Einführung in die Vektor- und Matrizenrechnung. Vektoren

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Vektor- und Matrizenrechnung. Vektoren"

Transkript

1 Einführung in die Vektor- und Mtrizenrechnung Vektoren

2 Sklr und Vektor Größen, deren Werte durch reelle Zhlen usgedrückt werden können, heißen Sklre. Beispiele: Msse, Ldung, Tempertur, etc. Größen, die durch eine Zhlennge und zusätzlich eine Richtung im Rum chrkterisiert sind, nennt mn Vektoren. Beispiele: Geschwindigkeit, Krft, Beschleunigung, elektrische und mgnetische Feldstärke, etc. 2

3 Vektor Ein Vektor ist eine gerichtete Strecke im Rum (P 1 P 2,,,c, ; Anfngspunkt: P 1 ; Endpunkt P 2 ). Länge der Strecke: Betrg des Vektors ; Bezeichnung: Unter dem Betrg oder der Norm eines Vektors versteht mn die nicht-negtive reelle Zhl =, Ein Vektor mit dem Betrg 1 heißt Einheitsvektor oder normierter Vektor; für jeden Vektor 0 ist / ein Einheitsvektor. 3

4 Vektor Nullvektor: Anfngs- und Endpunkt fllen zusmmen (Betrg null, Richtung unestimmt). Zwei Vektoren sind gleich, wenn sie gleiche Länge und gleiche Richtung hen. 4

5 Vektor Die Menge ller Vektoren, die us einem vorgegeenen Vektor durch Prllelverschieung hervorgehen, ezeichnet mn ls den zu freien Vektor. Vektoren, die us durch Prllelverschieung hervorgehen und uf der durch gehenden Gerden liegen, ezeichnet mn ls linienflüchtige Vektoren. Ht ein Vektor einen festen Angriffspunkt, dnn spricht mn von einem geundenen Vektor (Physik; z.b. Krft uf strren Körper). Dreidimensionler Vektorrum mit krtesischen Koordinten 5

6 Rechenopertionen mit Vektoren Multipliktion eines Vektors mit einem Sklr : Vektor der Länge > 0 : ht gleiche Richtung wie < 0 : ht entgegengesetzte Richtung wie = 0 : 0 = 0 Vektorddition 6

7 Rechenopertionen mit Vektoren Unter einer Linerkomintion der Vektoren,,,z mit den reellen Koeffizienten,,,z versteht mn einen Vektor der Form e = dz Zwei Vektoren heißen kolliner, wenn es reelle Zhlen, git mit + = o. Geometrische Bedeutung: für, o sind die durch und gehenden Gerden prllel. 7

8 Rechenopertionen mit Vektoren Unter einer Linerkomintion der Vektoren,,,z mit den reellen Koeffizienten,,,z versteht mn einen Vektor der Form e = dz Zwei Vektoren heißen kolliner, wenn es reelle Zhlen, git mit + = o. Geometrische Bedeutung: für, o sind die durch und gehenden Gerden prllel. Drei Vektoren heißen komplnr, wenn es reelle Zhlen,,c git mit + + cc = o. Geometrische Bedeutung: für,,c o sind,,c einer Eene prllel. Sind, nicht kolliner zw.,,c nicht komplnr, so heißen sie liner unhängig. 8

9 Rechenopertionen mit Vektoren Unter einer Linerkomintion der Vektoren,,,z mit den reellen Koeffizienten,,,z versteht mn einen Vektor der Form e = dz Zwei Vektoren heißen kolliner, wenn es reelle Zhlen, git mit + = o. Geometrische Bedeutung: für, o sind die durch und gehenden Gerden prllel. Drei Vektoren heißen komplnr, wenn es reelle Zhlen,,c git mit + + cc = o. Geometrische Bedeutung: für,,c o sind,,c einer Eene prllel. 9 Zwei Vektoren sind orthogonl zueinnder, wenn sie ufeinnder senkrecht stehen. Derrtige Vektoren sind im Flle, o liner unhängig. Eenso sind drei Vektoren, die prweise orthogonl und o sind, liner unhängig. orthogonle Vektoren orthonormle Vektoren (Vektoren sind zueinnder orthogonl und esitzen die Norm eins)

10 Rechenopertionen mit Vektoren: Sklrprodukt Sklrprodukt, Inneres Produkt Unter dem Sklrprodukt der Vektoren und versteht mn die Zhl =, = cosφ woei φ der von und eingeschlossene Winkel ist. Eigenschften des Sklrprodukts Kommuttivität: erfüllt Assozitivität: Distriutivität: erfüllt erfüllt 10

11 Rechenopertionen mit Vektoren: Sklrprodukt A mulitpliziert mit der Projektion von B uf A B mulitpliziert mit der Projektion von A uf B 11

12 Astrktion des Vektoregriffs Verllgemeinerung des Vektoregriffs üer die Eene oder den dreidimensionlen Rum hinus. Beides lässt sich strkt, er vergleichsweise einfch ewerkstelligen: Wir erklären ds Ojekt n mit den n Komponenten 1, 2, n ls einen n-dimensionlen Vektorrum. Für n 4 verliert dieses Ojekt zwr seinen geometrischen Bezug, doch kommt es uns hier nur uf die formlen Vektoropertionen n. Eine ndere Drstellungsweise des Sklrprodukts ist demnch: n =, = i= 1 i i = L n n 12

13 Anwendung des inneren Produkts Mß für die Ähnlichkeit zw. Gleichheit zweier Signle 13 Inneres Produkt <x,z> = 8 (eide Signle stimmen nicht gut üerein)

14 Anwendung des inneren Produkts 14 Inneres Produkt <x,y> = +22 (eide Signle stimmen reltiv gut üerein)

15 Anwendung des inneren Produkts 15 Inneres Produkt <x,y> = +22 (eide Signle stimmen reltiv gut üerein)

16 Anwendung des inneren Produkts <x,z> = 8 <x,c> = + 22 <x,y> =

17 Anwendung des inneren Produkts Betrg oder Norm eines Vektors : nicht-negtive reelle Zhl =, = n i= 1 2 i Für lle, us V und lle reellen Zhlen c gilt: 1) 0; = 0 genu dnn, wenn = 0 2) c = c 3)

18 Anwendung des inneren Produkts Betrg oder Norm eines Vektors : nicht-negtive reelle Zhl =, = n i= 1 2 i Für unsere Beispiele gilt: c c y y x x x = 28 = 5.29 y = 19 = 4.36 c = 59 =

19 Anwendung des inneren Produkts Inneres Produkt <x,y/ y > = 4,77 <x,c/ c > = 2,68 19

20 Anwendung des inneren Produkts Phseneziehung zweier Signle Sind zwei Signle in Phse, wird ds innere Produkt groß sein. 20 Quelle: Durk: Mtching Pursuit nd unifiction in EEG nlysis. Artec House, 2007.

21 Anwendung des inneren Produkts Phseneziehung zweier Signle Sind zwei Signle phsenverschoen / in entgegengesetzter Phse, wird ds innere Produkt deutlich kleiner sein. 21 Quelle: Durk: Mtching Pursuit nd unifiction in EEG nlysis. Artec House, 2007.

22 Anwendung des inneren Produkts Orthogonlität zweier Signle Signle, deren inneres Produkt null ist, sind orthogonl zueinnder. 22 Quelle: Durk: Mtching Pursuit nd unifiction in EEG nlysis. Artec House, 2007.

23 Anwendung des inneren Produkts Orthogonlität zweier Signle: Ein Beispiel Sinusförmige Signle, deren Frequenzen gnzzhlige Vielfche einer gemeinsmen Grundfrequenz sind, sind zueinnder orthogonl. = sin(x) = sin(7x) <,> = 0 23 Quelle: Durk: Mtching Pursuit nd unifiction in EEG nlysis. Artec House, 2007.

24 Ein Beispiel zur Anwendung des inneren Produkts Hochuflösende Frequenz-Zeit-Anlyse von Zeitreihen Fourier-Trnsformtion: Wvelet-Trnsformtion: Sinus-/Kosinus-Funktion Wvelet-Funktion Welche Funktion liefert eine optimle Repräsenttion des Signls? 24 Figure y courtesy of Piotr J. Durk

25 Ein Beispiel zur Anwendung des inneren Produkts Typische EEG / MEG - Signle Können wir einen Pool von Funktionen ( Dictionry ) generieren, der (ds) umfngreich genug ist, um lle möglichen Strukturen in einem Signl drzustellen? 25

26 Adptive Approximtion des Signls Dictionry us Gor-Funktionen Gor-Funktionen erhält mn durch die Multipliktion einer Guss schen Einhüllenden unterschiedlicher Ausdehnung ( time support ) mit Oszilltionen unterschiedlicher Frequenz und Phse. 26 Figure y courtesy of Piotr J. Durk

27 Adptive Approximtion mit Mtching Pursuit (MP) 27 Figure y courtesy of Piotr J. Durk

28 Adptive Approximtion mit Mtching Pursuit (MP) Der Mtching-Pursuit Algorithmus 1. Finde unter einer Vielzhl von Gor-Funktionen genu diejenige, die dem Signl m esten entspricht, d.h. die ds größte innere Produkt mit dem Signl ergit. Signl Funktion 28 Figure y courtesy of Piotr J. Durk

29 Adptive Approximtion mit Mtching Pursuit (MP) Der Mtching-Pursuit Algorithmus 2. Nchdem die Amplitude ngepsst wurde, wird die Funktion von dem zu untersuchenden Signl sutrhiert. Signl Funktion ngepsst Residuum 29 Figure y courtesy of Piotr J. Durk

30 Adptive Approximtion mit Mtching Pursuit (MP) Der Mtching-Pursuit Algorithmus 3. Wiederhole die Schritte 1 und 2, is (nhezu) ds gesmte Signl erklärt ist (d.h. is nur noch Ruschen ürig leit). 30 Figure y courtesy of Piotr J. Durk

31 Rechenopertionen mit Vektoren: Vektorprodukt Vektorprodukt (Äußeres Produkt, Kreuzprodukt) Unter dem Vektorprodukt x der Vektoren und versteht mn einen Vektor der Länge = sinφ der uf und senkrecht steht, und zwr so, ds,, und x ein rechtshändiges System ilden. Der Betrg des Kreuzprodukts entspricht dem Flächeninhlt des von und ufgespnnten Prllelogrmms. 31 Eigenschften des Vektorprodukts Kommuttivität: nicht erfüllt Assozitivität: erfüllt Distriutivität: erfüllt

32 Rechenopertionen mit Vektoren: Vektorprodukt Vektorprodukt (Äußeres Produkt, Kreuzprodukt) Unter dem Vektorprodukt x der Vektoren und versteht mn einen Vektor der Länge = sinφ der uf und senkrecht steht, und zwr so, ds,, und x ein rechtshändiges System ilden. 32 Quelle: Tipler, Physik

33 Rechenopertionen mit Vektoren: Vektorprodukt Drehimpuls eines Teilchens ls Vektorprodukt des Ortsvektors und des lineren Impulses L = r x p L: Drehimpuls r: Ortsvektor p: linerer Impuls = mv m: Msse 33 Quelle: Tipler, Physik

34 Rechenopertionen mit Vektoren: Vektorprodukt Berechnung des Vektorprodukts in rechtwinkligen krtesischen Koordinten z y x z y x x y y x z x x z y z z y z y x z y x z y x z y x z y x z y x e e e e e e e e e e e e = = + + = + + = + + = ) ( ) ( ) ( 34

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenurg/Ostfrieslnd/Wilhelmshven Fch. Technik, At. Elektrotechnik u. Informtik Prof. Dr. J. Wiee www.et-inf.fho-emden.de/~wiee Mthemtik, Teil B Inhlt:.) Grundegriffe der Mengenlehre.) Mtrizen, Determinnten

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Einheit 5: Vektoren, Geraden, Ebenen

Einheit 5: Vektoren, Geraden, Ebenen iturkurs Einheit 5: Vektoren, Gerden, Eenen Michel Göthel 12. pril 2017 1 Vektoren Vektoren sind Pfeilklssen mit gleicher Länge und gleicher Richtung. Jeder Vektor wird durch einen Repräsentnten eindeutig

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

Kapitel 1. Anschauliche Vektorrechnung

Kapitel 1. Anschauliche Vektorrechnung Kpitel 1 nschuliche Vektorrechnung 1 2 Kpitel I: nschuliche Vektorrechnung Montg, 13. Oktoer 03 Einordnung Dieses erste Kpitel ht motivierenden Chrkter. Es führt n die geometrische nschuung nknüpfend die

Mehr

Vektoren. Karin Haenelt

Vektoren. Karin Haenelt Vektoren Grundbegriffe für ds Informtion Retrievl Krin Henelt 13.10.2013 Anltische Geometrie und Linere Algebr Geometrie: Konstruktionsverfhren mit Zirkel und Linel Anltische Geometrie: Umsetzung geometrischer

Mehr

II Vektorrechnung. 1 Grundbegriffe. 1.1 Vektoren und Skalare. 1.2 Spezielle Vektoren

II Vektorrechnung. 1 Grundbegriffe. 1.1 Vektoren und Skalare. 1.2 Spezielle Vektoren 46 II Vektorrechnung Grundegriffe. Vektoren und Sklre Vektoren sind gerichtete Größen, die durch eine Mßzhl und eine Richtung vollständig eschrieen und in symolischer Form durch einen Pfeil drgestellt

Mehr

Zusammenfassung: Abstände, Winkel und Spiegelungen

Zusammenfassung: Abstände, Winkel und Spiegelungen Zusmmenfssung: Astände, Winkel und Spiegelungen Inhltsverzeichnis Astände 1 Winkel 5 Spiegelungen 7 Für Experten 1 Astände Astnd Punkt Punkt: Schreiweise: Den Astnd zweier Punkte A und B ezeichnet mn mit

Mehr

SS 2018 Torsten Schreiber

SS 2018 Torsten Schreiber SS 08 orsten Shreier 8 Beim inneren Produkt ) wird komponentenweise multipliziert und die entstehenden Produkte nshließend. Somit hndelt es sih um keine d nur eine Zhl Sklr) ls Lösung heruskommt. Ds Sklrprodukt

Mehr

Theoretische Physik I: Klassische Mechanik

Theoretische Physik I: Klassische Mechanik Theoretische Physik I: Klssische Mechnik Dirk H. Rischke Wintersemester 2009/2010 Inhltsverzeichnis 1 Mthemtische Vorereitungen 1 1.1 Vektoren..................................... 1 1.1.1 Einführung...............................

Mehr

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner Abiturvorbereitung Mthemtik Linere Algebr / Anlytische Geometrie Copyright 2013 Rlph Werner 1 Linere Gleichungssysteme Ein lineres Gleichungssystem (LGS) besteht us einer Anzhl linerer Gleichungen. (m,n)-lgs

Mehr

Vektorrechnung Produkte

Vektorrechnung Produkte Vektorrechnung Produkte Die Luft fliesst von ussen gegen ds Zentrum des Tiefdruckgeiets üer Islnd Wegen der Erdrottion eginnt die Luft zu rotieren Die ewegte Luft nimmt Wolken uf ihrem Weg mit zeigt uns

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales Vektorrehnung in der Eene Beweis des St des Thles Beispiel 3 St des Thles Mn eweise den St des Thles: Jeder Peripheriewinkel üer einem Kreisdurhmesser AB ist ein rehter Winkel. C 1 C C 3 Beweis: A M B

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Inhaltsübersicht. Vektorrechnung in der Ebene. Ungleichungen in zwei Variablen. Der Vektorraum R n, Vektoroperationen.

Inhaltsübersicht. Vektorrechnung in der Ebene. Ungleichungen in zwei Variablen. Der Vektorraum R n, Vektoroperationen. Inhltsüersicht Kpitel 5: evil forces: Vektorrechnung Vektorrechnung in der Eene Ungleichungen in zwei Vrilen Der Vektorrum R n, Vektoropertionen Eenen im Rum Linere Gleichungssysteme Gußsche Elimintion

Mehr

Abitur 2018 Mathematik Geometrie VI

Abitur 2018 Mathematik Geometrie VI Seite http://www.biturloesung.de/ Seite Abitur 8 Mthemtik Geometrie VI Die Punkte A( ), B( ) und C( ) liegen in der Ebene E. Teilufgbe Teil A (4 BE) Die Abbildung zeigt modellhft wesentliche Elemente einer

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

II Orientieren und Bewegen im Raum

II Orientieren und Bewegen im Raum Schüleruchseiten II Orientieren und ewegen im Rum Erkundungen Seite Seite ( ), ( ), D ( ), E ( ), F ( ), G ( ), H ( ) Ich sehe ws, ws Du nicht siehst Individuelle Lösungen Rechnen mit Vektoren uftrg )

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

Mathematik C. VEKTOREN UND PUNKTE IM KOORDINATENSYSTEM C1. KOORDINATENSYSTEM

Mathematik C. VEKTOREN UND PUNKTE IM KOORDINATENSYSTEM C1. KOORDINATENSYSTEM C. VEKTOREN UND PUNKTE IM KOORDINATENSYSTEM C. KOORDINATENSYSTEM Definition. Ein orthonormiertes Rechtssystem, yz - Ebene kurz Koordintensystem, besteht us einem festen Punkt O, dem Ursprung, und drei

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

2 Vektoren in der Mechanik

2 Vektoren in der Mechanik 11 2 Vektoren in der Mechnik Viele Größen der Mechnik, in der Sttik insbesondere Krft und Moment, hben die Eigenschft von Vektoren im dreidimensionlen Rum. Die Mechnik nutt dher die Methoden und Rechenregeln

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

Theoretische Physik I: Klassische Mechanik

Theoretische Physik I: Klassische Mechanik Theoretische Physik I: Klssische Mechnik Dirk H. Rischke Wintersemester 2009/2010 Inhltsverzeichnis 1 Mthemtische Vorereitungen 1 1.1 Vektoren..................................... 1 1.1.1 Einführung...............................

Mehr

SBP Mathe Aufbaukurs 2. Winkelfunktionen im rechtwinkeligen Dreieck. Winkelfunktionen besonderer Winkel. Zusammenhänge der Winkelfunktionen

SBP Mathe Aufbaukurs 2. Winkelfunktionen im rechtwinkeligen Dreieck. Winkelfunktionen besonderer Winkel. Zusammenhänge der Winkelfunktionen SBP Mthe Aufbukurs # by Clifford Wolf # Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Abitur 2012 Mathematik Geometrie VI

Abitur 2012 Mathematik Geometrie VI Seite 1 http://www.biturloesung.de/ Seite Abitur 1 Mthemtik Geometrie VI In einem krtesischen Koordintensystem sind die Punkte A(1 ), B(1 8 ), C(1 ), R( ), S( 8 ) und T ( ) gegeben. Der Körper A B C R

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

1. Beispiel für die Vereinbarung eines Verschiebungsvektors im Zylinderkoordinatensystem. Quellpunkt: ( 0,0, Aufpunkt: ( r,0,0)

1. Beispiel für die Vereinbarung eines Verschiebungsvektors im Zylinderkoordinatensystem. Quellpunkt: ( 0,0, Aufpunkt: ( r,0,0) . Beispiel für die Vereinbrung eines Verschiebungsvektors im Zlinderkoordintensstem ( 0,0, ' ) Quellpunkt: ( 0,0, ') Aufpunkt: ( r,0,0) R r ' r r,0,0 ( ) Vektor um Quellpunkt: 0 r ' 0 ' Vektor um Aufpunkt:

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik Aufgbensmmlung der höheren Mthemtik von Vsili P. Minorski 5., ktulisierte Auflge Hnser München 2008 Verlg C.H. Beck im Internet: www.beck.de ISBN 978 3 446 466 Zu Inhltsverzeichnis schnell und portofrei

Mehr

Aufgabensammlung: Vertiefung der Schulmathematik 1.1 Handelt es sich bei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung.

Aufgabensammlung: Vertiefung der Schulmathematik 1.1 Handelt es sich bei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung. Fkultät für Mthemtik Cmpus Essen Wielnd Wilzek.8.-.9.06 Aufgensmmlung: Vertiefung der Schulmthemtik. Hndelt es sich ei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung. ) Person

Mehr

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen Punkte Ortsvektoren und Verindungsvektoren Punkte Ortsvektoren und Verindungsvektoren Zunähst im -dimensionlen: A 4 Gegeen sind die Punkte B 5 C 4 und D Koordintensystem. in einem krtesishen AB CD d Zu

Mehr

KAPITEL 11. Determinanten

KAPITEL 11. Determinanten KAPITEL Determinnten Determinnten 8 echenregeln für Determinnten 86 Prktische Determintenerechnung 9 4 Vektorprodukte 5 Sklrprodukt für Vektoren im n 4 6 Vektorprodukt 8 7 Sptprodukt 5 Lernziele Definition

Mehr

Vektoren. Vorlesung bzw. 31. Oktober Vektorrechnung im Anschauungsraum 1. Seite 38. Seite 38. Seite 38. x 3

Vektoren. Vorlesung bzw. 31. Oktober Vektorrechnung im Anschauungsraum 1. Seite 38. Seite 38. Seite 38. x 3 Vektoren Seite 38 Vorlesung 3 zw 3 Oktoer 3 v im Anschuungsrum v v Mckens (Technische Universität Hmurg-Hrurg) Linere Alger I WiSe 3/4 / 67 Mckens (Technische Universität Hmurg-Hrurg) Linere Alger I WiSe

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Vorwort. Hans-Jochen Bartsch. Kleine Formelsammlung Mathematik ISBN: Weitere Informationen oder Bestellungen unter

Vorwort. Hans-Jochen Bartsch. Kleine Formelsammlung Mathematik ISBN: Weitere Informationen oder Bestellungen unter Vorwort Hns-Jochen Brtsch Kleine Formelsmmlung Mthemtik ISBN: 978-3-446-4784-6 Weitere Informtionen oder Bestellungen unter http://www.hnser.de/978-3-446-4784-6 sowie im Buchhndel. Crl Hnser Verlg, München

Mehr

Übungen zu Mathematik 1 mit Musterlösungen Blatt 15

Übungen zu Mathematik 1 mit Musterlösungen Blatt 15 Heilbronn, den 868 Prof Dr V Sthl SS 8 Übungen zu Mthemtik mit Musterlösungen Bltt 5 Aufgbe Berechnen Sie die sklre Multipliktion ( ) 3 Stellen Sie diese Opertion grfisch durch Pfeile in einem zweidimensionlen

Mehr

65 Lineare Algebra 2 (SS 2009)

65 Lineare Algebra 2 (SS 2009) 65 Linere Algebr 2 (SS 2009) 67 Einschub: Explizit Implizit Vorbemerkung Wir betrchten die Ebene R 2, den dreidimensionlen Rum R 3, oder llgemeiner den R n Wenn wir geometrische Objekte in der Ebene, wie

Mehr

Mathematik für Ingenieure und Naturwissenschaftler Band 1

Mathematik für Ingenieure und Naturwissenschaftler Band 1 Mthemtik für Ingenieure und Nturwissenschftler Bnd Ein Lehr- und Arbeitsbuch für ds Grundstudium Berbeitet von Lothr Ppul. Auflge 4. Tschenbuch. XXIV, 854 S. Softcover ISBN 978 658 569 Formt (B x L): 6,8

Mehr

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen Prof. Dr. H. Brenner Osnrück WS 2014/2015 Vorkurs Mthemtik Vorlesung 3 Die rtionlen Zhlen Definition 3.1. Unter einer rtionlen Zhl versteht mn einen Ausdruck der Form, woei, Z und 0 sind, und woei zwei

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü F-Studiengng Angewndte lektronik SS 8 Üungsufgen zu Mthemtik Vektor- und Mtrizenrechnung 9 Die ckpunkte des Dreiecks ABC seien durch ihre Ortsvektoren OA ( ) OB (7) und OC (8) gegeen Berechnen Sie die

Mehr

Lineare Abbildung des Einheitskreises

Lineare Abbildung des Einheitskreises Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Mündliche Prüfung LK. Fragen zur differentialrechnung

Mündliche Prüfung LK. Fragen zur differentialrechnung Mündliche Prüfung LK Diese Seite enthält Frgen zu : Differentilrechnung Integrlrechnung Exponentil und Logrithmusfunktionen Linere Alger Prozessmtrizen Frgen zur differentilrechnung Ws sind Nullstellen?

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtisches Institut Prof. Dr. F. Vllentin Dr. A. Gundert Einführung in die Mthemtik des Opertions Reserch Aufge (5+5= Punkte) Sommersemester 4 Lösungen zur Klusur (5. Septemer 4).

Mehr

7.1. Aufgaben zu Vektoren

7.1. Aufgaben zu Vektoren 7.. Afgben z Vektoren Afgbe : Vektoren in der Ebene ) Zeichne die folgenden Vektoren ls Ortsvektoren in eine pssende Koordintenebene (x -x -Ebene, x -x -Ebene oder x - x -Ebene) des krtesischen Koordintensystems.,,,

Mehr

20 1 Zahlen und Vektoren. d = d( 0, E) = u n. E = { x R 3 : x n = d }

20 1 Zahlen und Vektoren. d = d( 0, E) = u n. E = { x R 3 : x n = d } 0 1 Zhlen und Vektoren St 1.4.6 (i) Seien L = u + R v, u, v R 3 und v 0. Dnn gilt d( x 0, L) = ( u x 0) v, x 0 R 3. v (ii) Seien E = u + R v + R w, u, v, w R 3 und v w 0, und n ein Einheitsnormlenvektor

Mehr

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

Münchner Volkshochschule. Planung. Tag 07

Münchner Volkshochschule. Planung. Tag 07 Plnung Tg 07 Folie: 158 Themen Logik und Mengenlehre Zhlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Eene

Mehr

Mathematische Grundlagen Physik für Maschinenbau/Elektrotechnik. Sommersemester 2011

Mathematische Grundlagen Physik für Maschinenbau/Elektrotechnik. Sommersemester 2011 Mthemtische Grunlgen Physik für Mschinenbu/Elektrotechnik Sommersemester 2 Vektoren Mechnik: Kräfte/Bewegungen llgemein beschrieben urch Richtung un Betrg Vektoren Vektoren: Objekte mit zwei (2D) oer rei

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale 1.1 Kurven Kurven sind eindimensionle geometrische Ojekte. In der Mechnik kommen Kurven z.b. ls Bhnen von Mssenpunkten vor. Dünne Stngen, Drähte oder Seile werden in der Regel ls Kurven idelisiert. In

Mehr

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt 1 4 Hperel 4.1 Die Hperel ls Kegelschnitt Wird ein Kreiskegel mit dem hlen Öffnungswinkel α von einer Eene σ geschnitten, die mit der Kegelchse einen Wink β < α einschliesst, so entsteht ls Schnittkurve

Mehr

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben.

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben. A Anlysis, Woche Kurven I A. Der n-dimensionle Euklidische Rum A3 Drunter versteht mn für eine Zhl n N + R n := {x, x,..., x n ; mit x i R für lle i {,..., n}}. Ebenso gibt es uch C n := {z, z,..., z n

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

(2) Mathematische Grundlagen. Vorlesung Computergrafik T. Grosch

(2) Mathematische Grundlagen. Vorlesung Computergrafik T. Grosch (2) Mthemtische Grundlgen Vorlesung Computergrfik T. Grosch Mthemtische Grundlgen Mthemtik für die Computergrfik Vektorrechnung Trigonometrie Gerden & Eenen Mtrizen Grundlge ieler lgorithmen Dher heute

Mehr

5. Homotopie von Wegen

5. Homotopie von Wegen 28 Andres Gthmnn 5. Homotopie von Wegen In der Prxis wird der Cuchysche Integrlstz meistens in einer äquivlenten Umformulierung verwendet, die wir nun genuer ehndeln wollen. Anschulich esgt sie, dss Wegintegrle

Mehr

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x...

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x... LINEARE GLEICHUNGSSYSTEME () x x x... x b n n () x x x... x b n n () x x x... x b n n.............. (m) x x x... x b m m m mn n m Inhltsverzeichnis Kpitel Inhlt Seite Bestimmung von Funktionstermen Ds

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   FRIEDRICH W. BUCKEL Algerische Kurven. Ordnung ohne x-glied Üersicht üer lle möglichen Formen und Gleichungen Text Nr. 5301 DEO tnd 1. Juli 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR CHULATHEATIK 5301 Algerische Kurven.

Mehr

a = x 0 < x 1 <... < x n = b

a = x 0 < x 1 <... < x n = b 7 Integrtion 7.1 Integrtion von Treppenfunktionen Im folgenden ezeichnen wir mit I = [, ] ein eschränktes und geschlossenes Intervll. Für Punkte = x 0 < x 1

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrgngsstufe 9 Wissen und Können Zhlenmengen N Z Q R ntürliche gnze rtionle reelle Aufgen, Beispiele, Erläuterungen N, Z, Q, R Wurzeln (Qudrtwurzel)

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

7.3. Prüfungsaufgaben zu Ebenen

7.3. Prüfungsaufgaben zu Ebenen 7.. Prüfungsufgben zu Ebenen Aufgbe : Prmeterform () Gegeben sind die Gerden g und h mit g: x und h: x ) Zeigen Sie, dss g und h prllel, ber nicht identisch sind. b) Geben Sie eine Gleichung der Ebene

Mehr