . Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben

Mehr

Digitale Signalverarbeitung. mit MATLAB

Digitale Signalverarbeitung. mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 3., vollständig überarbeitete und aktualisierte Auflage Mit 159 Abbildungen und 67 Tabellen Studium Technik

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen 1 Abiturprüfung Mathematik 214 Baden-Württemberg Allgemeinbildende Gymnaien Wahlteil Analytiche Geometrie / Stochatik Aufgabe B 1 - Löungen klau_mener@eb.de.elearning-freiburg.de Wahlteil 214 Aufgabe B

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Einführung in die digitale Signalverarbeitung Prof. Dr. Stefan Weinzierl 1. Aufgabenblatt 1. Eigenschaften diskreter Systeme a. Erläutern Sie die Begriffe Linearität Zeitinvarianz Speicherfreiheit Kausalität

Mehr

Themen der Übung. Rekursion. Dateien einlesen Sudokus. Assertions

Themen der Übung. Rekursion. Dateien einlesen Sudokus. Assertions Themen der Übung Rekurion CoMa-Übung X TU Berlin.0.0 Themen heute Evaluation Aertion Einleen von Dateien Queue und Breitenuche Rekurion Wegrekontruktion Tiefenuche Backtracking Evaluation Diee Woche bekommt

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

TFH Berlin University of Applied Science DSV-Labor. Organisatorisches - Studiengang BEL Schwerpunkt EK

TFH Berlin University of Applied Science DSV-Labor. Organisatorisches - Studiengang BEL Schwerpunkt EK University of Applied Science DSV-Labor Organisatorisches - Studiengang BEL Schwerpunkt EK DSV-Labor (Organisatorisches) Ablauf: 4 Laborübungen (3 Pflicht / 1 optional) 8 Termine Anwesenheitspflicht bis

Mehr

2. BERECHNUNG UND SIMULATIONDES ZEITVERHALTENS LINEARERSYSTEME FÜR TESTSSIGNALE

2. BERECHNUNG UND SIMULATIONDES ZEITVERHALTENS LINEARERSYSTEME FÜR TESTSSIGNALE REGELUNGSTE~ 2. BERECHNUNG UND SMULATONDES ZETVERHALTENS LNEARERSYSTEME FÜR TESTSSGNALE l/l 2.0 Grundbegriffe 2.1 Zeitverhalten eine linearen Sytem mdelliert im ZuJandraum 2.2 Zeitverhalten eine -Gliede

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Techniche Univerität Ilmenau Fakultät für Elektrotechnik und Informationtechnik Hauaufgabe im Fach Grundlagen der Schaltungtechnik (WS13/14) Bearbeiter Mat.-nr. Emailadree Aufgabe erreichte Punkte mögliche

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister... Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................

Mehr

Kapitel 2. Temporale Logik. Inhalt. Computergestützte Verifikation Zusammenfassung Kapitel 1. Inhalt. Warum nicht einfach PK 1?

Kapitel 2. Temporale Logik. Inhalt. Computergestützte Verifikation Zusammenfassung Kapitel 1. Inhalt. Warum nicht einfach PK 1? Inhalt Computergetützte Verifikation Kapitel 1: Syteme 19.4.2002 Simulation Gegenbeipiel Fehlerbeeitigung Verfeinerung Sytem Abtraktion Präziierung Modell - Model Checker + Spezifikation Formaliierung

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Übung 9: Aufgaben zu RC- und SC- Filter

Übung 9: Aufgaben zu RC- und SC- Filter ZHAW, ASV, FS05 Übung 9: Aufgaben zu C- und SC- Filter Aufgabe : Kontaktloses Skipass System Bei einem berührungsfreien, induktiven Zutrittssystem in die Ski-Arena wird vom Lesegerät ein starkes Trägersignal

Mehr

Beuth HS TFH für Berlin Technik Berlin University of Applied Science DSV-Labor. Organisatorisches - Studiengang BEL Schwerpunkt ES

Beuth HS TFH für Berlin Technik Berlin University of Applied Science DSV-Labor. Organisatorisches - Studiengang BEL Schwerpunkt ES Beuth HS TFH für Berlin Technik Berlin University of Applied Science DSV-Labor Organisatorisches - Studiengang BEL Schwerpunkt ES DSV-Labor (Organisatorisches) Ablauf: 5 Laborübungen 11 Termine Anwesenheitspflicht

Mehr

Analoge aktive Filter. Roland Küng, 2011

Analoge aktive Filter. Roland Küng, 2011 naloe aktie Filter oland Kün, Kondensator/Spule f Frequenz in Hz Kreisfrequenz in rad/s Strom-Spannun: Zeitbereich i C dc C C icdt dt C Speziell: Sinussinale Wechselstromimpedanz Z C jc pc p j j πf Strom-Spannun:

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf 5. Dezember 2016 Siehe begleitend: Kammeyer / Kroschel, Digitale Signalverarbeitung, 7. Auflage, Kapitel 4.2 1 Filterentwurfsstrategien 2 Diskretisierung

Mehr

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ Prof.Dr. B.Grabowki Mathematik III/MST Übung Löungen Löungen zu Übung-Blatt Differentialgleichungen. Ordnung und PBZ Zu Aufgabe ) Geben Sie jeweil mindeten eine Löung folgender Differentialgleichung an

Mehr

Bz e Kraft auf Magnetisches Moment. => Zuständen

Bz e Kraft auf Magnetisches Moment. => Zuständen Kap. 7 Der pin. Der pin it ein interner Freiheitgrad eine Teilchen und hängt weder von den räumlichen Koordinaten noch von Impul ab. Der pin legt die tatitik (Fermion oder Boon) fet. (QMII). tern Gerlach

Mehr

Lineare Funktionen. Arbeitsschritte Tastenfolge Display. Arbeitsschritte Tastenfolge Display. y p TableStart bei x = -10 Schrittweite: 0,5

Lineare Funktionen. Arbeitsschritte Tastenfolge Display. Arbeitsschritte Tastenfolge Display. y p TableStart bei x = -10 Schrittweite: 0,5 Lineare Funktinen Beiiel: y = 2x - 1 1. Eingabe der Funktingleichung Eingabe der Funktingleichung Y 1 eingeben Á ¹À 2. Wertetabelle Eintellungen für die Wertetabelle y TableStart bei x = -10 Schrittweite:

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Digitale Signalverarbeitungssysteme II: Praktikum 1

Digitale Signalverarbeitungssysteme II: Praktikum 1 Digitale Signalverarbeitungssysteme II: Praktikum 1 Emil Matus 18. November 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:

Mehr

Informationstechnik Lösung WS 2003

Informationstechnik Lösung WS 2003 Prüfng: Informationtechnik Termin: Montag, 0.0.00 :00 :00 Prüfer: Prof. J. Walter Hilfmittel: beliebig / Kein Internetzgang Name: Vorname: Bemerkng: bitte keine rote Farbe verwenden (nicht afüllen)! Afgabe

Mehr

Digitale Signalverarbeitung mit MATLAB

Digitale Signalverarbeitung mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 4., durchgesehene und ergänzte Auflage Mit 180 Abbildungen und 76 Tabellen STUDIUM VIEWEG+ TEUBNER 1 Erste

Mehr

Mathematikaufgabe 117

Mathematikaufgabe 117 Mathematikaufgabe 7 Copright 7 Manfre Hiebl Alle echte vorbehalten eite Home tarteite Impreum ontakt Gätebuch Aufgabe: Berechnen ie en Flächenchwerpunkt einer Viertel- un Achtelphäre in karteichen un phärichen

Mehr

Grundkurs Codierung Lösungsvorschläge zu den Fragen in den Unterkapiteln Was blieb? Stand Unterkapitel 4.4 Seite 261

Grundkurs Codierung Lösungsvorschläge zu den Fragen in den Unterkapiteln Was blieb? Stand Unterkapitel 4.4 Seite 261 Grundkur Codierung Löungvorchläge zu den Fragen in den Unterkapiteln Wa blieb? Stand 22.04.2007 Unterkapitel 4.4 Seite 261 Zu Frage 1: Nein, damit bleibt da one time pad-verfahren nicht perfekt. Man kann

Mehr

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 5. Musterlösung zum Übungsblatt 5 vom

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 5. Musterlösung zum Übungsblatt 5 vom Phyikaliche Chemie II (ür Biol./Pharm. Wi.) FS 207 Löung 5 Muterlöung zum Übungblatt 5 vom 9.3.208 ph-wert an der Zelloberläche. Die Debye-Länge ergibt ich au der Gouy-Chapman Theorie zu l D F " 0 ". ()

Mehr

Statistische Mechanik

Statistische Mechanik tatitiche Mechanik Die hermodynamik bechreibt makrokopiche Eigenchaften von Materie. Molekulare Eigenchaften werden mit der Quantenmechanik unterucht. Der Verknüpfung von Quantenmechanik und hermodynamik

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Grundwissen 9. Jahrgangsstufe Mathematik. Wissen / Können Beispiele. 1. Reelle Zahlen, Wurzeln und Potenzen

Grundwissen 9. Jahrgangsstufe Mathematik. Wissen / Können Beispiele. 1. Reelle Zahlen, Wurzeln und Potenzen Grundwien 9. Jahrgangtufe Mathematik Wien / Können Beiiele. Reelle Zahlen, Wureln und Potenen Die Menge der reellen Zahlen beteht au der Menge der rationalen Zahlen und der Menge der irrationalen Zahlen.

Mehr