Theoretische Informatik

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik"

Transkript

1 Vorlesung Theoretische Informtik Version: März 23 Mrin Mrgrf

2

3 Inhltsverzeichnis Einführung 4. Ds Problem Clique Wort-, Entscheidungs-, Optimierungsprobleme und formle Sprchen Endliche Automten 2. Deterministische endliche Automten Deterministische endliche Automten und ds Wortproblem Minimierungslgorithmus Nichtreguläre Sprchen Nichtdeterministische endliche Automten Abschlusseigenschften Reguläre Ausdrücke Grmmtiken Chomsky-Hierrchie Grmmtiken und ds Wortproblem Rechtslinere Grmmtiken und deterministische endliche Automten Kontextfreie Grmmtiken Kontextfreie Grmmtiken und ds Wortproblem Kontextfreie Grmmtiken und Kellerutomten Kellerutomten und ds Wortproblem

4 Einführung Die theoretische Informtik beschäftigt sich mit der Abstrktion, Modellbildung und grundlegenden Frgestellungen, die mit der Struktur, Verrbeitung, Übertrgung und Wiedergbe von Informtionen in Zusmmenhng stehen. Ziel der theoretischen Informtik ist lso die Anlyse der in der Informtik uftretenden Probleme und Strukturen mit mthemtischen Methoden. Im Zentrum stehen Begriffe wie Algorithmus, Progrmm, Progrmmiersprche, Berechnung und Effizienz. Es geht um die folgenden Frgen: Wie knn mn Algorithmen finden und uf ihre Leistung untersuchen? Gibt es Probleme, die sich nicht lgorithmisch lösen lssen oder nicht effizient lösen lssen? Wie lässt sich der lgorithmische Aufwnd zur Lösung eines Problems minimieren? Und schließlich, welche Methoden gibt es, Progrmme fehlerfrei zu entwickeln? Typische Aufgbengebiete, mit denen wir uns in der Vorlesung beschäftigen, sind: Formle Sprchen und Automtentheorie: Sei Σ eine Menge (für uns interessnt z.b. Σ = {,}, Σ = {,b,c,...,z}). Wir nennen Σ uch Alphbet. Mit Σ + := {w w n ;n N und w,...,w n Σ} bezeichnen wir die Menge ller Wörter, die über dem Alphbet Σ gebildet werden können. Weiter seiǫdsleerewort(lsodswortohnebuchstben)undσ := Σ + {ǫ}.eineteilmengel Σ heißt uch formle Sprche. Eine wichtige Frgestellung ist: Wie beschreibt mn die (meist unendliche) Menge von Wörtern mit endlichem Aufwnd? Wie entscheidet mn mit endlichem Aufwnd, ob ein Wort w Σ zur Sprche L Σ gehört. Wir werden noch sehen, dss sich viele Probleme us der theoretischen Informtik uf folgende Frgestellung reduzieren lssen: Wortproblem (L Σ ). Eingbe: Ein Wort w Σ. Frge: Gilt w L. Dieses uf den ersten Blick einfche Frgestellung ist ttsächlich für viele Sprchen sehr schwer zu lösen. Wir werden sogr sehen, dss es Sprchen L gibt, für die ds Wortproblem nicht lösbr ist Ein typischer Anwendungsfll ist die Entscheidung, ob ein gegebenes Progrmm syntktisch korrekt ist. Betrchtet mn die Menge ller Progrmme einer Progrmmiersprche ls Sprche über einem geeigneten Alphbet, so reduziert sich diese Frge uf ds oben definierte Wortproblem. Um diese Frge ber bentworten zu können, benötigen wir eine Beschreibung/Chrkterisierung der Sprche ller Progrmme einer Progrmmiersprche so, dss wir ds Wortproblem ttsächlich mittels eines Algorithmus entscheiden können. Wir werden verschiedene Chrkterisierungen von Sprchen kennen lernen: Über Grmmtiken: Grmmtiken dienen dzu, Wörter und dmit Sprchen zu erzeugen. Wir lernen unterschiedliche Grmmtiktypen kennen und untersuchen diese nch ihrer Fähigkeit, komplexe Sprchen zu erzeugen und für diese ds Wortproblem zu lösen. 4

5 KAPITEL. EINFÜHRUNG Über Automten: Automten sind Algorithmen, mit denen entschieden werden knn, ob ein Wort zu einer Sprche gehört. Wir lernen verschiedene Automtenklssen kennen, z.b. deterministische und nichtdeterministische endliche Automten, Kellerutomten, liner beschränkte Automten und Turingmschinen. Ähnlich wie bei den Grmmtiken untersuchen wir die verschiedenen Automtenklssen nch ihrer Fähigkeit, komplexe Probleme brbeiten zu können (insb. in Hinblick uf ds Wortproblem). Weiter schuen wir uns die Verbindung zwischen den Grmmtiktypen und den Automtenklssen n. Berechenbrkeit: Es ist einfch, von einem Problem zu zeigen, dss es lösbr ist oder von einer Funktion zu zeigen, dss diese berechenbr ist: Mn gibt einfch einen Algorithmus für ds Problem bzw. die Funktion n (z.b. ein C++-Progrmm). Um zu zeigen, dss ein Problem, z.b. ds Wortproblem für eine formle Sprche L, nicht lösbr ist, benötigen wir eine formle Definition des Begriffs Algorithmus. Wir werden verschiedene Definitionen kennen lernen und sehen, dss diese äquivlent sind, d.h. die selben Probleme lösen bzw. die selben Funktionen berechnen. Komplexitätstheorie: Uns interessiert nicht nur, ob Probleme lösbr sind, sondern uch wie effizient, d.h. wie schnell eine Lösung gefunden werden knn. Probleme werden n Hnd ihrer effizienten Lösbrkeit in sogennnten Komplexitätsklssen zusmmengefsst. Wir untersuchen in dieser Vorlesung die beiden Komplexitätsklssen P (in Polynomilzeit lösbr) und NP (nichtdeterministisch in Polynomilzeit lösbr) und erläutern in diesem Zusmmenhng eines der wichtigsten Frgen us dem Bereich der Algorithmik: Gilt P NP. Mit diesen Frgestellungen beschäftigen wir uns in dieser Vorlesung. Weitere Themen der theoretischen Informtik sind Kryptologie, Informtionstheorie, Algorithmik, Logik und Dtenbnktheorie.. Ds Problem Clique Wir behndeln in diesem Abschnitt ein typisches Problem us der theoretischen Informtik. Ein (endlicher) Grph ist ein Tupel G = (V,E), wobei V = V(G) eine endliche Menge und E = E(G) eine Teilmenge der zweielementigen Teilmengen von V ist. Die Elemente von V heißen Knoten (oder Ecken) und die Elemente von E Knten. Wir sgen, ein Knoten v V inzidiert mit einer Knte e E, wenn v e gilt. Weitere Formulierungen sind: v liegt uf e, e geht durch v oder v ist ein Endknoten von e. Beispiel.. Als Beispiel betrchten wir den Grphen G = (V,E) mit den Knoten V = {v,v 2,v 3,v 4 } und Knten E = {{v,v 2 },{v,v 3 },{v,v 4 },{v 2,v 4 },{v 3,v 4 }}. Eine Clique W V in G ist eine Teilmenge der Knotenmenge so, dss je zwei Knoten us W durch eine Knte verbunden sind. Beispiel.2. Der Grph us Abbildung. ht Fünf Cliquen der Größe 2: C = {v,v 2 }, C 2 = {v,v 3 }, C 3 = {v,v 4 }, C 4 = {v 2,v 4 }, C 5 = {v 3,v 4 } (jede Knte in G ist uch eine Clique der Größe 2), und Zwei Cliquen der Größe 3: C = {v,v 3,v 4 }, C 2 = {v,v 2,v 4 }. Die Menge V = {v,v 2,v 3,v 4 } ist keine Clique, d die Knoten v und v 3 nicht durch eine Knte verbunden sind. Gleiches gilt für die Mengen {v,v 2,v 3 } und {v 2,v 3,v 4 }. Dmit können wir die in diesem Abschnitt behndelten Probleme wie folgt formulieren. 5

6 KAPITEL. EINFÜHRUNG v v 2 v 3 v 4 Abbildung.: Ein Grph mit vier Knoten und fünf Knten. Optimierungsproblem (Clique). Eingbe: Ein Grph G = (V,E) Ausgbe: Eine Clique mximler Größe. Solche Probleme heißen uch Optimierungsprobleme. Mn unterscheidet zwischen Mximierungsund Minimierungsproblemen. Ds Optimierungsproblem gehört zur Klsse der Mximierungsprobleme, d hier eine bestimmte Eigenschft (Anzhl der Knoten in einer Clique) mximiert werden soll. Beispiel.3. Für den in Abbildung. drgestellten Grphen muss ein Algorithmus für ds obige Problem lso die Menge C = {v,v 3,v 4 } oder C 2 = {v,v 2,v 4 } usgeben. Im Gegenstz zu Optimierungsproblemen, in denen etws konstruiert werden soll, bentworten Entscheidungsprobleme lediglich Frgen (und zwr nur solche Frgen, die mit j oder nein bentwortet werden können). Entscheidungsproblem (Clique). Eingbe: Ein Grph G = (V,E) und eine ntürliche Zhl n N Frge: Gibt es eine Clique der Größe mindestens n in G. Beide Probleme, d.h. Optimierungs- und Entscheidungsproblem, hängen ntürlich zusmmen. So gilt z.b.: Gibt es einen Algorithmus für ds Optimierungsproblem Clique, so lässt sich drus sofort uch ein Algorithmus für die Entscheidungsvrinte konstruieren. Sei dzu A ein Algorithmus für ds Optimierungsproblem, der bei Eingbe eines Grphen G = (V,E) eine mximle Clique C = A(G = (V,E)) berechnet. Der folgende Algorithmus löst dnn ds Entscheidungsproblem Clique. Algorithmus für ds Entscheidungsproblem Clique Eingbe: G = (V,E) und k N C := A(G = (V,E)) (Bestimme eine mximle Clique C in G) 2 k := C (Bestimme die Größe von C) 3 if k k then 4 return whr 5 else 6 return flsch 7 fi Für die beiden Probleme gilt lso: Ist ds Optimierungsproblem lösbr, dnn gilt dies uch für ds Entscheidungsproblem. Zusätzlich ist ds Lufzeitverhlten für beide Algorithmen sehr 6

7 KAPITEL. EINFÜHRUNG ähnlich, d.h. wenn es einen effizienten (schnellen) Algorithmus für ds Optimierungsproblem gibt, dnn uch für ds Entscheidungsproblem. Die Umkehrung gilt im Allgemeinen nicht, us einem effizienten Algorithmus für die Entscheidungsvrinte lässt sich nicht immer uch ein effizienter Algorithmus für ds Optimierungsproblem konstruieren..2 Wort-, Entscheidungs-, Optimierungsprobleme und formle Sprchen Sei Σ eine endliche Menge. Wir nennen im Folgenden Σ ein Alphbet (z.b. Σ = {,}, Σ = {,b,c,...}). Mit Σ + := {w = w w 2 w n ;n N und w,...,w n Σ} bezeichnen wir die Menge ller Wörter über Σ, ǫ ist ds leere Wort und Σ := Σ + {ǫ}. Eine Teilmenge L Σ heißt uch Sprche. Ziel der Betrchtung formler Sprchen ist die Untersuchung des folgenden Problems: Wortproblem (L). Eingbe: Ein Wort w Σ. Frge: Gilt w L. Wie ds bereits kennen gelernte Problem Clique Entscheidungsproblem (Clique). Eingbe: Ein Grph G = (V,E) und eine ntürliche Zhl k N. Frge: Gibt es eine Clique C der Größe k in G? ist uch ds Wortproblem für jede Sprche L Σ ein Entscheidungsproblem. Auch hier gibt es nur die möglichen Antworten j oder nein. Auf den ersten Blick scheint es sich bei Wortproblemen lso um spezielle Entscheidungsprobleme zu hndeln. Wir werden jetzt ber m Beispiel des Problems Clique zeigen, wie sich Entscheidungsprobleme uf Wortprobleme reduzieren lssen. Mit nderen Worten: Zu jedem Entscheidungsproblem Π gibt es eine Sprche L Π {,} so, dss ds Entscheidungsproblem Π genu dnn entscheidbr ist, wenn ds Wortproblem L Π entscheidbr ist. Dzu überlegen wir uns zunächst, wie wir Eingben des Problems Clique (sowohl des Optimierungs- ls uch des Entscheidungsproblems) so kodieren können, dss diese Eingben durch Bitstrings, d.h. durch Wörter über dem Alphbet {, } repräsentiert werden. Eingben des Optimierungsproblems Clique sind Grphen. Sei im Folgenden G = (V, E) ein Grph mit V = {v,...,v n } und E = {e,...,e m }. Dnn heißt die Mtrix I G = ( ij ) i {,...,n} j {,...,m} mit ij = {, flls v i e j,, sonst Inzidenzmtrix von G. Beispielsweise erhlten wir für den in Abbildung.2 betrchteten Grphen die Inzidenzmtrix us Tbelle.. Mit Hilfe der Inzidenzmtrix I G = ( ij ) i {,...,n} lässt sich jeder Grph G = (V,E) ls ein Wort j {,...,m} über dem Alphbet Σ = {,} wie folgt kodieren: ( m }{{} Anzhl Knten n }{{} Anzhl Knoten } 2 {{ m } 2 nm ) Σ. erste Zeile der Inzidenzmtrix 7

8 KAPITEL. EINFÜHRUNG v 5 e e 2 e 8 v 3 v 4 e 5 e 6 e 7 e 3 e 4 v v 2 Abbildung.2: Der Grph zur Inzidenzmtrix in Tbelle.. e e 2 e 3 e 4 e 5 e 6 e 7 e 8 v v 2 v 3 v 4 v 5 Tbelle.: Die Inzidenzmtrix zum Grphen us Abbildung.2. Aus der Kodierung lässt sich offensichtlich die Inzidenzmtrix und dmit uch der Grph zurückgewinnen. Zunächst zählt mn dzu die Einsen bis zur ersten Null und erhält so die Anzhl der Knten des Grphen. Dnch zählt mn die Einsen zwischen den ersten beiden Nullen und erhält so die Anzhl der Knoten. Dnch lässt sich sofort die Inzidenzmtrix us dem restlichen Bitstring zurückgewinnen. Auf diese Weise wird uch überprüft, ob der Bitstring überhupt eine gültige Kodierung eines Grphen ist. Beispiel.4. (i) Die Kodierung für den Grphen us Abbildung. lutet 8 5. (ii) Der Bitstring bildet keine gültige Kodierung eines Grphen. Nch den ersten sieben Stellen müsste der Grph genu zwei Knten und drei Knoten hben. Eine Inzidenzmtrix für solch einen Grphen ht lso sechs Einträge, llerdings sind im obigen Bitstring nur vier weitere Bits, die diese Einträge repräsentieren, vorhnden. Hinweis: Es gibt deutlich bessere Methoden, Grphen über dem Alphbet {, } zu kodieren. Dmit wollen wir uns n dieser Stelle ber nicht beschäftigen. Unser Ziel ist lediglich einzusehen, dss sich Grphen ls Bitstrings kodieren lssen und dmit letztlich die Menge ller Grphen ls Sprche über {, } ufgefsst werden knn. Ähnlich lssen sich dnn uch die Eingben des Entscheidungsproblems Clique kodieren. Hier muss neben dem Grphen G = (V,E) uch eine ntürliche Zhl k N kodiert werden. Sei wieder G = (V,E) ein Grph mit n = V und m = E und I G = ( ij ) i {,...,n} die Inzidenzmtrix des j {,...,m} Grphen. Sei weiter k N eine ntürliche Zhl und k...k t {,} die Binärdrstellung von k (d.h. k = t i= k i2 i ). Dnn repräsentiert ds folgende Wort über dem Alphbet {,} die Eingbe (G, k). ( }{{} m }{{} n 2 m }{{} 2 nm Anzhl Knten Anzhl Knoten erste Zeile der Inzidenzmtrix }{{} Kodierung des Grphen k...k t }{{} Binärdrstellung von k ). 8

9 KAPITEL. EINFÜHRUNG Sei nun L Clique := {w Σ ;w ist die Kodierung einer Eingbe des Entscheidungsproblems Clique}. DnngiltL Clique {,}.WirnennendieseSprcheuchdieMengederzulässigenKodierungen des Entscheidungsproblems Clique. Die Sprche L Clique zerfällt in zwei disjunkte Teilmengen: L flse Clique L true Clique := {w L Clique ;w kodiert eine Nein-Eingbe des Entscheidungsproblems Clique} := {w L Clique ;w kodiert eine J-Eingbe des Entscheidungsproblems Clique} Diese zweite Menge L true Clique heißt die zum Entscheidungsproblem Clique ssoziierte Sprche. Wir hben jetzt drei verschiedene Probleme: Optimierungsproblem (Clique). Eingbe: Ein Grph G = (V,E) Ausgbe: Eine Clique mximler Größe. Entscheidungsproblem (Clique). Eingbe: Ein Grph G = (V,E) und eine ntürliche Zhl n N Frge: Gibt es eine Clique der Größe mindestens n in G. Wortproblem (Clique). Eingbe: Ein Wort w {,} Frge: Gilt w L true Clique? Wie hängen diese Probleme zusmmen? Wir hben bereits gesehen, dss ds Optimierungsproblem Clique mindestens so schwer ist wie ds Entscheidungsproblem Clique, ein Algorithmus für die Optimierungsvrinte führt sofort zu einem Algorithmus für die Entscheidungsvrinte (siehe Seite 6). Ähnlich hängen uch ds Wortproblem und ds Entscheidungsproblem zusmmen: Ein Algorithmus A für ds Entscheidungsproblem, der zu einem gegebenen Grph G und einer ntürlichen Zhl k entscheidet, ob G eine Clique der Größe k enthält, d.h. { whr, flls G eine Clique der Größe k enthält, A(G,k) = flsch, sonst liefert sofort einen Algorithmus für ds Wortproblem: Algorithmus für ds Wortproblem Clique Eingbe: w {,} Berechne us w den Grphen G und die ntürliche Zhl k 2 boolen b := A(G,k); /*genu dnn whr, wenn es eine Clique der Größe k in G gibt*/ 3 return b; Es gilt nun: Ist ds Optimierungsproblem Clique lösbr, so uch ds Entscheidungsproblem, und, ist ds Entscheidungsproblem Clique lösbr, so uch ds Wortproblem. Diese Aussge gilt so für lle Probleme. Im Umkehrschluss bedeutet dies: Ist ds Wortproblem nicht lösbr/nicht entscheidbr, so uch nicht ds Entscheidungsproblem, und, ist ds Entscheidungsproblem nicht lösbr/nicht entscheidbr, so ist uch ds Optimierungsproblem nicht lösbr. Im Sinne der Effizienz, d.h. dem Lufzeitverhlten eines Algorithmus zum Lösen der jeweiligen Probleme, erhlten wir nloge Aussgen: z.b. hben wir gesehen, dss sich der Algorithmus 9

10 KAPITEL. EINFÜHRUNG für ds Wortproblem in seiner Lufzeit nicht strk von der Lufzeit des Algorithmus für ds Entscheidungsproblem unterscheidet. Hinweis: Für die drei in Bezug uf Clique formulierten Probleme gilt uch jeweils die Umkehrung, d.h. ein Algorithmus für ds Wortproblem liefert uch einen Algorithmus für ds Entscheidungsproblem (diese Aussge gilt im Allgemeinen für lle ntürlichen Entscheidungsprobleme, siehe Vorlesung Komplexitätstheorie) und ein Algorithmus für ds Entscheidungsproblem liefert uch einen Algorithmus für ds Optimierungsproblem (dies gilt im Allgemeinen nicht).

11 2 Endliche Automten Wie wir im ersten Kpitel m Beispiel des Problems Clique gesehen hben, lssen sich Entscheidungsprobleme ls Wortprobleme über Sprchen L {,} uffssen. Die Frge ist nun, für welche Sprchen ds Wortproblem entscheidbr ist, d.h. für welche Sprchen es einen Algorithmus gibt, der ds Wortproblem löst. Ein Algorithmus ist nichts nderes ls eine Berechnungsvorschrift: Zu einer Eingbe (z.b. einem Wort w Σ und einer Sprche L Σ ) beschreiben wir, welche Berechnungsschritte der Algorithmus durchführen muss, um ein Ergebnis zu erzielen. Dbei stellt sich die Frge, welche Berechnungsschritte/Berechnungsmöglichkeiten wir für einen Algorithmus erluben. Es ist klr, dss unterschiedliche Berechnungsmodelle unterschiedlich mächtig sind, d.h. in der Lge sind, unterschiedlich komplexe Probleme zu lösen. Wir lernen in der Vorlesung verschiedene Berechnungsmodelle kennen und werden nlysieren, für welche Sprchen mit dem jeweiligen Berechnungsmodell ds Wortproblem entscheidbr ist. 2. Deterministische endliche Automten Wir beginnen mit der Klsse der deterministischen endlichen Automten, einem reltiv einfchen Berechnungsmodell. Definition 2.. Ein deterministischer endlicher Automt A ist ein 5 Tupel A = (Q,Σ,q,δ,F), wobei ist. Q eine endliche Menge (Menge der Zustände), Σ ein endliches Alphbet mit Σ Q =, q Q (der Anfngszustnd), δ : Q Σ Q eine Abbildung (die Übergngsfunktion) und F Q (Menge der Endzustände) Wir stellen uns die Arbeitsweise eines deterministischen endlichen Automten wie folgt vor: Zu Beginn steht der Lesekopf uf dem ersten Feld des Arbeitsbndes. In jedem Schritt rbeitet der Automt wie folgt: Gilt: dnn Der Automt befindet sich im Zustnd q und ließt den Buchstben x geht er in den Zustnd δ(q,x) über und bewegt den Lesekopf um eine Stelle nch rechts. Nch Abrbeiten des Wortes uf dem Arbeitsbnd gibt es zwei Fälle: Der Automt befindet sich in einem Endzustnd: dnn kzeptiert der ds Wort.

12 KAPITEL 2. ENDLICHE AUTOMATEN Lesekopf b b b b b b Arbeitsbnd Progrmm, gesteuert durch die Übergngsfunktion Abbildung 2.: Arbeitsweise eines deterministischen endlichen Automten Der Automt befindet sich in keinem Endzustnd: dnn kzeptiert er ds Wort nicht. Gegeben sei der folgende deterministische endliche Automt A = (Q,Σ,q,δ,F) mit Q = {q,q,q 2 },Σ = {,},F = {q 2 } und der Übergngsfunktion δ(q,) = q,δ(q,) = q,δ(q,) = q 2,δ(q,) = q,δ(q 2,) = q,δ(q 2,) = q 2. Die folgende grphische Repräsenttion dieses Automten nennen wir uch Zustndsübergngsdigrmm: q q q 2 Abbildung 2.2: Zustndsübergngsdigrmm eines deterministischen endlichen Automten Für uns von Interesse ist die Nutzung dieser Automten für ds in der Einleitung definierte Wortproblem. Dzu definieren wir zunächst: Definition 2.2. (Erweiterte Übergngsfunktion) Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt. Die erweiterte Übergngsfunktion δ : Q Σ Q ist itertiv wie folgt definiert: Für lle q Q und w Σ gilt δ (q,w) := q, flls w = ǫ, δ (q,w) := δ(q,), flls w Σ, δ (q,w) := δ (δ(q,),w ), flls w = w mit Σ und w Σ. 2

13 KAPITEL 2. ENDLICHE AUTOMATEN Beispiel 2.3. Für den in Abbildung 2.2 drgestellten Automten gilt z.b.: δ (q,) = δ (δ(q,) }{{} =q,) = δ (δ(q,) }{{} =q,) = δ (δ(q,) }{{} =q 2,) = δ (δ(q 2,) }{{} =q 2,) = δ (δ(q 2,) }{{} =q 2,) = δ (δ(q 2,) }{{} =q,ǫ) = δ (q,ǫ) = q. Definition 2.4. Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt. Wir sgen, dss A ds Wort w Σ kzeptiert, wenn δ (q,w) F. Die Menge L(A) := {w Σ ;δ (q,w) F} ller von A kzeptierten Wörter heißt die von A kzeptierte Sprche. Eine Sprche L heißt regulär, wenn es einen deterministischen endlichen Automten A mit L = L(A) gibt. Beispiel 2.5. Für den Automten us Abbildung 2.2 gilt L(A) = {w {,} ;w enthlt gerde viele Nullen}. In der Definition deterministischer endlicher Automten fordern wir insbesondere, dss die Übergngsfunktion δ totl ist, d.h. dss δ für lle (q,) Q Σ definiert ist. Dss dies keine wirkliche Einschränkung ist, zeigt ds folgende Beispiel. Beispiel 2.6. Wir betrchten den Automten in Abbildung 2.3: b q q Abbildung 2.3: Automt mit prtieller Übergngsfunktion Dδ(q,b)nichtdefiniertist,istdieserkeindeterministischerendlicherAutomtimSinneunserer Definition. Wir können ber durch geeignetes Hinzufügen eines sogennnten Ppierkorbzustndes die Übergngsfunktion so fortsetzen, dss sich die vom Automten kzeptierte Sprche nicht ändert und δ totl ist. Beispiel 2.7. FüreinWortw = w w n {,} bezeichnenwirmitnt(w) = n i= w n i2 i die durch den Bitstring w repräsentierte ntürliche Zhl(der Bitstring w ist lso die Binärdrstellung der Zhl nt(w) (most significnt bit first)). Beispielsweise gilt: nt() =,nt() =,nt() = 4,nt() = nt() = 3. 3

14 KAPITEL 2. ENDLICHE AUTOMATEN b b,b q q q 2 Abbildung 2.4: Automt mit totler Übergngsfunktion Im folgenden konstruieren wir einen determinisitischen endlichen Automten für die Sprche L = {w w n {,} ;nt(w) ist eine durch 3 teilbre Zhl}, lso die Sprche der Bitstrings, die eine durch 3 teilbre ntürliche Zhl repräsentieren. Bevor wir den Automten konstruieren, benötigen wir noch einige Vorüberlegungen:. nt(w) = 2 nt(w), denn für w = w w n und w n+ = gilt nt(w) = n w n+ i 2 i i= = w n+ 2 + n w n+ i 2 i i= n = + w n+ (n+) 2 i+ = i= n w n i 2 2 i i= n = 2 w n i 2 i i= = 2 nt(w). 2. nt(w) = 2 nt(w)+, denn für w = w w n und w n+ = gilt nt(w) = n w n+ i 2 i i= = w n+ 2 + n w n+ i 2 i i= n = + w n+ (n+) 2 i+ i= n = + w n i 2 2 i i= n = +2 w n i 2 i i= = +2 nt(w). 3. Für jede ntürliche Zhl k N gilt k mod 3 {,,2}, d.h. bei Teilung der Zhl durch drei erhlten wir entweder den Rest, oder 2. Gilt k mod 3 =, so ist k durch 3 teilbr (dies sind lso genu die Zhlen, die der Automt kzeptieren soll). 4

15 KAPITEL 2. ENDLICHE AUTOMATEN 4. Aus ) und 2) erhlten wir Ist nt(w) mod 3 =, dnn gilt nt(w) mod 3 = und nt(w) mod 3 =. Ist nt(w) mod 3 =, dnn gilt nt(w) mod 3 = 2 und nt(w) mod 3 =. Ist nt(w) mod 3 = 2, dnn gilt nt(w) mod 3 = und nt(w) mod 3 = 2. Nch diesen Vorüberlegungen ist die Konstruktion einfch: Wir benötigen drei Zustände q,q und q 2. Jeder Zustnd soll repräsentieren, in welchem Zustnd (in Bezug uf die Eigenschft Teilbrkeit der Zhl durch 3 mit Rest, oder 2) sich die bis hierhin gelesene Zhl befindet. Genuer, ist δ die erweiterte Übergngsfunktion des Automten und w = w w n {,} der Bitstring, der diese Zhl repräsentiert, so soll gelten δ (q,w w k ) = q i nt(w w k ) mod 3 = i für lle k n. q q q Für Bitstrings Für Bitstrings Für Bitstrings die bis hier die bis hier die bis hier gelesen wurden gelesen wurden gelesen wurden gilt w mod 3 = gilt w mod 3 = gilt w mod 3 = 2 Abbildung 2.5: Automt für die Sprche der durch 3 teilbren ntürlichen Zhlen Es muss lso gelten: Befindet sich der Automt im Zustnd q und liesteine,sobleibterimzustndq (usnt(w) mod 3 = folgtnt(w) mod 3 =, d.h. δ(q,) = q ), liest eine, so geht er in den Zustnd q über (us nt(w) mod 3 = folgt nt(w) mod 3 =, d.h. δ(q,) = q ). Befindet sich der Automt im Zustnd q und liesteine,sogehterindenzustndq 2 (usnt(w) mod 3 = folgtnt(w) mod 3 = 2. d.h. δ(q,) = q 2 ), liest eine, so geht er in den Zustnd q über (us nt(w) mod 3 = folgt nt(w) mod 3 =, d.h. δ(q,) = q. Befindet sich der Automt im Zustnd q 2 und liesteine,sogehterindenzustndq über(usnt(w) mod 3 = 2folgtnt(w) mod 3 =. D.h. δ(q 2,) = q, 5

16 KAPITEL 2. ENDLICHE AUTOMATEN liesteine,sobleibterimzustndq 2 (usnt(w) mod 3 = 2folgtnt(w) mod 3 = 2, d.h. δ(q 2,) = q 2. Insgesmt erhlten wir den in Abbildung 2.5 drgestellten Grphen. Der Anfngszustnd q ist zugleich der Endzustnd, d lut unserer Konstrukion für lle w {,} mit δ (q,w) = q gilt nt(w) mod 3 =, d.h. dies sind genu die Bitstrings, die die durch 3 teilbren Zhlen repräsentieren. 2.2 Deterministische endliche Automten und ds Wortproblem Wir kommen uf die in der Einleitung kennen gelernten Probleme zurück und werden sehen, dss diese für Sprchen, die durch deterministische endliche Automten gegeben sind, entscheidbr sind. Dbei heißt ein Problem entscheidbr, wenn es einen Algorithmus (z.b. ein Computerprogrmm) gibt, der für jede Eingbe terminiert, und zu jeder Eingbe die richtige Antwort liefert. Wortproblem (für deterministische endliche Automten). Eingbe: Ein deterministischer endlicher Automt A = (Q,Σ,q,δ,F) und ein Wort w Σ. Frge: Gilt w L(A)? Stz 2.8. Ds Wortproblem ist für durch deterministische endliche Automten gegebene Sprchen entscheidbr. Beweis. Der Beweis ist einfch, d hier der Automt schon selbst, ohne weitere Vorüberlegungen, den Algorithmus vorgibt. Um zu entscheiden, ob ein Wort w Σ uch in L(A) enthlten ist, müssen wir prüfen, ob w von A kzeptiert wird, d.h. ob δ (q,w) F. Dies lässt sich in O( w ) Schritten durchführen. 2.3 Minimierungslgorithmus Wir beginnen mit einem Beispiel. Beispiel 2.9. Offensichtlich kzeptiert der Automt A 2 us Abbildung 2.6 die selbe Sprche wie der Automt A us Abbildung 2.4. Es gilt lso L(A ) = L(A 2 ) = {b n m ;n,m N }. b,b q q q 2 b q 3 b q 4 b Abbildung 2.6: Automt 2 Definition 2.. (Äquivlenz von Automten) Wir nennen zwei Automten äquivlent, wenn sie die selbe Sprche kzeptieren. 6

17 KAPITEL 2. ENDLICHE AUTOMATEN Die beiden Automten us Beispiel 2.9 sind lso äquivlent. Unser Ziel ist, us einem gegebenen deterministischen endlichen Automten einen minimlen Automten (miniml in der Anzhl der Zustände) so zu konstruieren, dss sich die kzeptierte Sprche nicht ändert. Dzu betrchten wir zunächst den zweiten Automten us Beispiel 2.9 genuer. Erste Beobchtung: Der Zustnd q 4 im zweiten Automten ist vom Anfngszustnd q nicht zu erreichen und knn dher, ohne die vom Automten kzeptierte Sprche zu ändern, gelöscht werden. Definition 2.. Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt. Wir nennen einen Zustnd q Q erreichbr, wenn es ein Wort w Σ mit δ (q,w) = q gibt. Andernflls heißt q unerreichbr. Ds Löschen des Zustndes q 4 führt zu folgendem Automten. Alle weiteren Zustände in diesem Automten sind erreichbr. b,b q q q 2 b q 3 b Abbildung 2.7: Automt 2 ohne unerreichbre Zustände Zweite Beobchtung: AusgehendvondenZuständenq undq 3 kzeptiertderobigeautomt die selben Wörter, d.h. es gilt für lle w Σ : δ (q,w) F δ (q 3,w) F. Diese beiden Zustände tun lso ds selbe. Solche Zustände nennen wir im Folgenden äquivlent. Definition 2.2. Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt. Zwei Zustände q,q 2 Q heißen äquivlent (in Zeichen q q 2 ), wenn L(A,q ) = L(A,q 2 ). Dbei ist L(A,q) := {w Σ ;δ (q,w) F}, lso die von A kzeptierte Sprche, flls q der Anfngszustnd wäre. Beispiel 2.3. In unserem obigen Beispiel gilt L(A,q ) = {b n m ;n,m N }, L(A,q ) = { n ;n N }, L(A,q 2 ) =, und L(A,q 3 ) = {b n m ;n,m N }. Hier sind lso nur die Zustände q und q 3 äquivlent. 7

18 KAPITEL 2. ENDLICHE AUTOMATEN Unser Ziel ist, äquivlente Zustände zu einem Zustnd zu verschmelzen. Die Übergngsfunktion muss dnn ntürlich geeignet ngepsst werden. Hierfür benötigen wir noch einige Eigenschften der Reltion. Lemm 2.4. Die zweistellige Reltion ist eine Äquivlenzreltion uf Q, d.h. die Reltion ist reflexiv (für lle q Q gilt q q), symmetrisch (für lle q,p Q gilt, us q p folgt q p), trnsitiv (für lle q,p,r Q gilt, us q p und p r folgt p q). Mit q := {q Q;q q } bezeichnen wir die Äquivlenzklsse von q Q bezüglich. Beweis. Dies folgt unmittelbr us der Ttsche, ds Gleichheit eine Äquivlenzeltion ist: Reflexivität: Wegen L(A,q) = L(A,q) folgt q q. Symmetrie: D mit L(A,q) = L(A,p) uch L(A,p) = L(A,q) gilt, folgt us q p uch p q. Trnsitivität: Gilt q p und p r folgt L(A,q) = L(A,p) und L(A,p) = L(A,r), lso uch L(A,q) = L(A,r) und dmit q r. Einschub: Äquivlenzreltionen Ziel von Äquivlenzreltionen ist es, komplizierte Strukturen zu vereinfchen, in dem Elemente, die die gleichen Eigenschften besitzen, zusmmengefsst werden. Wir wollen ds m Beispiel einer Menge von Schülerinnen und Schülern einer Schule erläutern. Es sei S = {S,...,S n } die Menge der Schüler einer Schule (es besuchen lso n Schüler diese Schule). Wir sgen, Schüler S i steht in Reltion zu Schüler S j, wenn S i die selbe Klsse besucht wie Schüler S j (in Zeichen S i S j ). Offensichtlich ist diese Reltion eine Äquivlenzreltion, denn es gilt: Reflexivität: Jeder Schüler besucht die selbe Klsse wie er selbst, lso S i S i für lle i n. Symmetrie: Besucht Schüler S i die selbe Klsse wie Schüler S j, so besucht Schüler S j die selbe Klsse wie Schüler S i, lso S i S j = S j S i für lle i,j n. Trnsitivität:BesuchtSchülerS i dieselbeklssewieschülers j unds j dieselbeklssewie S k, dnn gehen uch S i und S k in die selbe Klssen, lso (S i S j S j S k ) = S i S k für lle i,j,k n. Ws sind nun die Äquivlenzklssen bzgl. dieser Reltion? Diese Frge lässt sich einfch bentworten. Ist z.b. S ein Schüler der Klsse 6b, so gilt S = {S i ;S S i } = {S i ;S i besucht die selbe Klsse wie S } = {S i ;S i besucht die Klsse 6b} = Menge der Schüler der Klsse 6b. Die Äquivlenzklssen bzgl. sind lso genu die Klssen der Schule. Wir kommen zurück uf die oben definierte Äquivlenzreltion uf der Menge der Zustände. Die Äquivlenzklssen dieser Reltion fssen diejenigen Zustände zusmmen, die bzgl. der Eigenschft Wörter bzurbeiten, ds selbe tun, lso die selben Wörter bzurbeiten. 8

19 KAPITEL 2. ENDLICHE AUTOMATEN Beispiel 2.5. Für den zweiten Automten us Beispiel 2.9 gibt es genu drei Äquivlenzklssen: q = q 3 = {q,q 3 }, q = {q }, q 2 = {q 2 }. Ws genu meint nun verschmelzen von Zuständen? Anstelle der Zustände betrchten wir nur noch die Äquivlenzklssen (fssen lso äquivlente Zustände zusmmen). Abbildung 2.8 zeigt dies für den Automten 2 us Beispiel 2.9 (ohne den unerreichbre Zustnd q 4 ). q q q 2 b,b Zustnd {q,q 3 } b q 3 b b Abbildung 2.8: Automt 2 Forml definieren wir den sogennnten Quotientenutomten. Definition 2.6. (Quotientenutomt) Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt. Der Quotientenutomt à = ( Q,Σ, q, δ, F) ist wie folgt definiert: Q := { q;q Q}, F := { q;q F}, δ : Q Σ Q;( q,) δ(q,). Zunächstistnichtsofortklr,dssdiemodifizierteÜbergngsfunktion δ ttsächlichwohldefiniert ist, d.h. dss für lle q,q 2 Q mit q q 2 uch δ(q,) δ(q 2,) und dmit δ(q,) = δ(q 2,) gilt. Lemm 2.7. Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt. Für lle q,q 2 Q mit q q 2 gilt δ(q,) δ(q 2,) für lle Σ. Beweis. Es gilt q q 2 L(A,q ) = L(A,q 2 ) w Σ : (δ (q,w) F δ (q 2,w) F) Σ v Σ : (δ (δ(q,),v) F δ (δ(q 2,),v) F) Σ : L(A,δ(q,)) = L(A,δ(q 2,)) δ(q,) δ(q 2,). 9

20 KAPITEL 2. ENDLICHE AUTOMATEN Auf den ersten Blick scheint es schwierig zu sein, die äquivlenten Zustände und dmit die Äquivlenzklssen zu bestimmen. Dzu müssen wir für lle q Q die Menge L(A, q) berechnen, lso Q verschieden Sprchen, und diese miteinnder vergleichen. Im Sinne der Effizienz wäre es schön, einen einfcheren Algorithmus zu hben, mit dem äquivlente Zustände bestimmt werden können. Wir betrchten dzu für jedes k N die Reltion q k q 2 : L k (A,q ) = L k (A,q 2 ). Dbei ist hier L k (A,q) := {w Σ ;δ (q,w) F und w k}. Offensichtlich ist für jedes k N die Reltion k uch eine Äquivlenzreltion. Weiter gilt Stz 2.8. Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt.. Die Äquivlenzreltion ht genu zwei Äquivlenzklssen: Q\F und F. 2. Für zwei Zustände q,q 2 Q gilt: q k+ q 2 = q k q Für zwei Zustände q,q 2 Q gilt q k+ q 2 Σ : δ(q,) k δ(q 2,). 4. Es gibt ein k N so, dss k = k+ (dmit gilt dnn uch = k = k+ = ). Beweis.. Dies folgt sofort us der Definition: Es gibt genu ein Wort us Σ der Länge : ǫ. Nch Definition der erweiterten Überführungsfunktion gilt δ (q,ǫ) := q für lle Zustände q Q. Es gilt somit { L {ǫ}, flls q F, (A,q) =, sonst. 2. Sind q und q 2 k+ äquivlent, dnn gilt für lle w Σ mit w k + : δ (q,w) F δ (q,w) F. Dies gilt dnn insbesondere uch für lle Wörter der Länge kleiner oder gleich k. 3. Es gilt q k+ q 2 L k+ (A,q ) = L k+ (A,q 2 ) w Σ mit w k + : (δ (q,w) F δ (q 2,w) F) Σ,w Σ mit w k : (δ (q,w ) F δ (q 2,w ) F) Σ,w Σ mit w k : (δ (δ(q,),w ) F δ (δ(q 2,),w ) F) Σ : L k (A,δ(q,)) = L k (A,δ(q 2,)) Σ : δ(q,) k δ(q 2,). 4. Aussge 2. zeigt, dss k+ k Q Q gilt. D die Menge der Zustände endlich ist, gibt es k N mit = k+ = k. Dmit lässt sich nun ein Algorithmus zum Bestimmen der Äquivlenzklssen bezüglich der Reltion konstruieren. Algorithmus Minimierungslgorithmus Eingbe: A = (Q,Σ,q,δ,F) Schritt (Äquivlenzklssen bzgl. ) 2

21 KAPITEL 2. ENDLICHE AUTOMATEN 2 M, = F 3 M,2 = Q\F 4 K = {M,,M,2 } 5 Schritt k +,k : (Konstruktion der Äquivlenzklssen bzgl. k +) (/*K k = {M k,,...,m k,n } Äquivlenzklssen bzgl. k (konstruiert in Schritt k)*/) 6 K k+ = 7 for i = to n do 8 Bestimme die Menge H k+,i der Äquivlenzklssen bzgl. k+ der Zustände in M k,i (Zwei Zustände q,q M k,i kommen in eine Klsse, flls für lle x Σ gilt: δ(q,x) und δ(q,x) gehören zu ein und derselben Klsse in K k ) 9 K k+ := K k+ H k+,i od if K k+ = K k then 2 return K k 3 else 4 Gehe zum nächsten Schritt (k + k +2) 5 fi Beispiel 2.9. Wir führen Beispiel 2.9 fort und schuen uns genuer n, ws der Minimierungslgorithmus für den dort behndelten Automten berechnet. Schritt : (Äquivlenzklssen bzgl. ) M, = F = {q,q,q 3 } M,2 = Q\F = {q 2 } K = {M,,M,2 } Schritt (k = ): Äquivlenzklssen bzgl. in M, : (q,q ) : D δ(q,) = q, δ(q,) = q und q q gilt δ(q,) δ(q,). D δ(q,b) = q 3, δ(q,b) = q 2 und q 3 q 2 gilt δ(q,b) δ(q,b). Insgesmt folgt q q. (q,q 3 ) : D δ(q,) = q, δ(q 3,) = q und q q gilt δ(q,) δ(q 3,). D δ(q,b) = q 3, δ(q 3,b) = q 3 und q 3 q 3 gilt δ(q,b) δ(q 3,b). Insgesmt folgt q q 3. (q,q 3 ) : D δ(q,) = q, δ(q 3,) = q und q q gilt δ(q,) δ(q 3,). D δ(q,b) = q 2, δ(q 3,b) = q 3 und q 2 q 3 gilt δ(q,b) δ(q 3,b). Insgesmt folgt q q 3. Wir erhlten H, = {{q,q 3 },{q }}. Äquivlenzklssen bzgl. in M,2 : D M,2 = {q 2 }, gilt H,2 = {{q 2 }}. Wir erhlten H,2 = {{q 2 }}. Insgesmt gilt dmit K = {{q,q 3 },{q },{q 2 }}. D K K, gehen wir zu Schritt 2 über. 2

22 KAPITEL 2. ENDLICHE AUTOMATEN Schritt 2: (k = 2) Sei M, = {q,q 3 },M,2 = {q },M,3 = {q 2 } Äquivlenzklssen bzgl. 2 in M, (q,q 3 ): D δ(q,) = q, δ(q 3,) = q und q q gilt δ(q,) 2 δ(q 3,). D δ(q,b) = q 3, δ(q 3,b) = q 3 und q 3 q 3 gilt δ(q,b) 2 δ(q 3,b). Insgesmt folgt q 2 q 3. Wir erhlten H 2, = {{q,q 3 }}. Äquivlenzklssen bzgl. 2 in M,2 : D M,2 = {q }, gilt H 2,2 = {{q }}. Wir erhlten H 2,2 = {{q }}. Äquivlenzklssen bzgl. 2 in M,3 : D M,3 = {q 2 }, gilt H 2,3 = {{q 2 }}. Wir erhlten H 2,3 = {{q 2 }}. Insgesmt gilt K 2 = {{q,q 3 },{q },{q 2 }}. D K = K 2, hben wir die Äquivlenzklssen bzgl. gefunden. 2.4 Nichtreguläre Sprchen Um nchzuweisen, dss eine Sprche von einem deterministischen endlichen Automten kzeptiert wird, muss mn nur einen Automten für diese Sprche ngeben. Offensichtlich sind diese Automten ber sehr beschränkt. Es gibt dher Sprchen, die nicht von einem deterministischen endlichen Automten kzeptiert werden. Wir wollen in diesem Abschnitt kennen lernen, wie mn von einer Sprche zeigen knn, dss es für diese keinen determinisitschen endlichen Automten gibt. Beispiel 2.2. Wir betrchten die Sprche L = { n b n ;n N}. Angenommen, die Sprche wird von einem deterministischen endlichen Automten A = (Q,Σ,q,δ,F) kzeptiert. D A nur endlich viele Zustände Q ht, gibt es n,m N so, dss sich der Automt nch Einlesen des Wortes n im selben Zustnd befindet wie nch Einlesen des Wortes m. Der Automt ht in diesem Zustnd keine weitere Informtion, knn lso insbesondere nicht wissen, ob er gerde n oder m eingelesen ht. Wird nun n b n von A kzeptiert, so uch m b n. Dmit ist lso L = { n b n ;n N} eine echte Teilmenge von der von A kzeptierten Sprche. Lemm 2.2. (Pumping-Lemm) Sei L eine von einem deterministischen endlichen Automten kzeptierte Sprche. Dnn existiert n N so, dss gilt: Jedes Wort w L mit w n lässt sich zerlegen in w = xyz mit: y ǫ, xy n, xy k z L für lle k N. WirkönnenWörterw L(A)beinerbestimmtenGrößelsoirgendwoinderMitteufpumpen. Der Beweis des Pumping-Lemms folgt den im obigen Beispiel errbeiteten Überlegungen. 22

23 KAPITEL 2. ENDLICHE AUTOMATEN Beweis. Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt. Wir wählen n = Q. Sei weiter w = n L(A) mit n n. Wir definieren p := q p := δ(p, ) p 2 := δ(p, 2 ). p i := δ(p i, i ). p n := δ(p n, n ). q = p 2 p i i+ pi n pn F D w L(A) gilt p n F. Weiter ist n n. Es gibt dher i < j mit i,j n und p i = p j. Wir setzen nun x = i, y = i+ j und z = j+ n. Dnn gilt y ǫ (d i < j), xy n und δ (p i,y) = p j = p i und dmit uch δ (p i,y k ) = p i für lle k N. Wir erhlten lso y ǫ (d i < j), xy n, q = p y= i+ j p p i p j p n F }{{} p i =p j xy k z N für lle k N. Beispiel Mit dem Pumping-Lemm können wir forml nchweisen, dss L = { n b n ;n N} nicht von einem deterministischen endlichen Automten kzeptiert wird. Beweis. Angenommen, L wird von einem deterministischen endlichen Automten kzeptiert. Dnn existiert nch dem Pumping-Lemm n N so, dss für lle w L mit w n eine Zerlegung mit. xy n, 2. y ǫ und 3. xy k z N für lle k N existiert. Wir zeigen nun, dss es w L mit w n so gibt, dss für jede mögliche Zerlegung xyz nicht lle drei Bedingungen des Pumping-Lemms gelten und erhlten so einen Widerspruch zu unserer Annhme, dss L von einem deterministischen endlichen Automten kzeptiert wird. Sei dzu w = n b n und xyz = w eine beliebige Zerlegung von w mit den obigen Eigenschften. Wegen xy n existiert n N mit xy = n. D y ǫ exsistiert weiter m N, m mit y = m. Lut Eigenschft 3 gilt nun xy 2 z = n +m b n+ L, ein Widerspruch. Hinweis: Nicht lle Sprchen, die ds Pumping-Lemm erfüllen, werden uch von einem determinitischen endlichen Automten kzeptiert. Wir werden später noch einml druf zurückkommen. 23

24 KAPITEL 2. ENDLICHE AUTOMATEN 2.5 Nichtdeterministische endliche Automten Bisher hben wir lediglich deterministische Automten A = (Q,Σ,q,,F) behndelt, d.h. zu jedem Zustnd q Q und zu jedem Buchstben Σ existiert genu ein Folgezustnd q = δ(q,). Die Arbeitsweise solcher Automten ist lso vorhersgbr, d.h. deterministisch. Definition Ein nichtdeterministischer endlicher Automt (NEA) A ist ein 5 Tupel A = (Q,Σ,q,,F), wobei Q eine endliche Menge (Menge der Zustände), Σ ein endliches Alphbet mit Σ Q =, q Q (der Anfngszustnd), Q Σ Q eine Reltion (die Übergngsreltion) und F Q (Menge der Endzustände) ist. Die Elemente von heißen uch Trnsitionen. Ist A = (Q,Σ,q,,F) ein nichtdeterministicher endlicher Automt, so schreiben wir für eine Trnsition (q,,q ) uch kurz A : q q. Sei weiter w = w w 2 w n ein Wort über Σ. Existieren Trnsitionen (q,w,q 2 ),(q 2,w 2,q 3 ),...,(q n,w n,q n+ ), d.h. so schreiben wir uch w q w 2 w q2 q3 q n n qn+ A : q w qn+. Im Gegenstz zu deterministischen Automten wird ein Folgezustnd bei nichtdeterministischen Automten lso über eine Reltion beschrieben und nicht über eine Funktion. Dies erlubt mehrere mögliche Übergänge zu einem Pr (q,) Q Σ. Beispiel Wir betrchten den nichtdeterministischen endlichen Automten A = (Q,Σ,q,,F) mit Q = {q,q,q 2 },Σ = {,},F = {q 2 } und us Abbildung 2.9. = {(q,,q ),(q,,q ),(q,,q ),(q,,q 2 )}, q q q 2 Abbildung 2.9: Ein NEA für die Sprche {w {,} ;w ht Suffix }. Befindet sich der Automt im Zustnd q und ließt den Buchstben, dnn gibt es zwei mögliche Folgezustände Wird die Trnsition (q,,q ) genutzt, so verbleibt der Automt im Zustnd q. Bei Nutzung der Trnsition (q,,q ) geht er in den Zustnd q über. 24

25 KAPITEL 2. ENDLICHE AUTOMATEN Offensichtlich sind deterministische endliche Automten spezielle nichtdeterministische Automten (die Übergngsreltion knn hier durch eine Funktion δ beschrieben werden). Ziel dieses Abschnittes ist zu zeigen, dss nichtdeterministische endliche Automten die selben Sprchen kzeptieren wie deterministische. Stz 2.25 (Rbin, Scott). Zu jedem nichtdeterministischen endlichen Automten A existiert ein deterministischer endlicher Automt A mit L(A) = L(A ). Beweis. Die Frge ist lso, wie wir einen nichtdeterministischen endlichen Automten deterministisch mchen, ohne die von ihm kzeptierte Sprche zu ändern. Dzu betrchten wir noch einml ds Beispiel us Abbildung 2.9: Hier knn der Automt vom Zustnd q bei Lesen des Buchstbeninq verbleibenoderindenzustndq gehen.umdieeindeutigkeitdesübergngs zu erreichen, führen wir einfch den neuen Zustnd {q,q } ein und definieren δ(q,) := {q,q }. Dmit hben wir die Informtion, in welche Zustände der Automt von q us gehen knn erhlten und gleichzeitig die Eindeutigkeit des Übergngs hergestellt. Wie verfhren wir, wenn der Übergng schon eindeutig ist? Dzu betrchten wir wieder den Zustnd q und den Buchstben. Nch Definition des Automten gibt es hier nur den Folgezustnd q. Wir können lso definieren δ(q,) = {q }. Wir müssen jetzt nur noch ngeben, welche Übergänge von diesen neuen Zuständen {q,q } us möglich sind. Im Beispiel gilt Bei Lesen von geht der Automt von q in q oder q, von q in q 2. Bei Lesen von geht der Automt von q in q, von q gibt es keinen Folgezustnd. Wir definieren lso δ({q,q },) = {q,q,q 2 } und δ({q,q },) = {q }. Mit diesen Vorüberlegungen sind wir jetzt in der Lge, den Stz zu beweisen. Ds Verfhren, us einem nichtdeterministischen Automten einen deterministischen zu konstruieren, der die selbe Sprche kzeptiert, heißt uch Potenzmengenkonstruktion. Sei lso A = (Q,Σ,q,,F) ein nichtdeterministischer endlicher Automt. Wir definieren us A einen deterministischen endlichen Automten A = (Q,Σ,q,δ,F ) wie folgt: Q = P(Q) = {P;P Q} die Potenzmenge von Q, q = {q }, F = {P P(Q);P F } und δ : P(Q) Σ P(Q);(P,) {q Q; p P : (p,,q) }. Beispiel Für den Automten us Beispiel 2.24 erhlten wir den in Abbildung 2. drgestellten Potenzmengenutomten. 25

26 KAPITEL 2. ENDLICHE AUTOMATEN,, {q } {q } {q 2 } {q,q 2 } {q,q } {q,q 2 } {q,q,q 2 } Abbildung 2.: Der Potenzmengenutomt des Automten us Beispiel Offensichtlich ist der so konstruierte Automt deterministisch. Wir müssen jetzt nur noch zeigen, dss beide Automten die selbe Sprche kzeptieren. Dzu zeigen wir zunächst für lle w Σ : A : q w q q δ ({q},w). Wir beweisen diese Aussge per Induktion über die Länge der Wörter. Induktionsnfng: Gelte lso w =, d.h. w = ǫ. Dnn gilt A : q ǫ q q = q q {q} =: δ ({q},ǫ). Induktionsschritt: Sei w = w und gelte die Induktionsvorussetzung A : q w q q δ ({q},w ). 26

27 KAPITEL 2. ENDLICHE AUTOMATEN Dnn gilt A : q w=w q p Q : A : q w p und A : p q p Q : q δ ({q},w ) }{{} =:R q δ (δ ({q},w ),) }{{} =:R q δ ({q},w ). und (p,,q ) Dmit ist die Zwischenbehuptung gezeigt. Insgesmt erhlten wir (in der zweiten Äquivlenz nutzen wir die Zwischenbehuptung us): A kzeptiert w q F : A : q w q q F : q δ ({q },w) δ ({q },w) F δ ({q },w) F A kzeptiert w. Im Allgemeinen wird der us einem nichtdeterministischen endlichen Automten konstruierte Potenzmengenutomt nicht miniml sein, siehe z.b. den Automten us Abbildung 2.. Ein minimler determinisitischer endlicher Automt lässt sich dnn mit Hilfe des in Abschnitt 2.3 kennen gelernten Minimierungslgorithmus konstruieren. Es gibt ber uch Beispiele, für die der Potenzmengenutomt bereits miniml ist. Wir werden solch einen Fll in den Übungen behndeln. Eine weitere Verllgemeinerung sind nichtdeterministische endliche Automten, die uch Worttrnsitionen zulssen. D.h. hier ist die Übergngsreltion eine Teilmenge von Q Σ Q, siehe Abbildung 2.. ǫ,b q q q 2 ǫ ǫ q 3 b Abbildung 2.: Ein Automt mit Worttrnsitionen. Wir werden jetzt zeigen, ds, wie schon im Fll der nichtdeterministischen Automten, uch diese Automten nicht mächtiger sind ls determinisitischer endlicher Automte. Auch hier gilt wieder, us jedem Automten mit Worttrnsitionen lässt sich ein deterministischer endlicher Automt konstruieren, der die selbe Sprche kzeptiert. Die Konstruktion erfolgt in drei Schritten: 27

28 KAPITEL 2. ENDLICHE AUTOMATEN Schritt : Im ersten Schritt konstruieren wir us dem Automten A = (Q,Σ,q,,F) mit Worttrnsitionen einen sogennnten ǫ NEA A = (Q,Σ,q,,F), d.h. hier gilt (Q (Σ {ǫ}) Q). Dzu ersetzen wir jede Trnsition (q,w w n,q ) mit n 2 durch die Trnsitionen (q,w,q ),(q,w 2,q 2 ),...,(q (n ),w n,q ) mit jeweilsneuen Zuständenq,...,q n, vergleiche Abbildung 2.2. ǫ,b q q q 2 ǫ ǫ q 4 q 3 b q 5 Abbildung 2.2: Der us dem Automten us Abbildung 2. konstruierte ǫ NEA. Schritt 2: Im zweiten Schritt konstruieren wir nun us dem ǫ NEA A = (Q,Σ,q,,F) einen nichtdeterministischenendlichenautomtena = (Q,Σ,q,,F ),derdieselbesprche kzeptiert, wie folgt (siehe Abbildung 2.2): := {(q,,q );A : q q }, { F F {q }, flls A := ǫ : q F F, sonst.,b,b q q q 4 q 2 b q 3 b q 5 Abbildung 2.3: Der us dem ǫ NEA us Abb. 2.2 konstruierte NEA. Schritt 3: Nch Schritt 2 erhlten wir einen nichtdeterministischen Automten. In Stz 2.25 hben wir gesehen, wie sich druf ein deterministischer endlicher Automt, der Potenzmengenutomt, konstruieren lässt. 28

29 KAPITEL 2. ENDLICHE AUTOMATEN Insgesmt erhlten wir Stz Zu jedem nichtdeterministischen endlichen Automten mit Worttrnsitionen existiert ein deterministischer endlicher Automt, der die selbe Sprche kzeptiert. 2.6 Abschlusseigenschften Wir untersuchen in diesem Abschnitt, wie sich von deterministischen endlichen Automten kzeptierte Sprchen unter verschiedenen mengentheoretischen Opertionen verhlten. Stz Seien L,L 2 Σ Sprchen, die jeweils von einem deterministischen endlichen Automten kzeptiert werden. Dnn werden uch die folgenden Sprchen von einem determinisitischen endlichen Automten kzeptiert:. L L 2, 2. L = Σ \L, 3. L L 2, 4. L \L 2 und 5. L L 2 := {w w 2 ;w L,w 2 L 2 }. Beweis.. Sei A = (Q,Σ,q,δ,F ) und A 2 = (Q 2,Σ,q 2,δ 2,F 2 ) ein Automt für die Sprche L bzw. L 2. Der in Abbildung 2.4 drgestellte Automt mit ǫ Übergängen kzeptiert dnn die Sprche L L 2 : Automt A für die Sprche L ǫ q q ǫ Automt A 2 für die Sprche L 2 q 2 Abbildung 2.4: Ein Automt für die Sprche L L 2 In Stz 2.27 hben wir gezeigt, dss sich hierus ein deterministischer endlicher Automt konstruieren lässt. 2. Sei A = (Q,Σ,q,δ,F) ein deterministischer endlicher Automt mit L = L(A). Dnn ist A := (Q,Σ,q,δ,Q\F) ein Automt mit L = L(A), denn w L w L = L(A) δ (q,w) F δ (q ) Q\F w L(A) 3. Sei A = (Q,Σ,q,δ,F ) bzw. A 2 = (Q 2,Σ,q 2,δ 2,F 2 ) ein deterministischer endlicher Automt für L bzw. L 2. Wir definieren den sogennnten Produktutomt wie folgt: A A 2 := (Q Q 2,Σ,(q,q 2 ),δ,f F 2 ) 29

30 KAPITEL 2. ENDLICHE AUTOMATEN wobei Es gilt nun: δ : (Q Q 2 ) Σ Q Q 2 ;((q,p),) (δ (q,),δ 2 (p,)). w L(A A 2 ) δ ((q,q 2 ),w) F F 2 δ (q,w) F und δ 2(q 2,w) F 2 w L(A ) und w L(A 2 ) w L L Es gilt L \L 2 = L L 2. In 2. hben wir bereits gezeigt, dss mit L 2 uch L 2 von einem deterministischen endlichen Automten kzeptiert wird. Gleiches gilt für den Schnitt zweier Sprchen (3.). 5. Sei A = (Q,Σ,q,δ,F ) und A 2 = (Q 2,Σ,q 2,δ 2,F 2 ) ein Automt für die Sprche L bzw. L 2. Der in Abbildung 2.5 drgestellte Automt mit ǫ Übergängen kzeptiert dnn die Sprche L L 2. Wieder us Stz 2.27 folgt dnn die Behuptung. Endzustände Automt A für Automt A 2 für die Sprche L die Sprche L 2 q ǫ q 2 ǫ Abbildung 2.5: Ein Automt für die Sprche L L 2 Dnk dieser Konstruktionen sind wir sowohl in der Lge, leichter Automten für vorgegebene Sprchen zu konstruieren, ls uch von Sprchen nchzuweisen, dss es für diese keinen deterministischen endlichen Automten gibt. Beispiel (i) Wir betrchten die Sprche L = { n b m ;n,m N und n m}. Angenommen, diese Sprche wird von einem deterministischen endlichen Automten kzeptiert. Nch Stz gilt dies dnn uch für die Sprche L = { n b m ;n,m N und n = m} = { n b n ;n N). Dies ist ber, wie wir in Beispiel 2.22 bereits gesehen hben, flsch. (ii) Als zweites Beispiel betrchten wir die Sprche L = {w {,};w ht gerde viele Einsen und gerde viele Nullen}. z z Abbildung 2.6: Automt für L Wir konstruieren zunächst Automten für die beiden Sprchen L = {w {,} ;w ht gerde viele Einsen} L 2 = {w {,} ;w ht gerde viele Nullen}. 3

31 KAPITEL 2. ENDLICHE AUTOMATEN q q Abbildung 2.7: Automt für L 2 Offensichtlichgiltdnn L = L L 2. Automten für die SprchenL und L 2 sind in Abbildungen 2.6 und 2.7 drgestellt. Der Produktutomt ht dnn die in Abbildung 2.8 drgestellte Form. (z,q ) (z,q ) (z,q ) (z,q ) Abbildung 2.8: Automt für L 3

32 KAPITEL 2. ENDLICHE AUTOMATEN 2.7 Reguläre Ausdrücke In diesem Abschnitt werden wir zeigen, dss sich Sprchen, die von einem deterministischen endlochen Automten kzeptiert werden, uch uf eine ndere, einfchere Weise, den sogennnten regulären Ausdrücken, beschreiben lssen. Zusätzlich dzu wird ein Verfhren ngegeben, durch ds mn bei vorgegebener Sprche einen regulären Ausdruck zu dieser Sprche findet. Definition 2.3. Sei Σ ein endliches Alphbet. Die Menge der regulären Ausdrücke über Σ ist induktiv wie folgt definiert:,ǫ und Σ sind reguläre Ausdrücke. Sind x und y reguläre Ausdrücke über Σ, so uch (x+y) (Alterntive), (x y) (Verkettung) und (x ) (Kleene-Stern, Kleenesche Hülle) reguläre Ausdrücke. Für ds Arbeiten mit regulären Ausdrücken vereinbren wir folgende Konventionen: Außenklmmern fllen weg, bindet stärker ls +, stärker ls und drf wegfllen, d.h., us (( b )+b) wird b +b. Definition 2.3. (i) Die durch einen regulären Ausdruck r definierte Sprche L(r) ist induktiv wie folgt definiert: L( ) =,L(ǫ) = {ǫ} und L() = {} für lle Σ. L(r +s) = L(r) L(s), L(r s) = L(r) L(s) und L(r ) = L(r). (ii) Wir nennen eine Sprche L regulär, wenn es einen regulären Ausdruck r mit L(r) = L gibt. Für den regulären Ausdruck r = b +b über Σ = {,b} gilt L(r) = {w Σ ;(w = b i,i ) (w = b)}. Für den regulären Ausdruck rb + b sieht mn sofort, dss sich hierfür ein deterministischer endlicher Automt A mit L(A) = L(r) konstruieren lässt, siehe Abbildung 2.9. q b q q 2 Allgemein gilt: Abbildung 2.9: Ein Automt für den regulären Ausdruck rb +b. 32

33 KAPITEL 2. ENDLICHE AUTOMATEN Stz Eine Sprche ist genu dnn regulär, wenn sie von einem deterministischen endlichen Automten kzeptiert wird. Beweis. Wir zeigen hier nur eine Richtung der Behuptung (eine reguläre Sprche wird von einem deterministischen endlichen Automten kzeptiert). Dzu konstruieren wir induktiv us einem regulären Ausdruck r zunächst einen ǫ NEA für L(r). Mit Stz 2.27 folgt dnn die Behuptung. Induktionsnfng: Für die regulären Ausdrücke, ǫ und für lle Σ kzeptieren die folgenden drei Automten offensichtlich jeweils die von den regulären Ausdrücken definierte Sprche: q q Abbildung 2.2: Ein Automt für den regulären Ausdruck. ǫ q q Abbildung 2.2: Ein Automt für den regulären Ausdruck ǫ. q q Abbildung 2.22: Ein Automt für den regulären Ausdruck. Induktionsschritt: Seien r, s reguläre Ausdrücke über Σ und ǫ NEAs für r und s gegeben. Dnn kzeptieren die folgenden drei Automten jeweils die Sprche L(r +s),l(r s) und L(r ). 33

34 KAPITEL 2. ENDLICHE AUTOMATEN ǫ ǫ NEA für die Sprche L(r) urspr. Anfngszustnd Endzustände ǫ ǫ NEA für die Sprche L(s) urspr. Anfngszustnd Endzustände Abbildung 2.23: Ein Automt für die Sprche L(r +s) ǫ NEA für die Sprche L(r) urspr. Endzustände ǫ ǫ NEA für die Sprche L(s) urspr. Anfngszustnd Endzustände ǫ Abbildung 2.24: Ein Automt für die Sprche L(r s) ǫ ǫ ǫ NEA für die Sprche L(r) urspr. Endzustände ǫ urspr. Anfngszustnd Abbildung 2.25: Ein Automt für die Sprche L(r ) 34

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten (II) 28.04.2016 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-koblenz.de 1 Übersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

Berechenbarkeitstheorie 4. Vorlesung

Berechenbarkeitstheorie 4. Vorlesung 1 Berechenbrkeitstheorie Dr. Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attribution-NonCommercil 3.0 Unported Lizenz. Reguläre Ausdrücke

Mehr

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht Formle Systeme, Automten, Prozesse Übersicht 2 2.1 Reguläre Ausdrücke 2.2 Endliche Automten 2.3 Nichtdeterministische endliche Automten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.7 Berechnung

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

1.5. Abbildung. DEFINITION injektiv, surjektiv, bijektiv Eine Abbildung f ist injektiv, falls es zu jedem y Y höchstens ein x X gibt mit

1.5. Abbildung. DEFINITION injektiv, surjektiv, bijektiv Eine Abbildung f ist injektiv, falls es zu jedem y Y höchstens ein x X gibt mit CHAPTER. MENGEN UND R ELATIONEN.5. ABBILDUNG.5. Abbildung Eine Abbildung (oder Funktion ist eine Reltion f über X Y mit der Eigenschft: für jedes x us X gibt es genu ein y Y mit (x,y f. Die übliche Schreibweise

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Theoretische Informatik WS 2014/2015

Theoretische Informatik WS 2014/2015 Prof. Dr. Andres Podelski Mtthis Heizmnn Alexnder Nutz Christin Schilling Probeklusur zur Vorlesung Theoretische Informtik WS 2014/2015 Die Klusur besteht us diesem Deckbltt und sieben Blättern mit je

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Endliche Automaten 7. Endliche Automaten

Endliche Automaten 7. Endliche Automaten Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung 0. Motivtion und Einordnung 1. Endliche Automten 2. Formle Sprchen 3. Berechnungstheorie 4. Komplexitätstheorie 1.1. 1.2. Minimierungslgorithmus 1.3. Grenzen endlicher Automten 1/1, S. 1 2017

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Huptklusur zur Vorlesung Theoretische Grundlgen der Informtik Wintersemester 2011/2012 Hier Aufkleber mit Nme und Mtrikelnr. nbringen Vornme:

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Minimalität des Myhill-Nerode Automaten

Minimalität des Myhill-Nerode Automaten inimlität des yhill-nerode Automten Wir wollen zeigen, dss der im Beweis zum yhill-nerode Stz konstruierte DEA für die reguläre Sprche L immer der DEA mit den wenigsten Zuständen für L ist. Sei 0 der konstruierte

Mehr

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel Formle Sprchen Reguläre Sprchen Endliche Automten - Kleene STEPHEN KLEENE (99-994) Rudolf FREUND, Mrion OSWALD 956: Representtion of events in nerve nets nd finite utomt. In: C.E. Shnnon und J. McCrthy

Mehr

Finite-State Technology

Finite-State Technology Finite-Stte Technology Teil IV: Automten (2. Teil) 1 Definition eines -NEA Ein -NEA ist ein Quintupel A = (Q,, δ, q0, F), wobei Q = eine endliche Menge von Zuständen = eine endliche Menge von Eingbesymbolen

Mehr

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit 1 Potenzutomt Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit D(S, x) = d(s, x) s S für lle S P(Z), x I; F P = {S P(Z) S F }. Potenzutomt

Mehr

Lösungen zum Ergänzungsblatt 4

Lösungen zum Ergänzungsblatt 4 en zum Ergänzungsltt 4 Letzte Änderung: 23. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Vorereitungsufgen Vorereitungsufge 1 Sei M = ({p, q, r}, {, }, δ, p, {q, r}) ein DEA mit folgender

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch.

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch. Vorlesung Theoretische Informtik Sommersemester 2017 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht grntiert, und einige sind umfngreicher ls klusurtypisch. 1.

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 2. Klusur zur Vorlesung Theoretische Grundlgen der Informtik Wintersemester 2016/2017 Lösung! echten Sie: ringen Sie den Aufkleber mit Ihrem Nmen und Mtrikelnummer uf diesem Deckbltt n und beschriften

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Ergänzungsblatt 6. Letzte Änderung: 24. November 2018

Ergänzungsblatt 6. Letzte Änderung: 24. November 2018 Ergänzungsltt 6 Letzte Änderung: 24. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Erinnerung: Die Besprechungstermine für die Ergänzungen 7 is 10 fllen is uf Weiteres us. Aufgen, Lösungen

Mehr

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist. 7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer

Mehr

Vorkurs Theoretische Informatik

Vorkurs Theoretische Informatik Vorkurs Theoretische Informtik Einführung in reguläre Sprchen Areitskreis Theoretische Informtik Freitg, 05.10.2018 Fchgruppe Informtik Üersicht 1. Chomsky-Hierchie 2. Automten NEA DEA 3. Grmmtik und Automten

Mehr

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus Klusur Formle Sprchen und Automten Grundlgen des Compilerus 25. Novemer 2014 Nme: Unterschrift: Mtrikelnummer: Kurs: Note: Aufge erreichre erreichte Nr. Punkte Punkte 1 10 2 10 3 12 4 11 5 9 6 6 7 11 8

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

4. Übungsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

4. Übungsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier 4. Üungsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

1.2 Eigenschaften der reellen Zahlen

1.2 Eigenschaften der reellen Zahlen 12 Kpitel 1 Mthemtisches Hndwerkszeug 12 Eigenschften der reellen Zhlen Alle Rechenregeln der Grundrechenrten der reellen Zhlen lssen sich uf einige wenige Rechengesetze zurückführen, die in der folgenden

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten 6.05.2015 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-kolenz.de 1 Üersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre Sprchen

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien DFA Reguläre Grmmtik (Folie 89) Stz. Jede von einem endlichen Automten kzeptierte Sprche ist regulär. Beweis. Nch Definition, ist eine

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sort Trining erfordert, erfordert Mthemtik ds selbständige Lösen von Übungsufgben. Ds wesentliche n den Übungen ist ds Selbermchen!

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten Vorlesung Theoretische Informtik Sommersemester 28 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Mit Lösungseispielen Vollständigkeit wird nicht grntiert, und einige sind klusuruntypisch

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

Prof. Dr. Javier Esparza Garching b. München, den Klausur Einführung in die theoretische Informatik Sommer-Semester 2017

Prof. Dr. Javier Esparza Garching b. München, den Klausur Einführung in die theoretische Informatik Sommer-Semester 2017 Prof. Dr. Jvier Esprz Grching. München, den 10.08.17 Klusur Einführung in die theoretische Informtik Sommer-Semester 2017 Bechten Sie: Soweit nicht nders ngegeen, ist stets eine Begründung zw. der Rechenweg

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch FORMALE SYSTEME 6. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 27. Oktober 2016 Rückblick Mrkus Krötzsch, 27. Oktober 2016 Formle Systeme Folie 2 von 29 Wiederholung: Opertionen uf Automten

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie Wintersemester 2016/2017 Scheinklusur Formle Sprchen und Automtentheorie 21.12.2016 Üungsgruppe, Tutor: Anzhl Zustzlätter: Zugelssene Hilfsmittel: Keine. Bereitungszeit: 60 Minuten Hinweise: Lesen Sie

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informtik I WS 07/08 Tutorium 24 10.01.08 Bstin Molkenthin E-Mil: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Anmeldung IPK Eine inoffizielle Info-1 Probeklusur findet m

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1 Vorkurs Mthemtik Frnkfurt University Of Applied Sciences, Fchbereich 1 Rechnen mit Potenzen N bezeichnet die Menge der ntürlichen Zhlen, Q die Menge der rtionlen Zhlen und R die Menge der reellen Zhlen.

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen . Motivtion 2. Lernmodelle Teil I 2.. Lernen im Limes 2.2. Fllstudie: Lernen von Ptternsprchen 3. Lernverfhren in nderen Domänen 3.. 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume über regulären Ptterns

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Klusur 09082011 Prof Dr Dr hc W Thoms Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Üungsltt Vorlesung Theoretische Grundlgen der Informtik im WS 78 Ausge 9. Oktoer 27 Age 7. Novemer 27, : Uhr (im Ksten im UG von Geäude

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

Nichtdeterministische endliche Automaten. Nichtdetermistische Automaten J. Blömer 1/12

Nichtdeterministische endliche Automaten. Nichtdetermistische Automaten J. Blömer 1/12 Nichtdeterministische endliche Automten Nichtdetermistische Automten J. Blömer 1/12 Nichtdeterministische endliche Automten In mnchen Modellierungen ist die Forderung, dss δ eine Funktion von Q Σ Q ist,

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

1) Gegeben sei ein endlicher, erkennender Automat, definiert durch: f z, definiert durch das Zustandsdiagramm: a,b. z 3

1) Gegeben sei ein endlicher, erkennender Automat, definiert durch: f z, definiert durch das Zustandsdiagramm: a,b. z 3 (Prüfungs-)Aufgen ur Automtentheorie (enthält uch Aufgen u formlen Sprchen) ) Gegeen sei ein endlicher, erkennender Automt, definiert durch: Eingelphet X = {, } Zustndsmenge Z = {,, 2, 3 } Anfngsustnd

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung. Einleitung und Grundegriffe. Endliche utomten 2. Formle Sprchen 3. Berechenrkeitstheorie 4. Komplexitätstheorie E: diversion.. Grundlgen.2..3. Grenzen endlicher utomten /2, S. 28 Prof. Steffen

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Üung Grundegriffe der Informtik 11. Üung Krlsruher Institut für Technologie Mtthis Jnke, Geäude 50.34, Rum 249 emil: mtthis.jnke ät kit.edu Mtthis Schulz, Geäude 50.34, Rum 247 emil: schulz ät ir.uk.de

Mehr

Lösungsvorschlag: Nachklausur zur Vorlesung Theoretische Grundlagen Wintersemester 2009/2010

Lösungsvorschlag: Nachklausur zur Vorlesung Theoretische Grundlagen Wintersemester 2009/2010 Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Lösungsvorschlg: Nchklusur zur Vorlesung Theoretische Grundlgen Wintersemester 2009/2010 Nme: Mtrikelnummer: Seite 2 Aufgbe 1 (6 + 2

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr