Felder und Wellen WS 2017/2018

Größe: px
Ab Seite anzeigen:

Download "Felder und Wellen WS 2017/2018"

Transkript

1 Felder und Wellen WS 17/18 Musterlösung zum 1. Tutorium 1. Aufgabe (*) Zur Einleitung etwas Grundsätzliches über Flächen-, Volumen-, und Linienintegrale. Die Integration ist am einfachsten, wenn das gewählte Koordinatensystem der Symmetrie der geometrischen Anordnung, also der Fläche, Linie oder des Volumens entspricht. Die Transformation des Feldes in ein anderes Koordinatensystem ist meistens einfacher als die Transformation der Fläche, des Volumens oder der Linie. Differentialoperationen div, grad, rot und können in beliebigen Koordinatensystemen berechnet werden, das Ergebnis ist immer gleich. A = 5z = A x A y A z = 5z e z a) Die Integrationsoberfläche ist kugelsymmetrisch. Die Transformation von Vektorfeldern in ein anderes Koordinatensystem wird in Schritten durchgeführt: 1) Transformation der Komponenten des Vektorfeldes (Skript S. 3) ) Transformation der Variablen (Ortsvektoren) (Skript S. ) A = A r A ϑ A ϕ 1) A r = A z cosϑ = 5z cosϑ A ϑ = A z sinϑ = 5z sinϑ A ϕ = ) z = rcosϑ = A r e r +A ϑ e ϑ +A ϕ e ϕ in Kugelkoordinaten A = 5rcos ϑ e r 5cosϑ e ϑ Die Oberfläche einer Kugel um den Ursprung zeigt in r-richtung. Das infinitesimale Flächenelement ist gleich. d f = e r r sinϑdϑdϕ

2 Ad f = π π 5r ( cos ϑ e r sinϑcosϑ e ϑ ) er r sinϑdϑdϕ e r e r = 1 e ϑ e r = Über r wir nicht integriert. Terme mit r können vor das Integral gezogen werden. = 5r 3 π π cos ϑsinϑdϑdϕ Der Integrant hängt nicht von ϕ ab, [ϕ] π = π. π = 1πr 3 cos ϑsinϑdϑ Ein schwieriges Integral: Entweder hilft ein Trick aus HM g f(g) = F(g) oder eine Integraltabelle (Bronstein). -sinϑ ist die innere Ableitung von cos ϑ. [ ] 1 π = 1πr 3 3 cos3 ϑ = 1 3 πr3 [ 1 1] = πa3 3 b) div A in kartesischen Koordinaten: In Kugelkoordinaten: diva = A x x + A y y + A z z =++5 = 5 div A = 1 r r (r A r )+ 1 = 5 r r (r3 cos ϑ) 5 ϑ (A ϑsinϑ)+ 1 ϑ (rsin ϑcosϑ) =15cos ϑ 5 sinϑ (sinϑcos ϑ sin 3 ϑ) =15cos ϑ 1cos ϑ+5sin ϑ =5(cos ϑ+sin ϑ) =5 A ϕ ϕ

3 c) Zunächst wird das Volumenelement in Kugelkoordinaten benötigt: dv = r sinϑ dr dϑ dϕ Integrationsgrenzen: r =...a,ϑ =...π,ϕ =...π π π a π 5r sinϑdrdϑdϕ = π a = π[ cosϑ] π [ ] 5 a = 4π 3 r3 = πa3 3 5r sinϑdrdϑ a 5r dr Dies bestätigt den Gaußschen Satz: diva dv = Ad f Natürlich kann man sich hier die ganze Integriererei auch komplett sparen: diva = 5 = const. diva dv = diva Volumen der Kugel = 5 4π 3 a3. Aufgabe (*) a) Transformation der Vektorkomponenten von A in Zylinderkoordinaten (Skript S. 3) y A = y e x = A R = A x cosϕ+a y sinϕ = ycosϕ A ϕ = A x sinϕ+a y cosϕ = ysinϕ A = ycosϕ e R ysinϕ e ϕ = Transformation der Variablen (Skript S. ) y = Rsinϕ ycosϕ ysinϕ A = Rsinϕcosϕ e R Rsin ϕ e ϕ

4 Integration des Feldes entlang eines Kreises um den Ursprung: Der Integrationsweg verläuft immer in ϕ-richtung. Benötigt wird das Linienelement d s in ϕ-richtung (Skript S. 4). d s = e ϕ Rdϕ A d s = R ( sinϕcosϕ e R sin ϕ e ϕ ) eϕ Rdϕ π e ϕ e ϕ = 1 e R e ϕ = ϕ =...π π A d s = R sin ϕdϕ sin ϕdϕ ist ein schwieriges Integral, das Ergebnis sollte aber aus der Wechselstromtechnik bekannt sein. Ansonsten kann in einer Integraltabelle (Bronstein) nachgeschlagen werden. A d s = R [ 1 ϕ 1 4 sinϕ ] π = R π = a π b) Rotation: ( rota Az = e x y A ) ( y Ax + e y z z A ) ( z Ay + e z x x A ) x y = e z c) Wie in Aufgabe 1 gelernt, sollte rota nicht unbedingt in Zylinderkoordinaten berechnet werden. rotad f Das Flächenelement des Kreises zeigt in z-richtung. d f = e z RdRdϕ π a e z e z RdRdϕ = π a = [ϕ] π RdRdϕ a ] a [ 1 = 4π R = πa RdR

5 Es geht auch noch einfacher: rot A = e z = const und senkrecht zur Kreisfläche in der xy-ebene. rot A d f = Flächeninhalt des Kreises = πa Dies bestätigt den den Stokesschen Satz: rotad f = A d s 3. Aufgabe (*) a) A = gradφ = = φ x φ y φ z xy x y = φ x e x + φ y e y + φ z e z = xy e x +x y e y b) rot A = ( Az y A ) ( y Ax e x + z z A ) ( z Ay e y + x x A ) x e z y A z ist gleich und A x,y hängt nicht von z ab, also ist A x z =, A y z = rot A = e x + e y +(4xy 4xy) e z = Die Rotation verschwindet bei beliebigen Gradientenfeldern. rot gradψ Beweis Skript Kapitel 1.3 c) A in Zylinderkoordinaten: A R = A x cosϕ+a y sinϕ = xy cosϕ+x y sinϕ = R 3 cos ϕsin ϕ+r 3 cos ϕsin ϕ = 4R 3 cos ϕsin ϕ

6 A ϕ = A x sinϕ+a y cosϕ = xy sinϕ+x y cosϕ = R 3 cosϕsin 3 ϕ+r 3 cos 3 ϕsinϕ = R 3 cosϕsinϕ( sin ϕ+cos ϕ) A = A R e R +A ϕ e ϕ A hat keine z-komponente. Somit tragen die Stirnflächen des Zylinders nichts zum Integral bei ( A e z = ). Zur Integration über den Zylindermantel wird das Flächenelement des Zylinders in R-Richtung benötigt. Ad f = π l l d f = e R Rdϕdz (A R e R +A ϕ e ϕ ) e R Rdzdϕ Für die Punktprodukte zwischen den Einheitsvektoren gilt: e R e R = 1, e ϕ e R = Ad f = π l = l l π = 4R 4 l A R R dzdϕ }{{} unabhängig von z 4R 3 Rcos ϕsin ϕdϕ π cos ϕ sin ϕdϕ Mit Integraltabelle [ Ad f ϕ = 4R 4 l 8 1 ] π 3 sin(4ϕ) = πlr 4 = πla 4 Alternativ kann das Oberflächenintegral auch mit dem Gaußchen Satz berechnet werden. divadv = Ad f

7 div A = y +x = R sin ϕ+r cos ϕ = R (sin ϕ+cos ϕ) }{{} 1 = R (in Zylinderkoordinaten umwandeln) div Adv = l l π a a = 4πl = 4πl = πla 4 R 3 drdϕdz R 3 dr [ 1 4 R4 ] a 4. Aufgabe (**) a) Rotation in Kugelkoordinaten (Skript Kapitel 1.5.4) [ rota 1 = e r ϑ (A ϕsinϑ) A ] ϑ ϕ [ 1 1 A r + e ϑ r sinϑ ϕ ] r (ra ϕ) [ 1 + e ϕ r r (ra ϑ) A ] r ϑ Es gilt: A r ϕ =, A r ϑ =, A ϑ =. [ ] B := rota 1 = e r ϑ (sinϑ) 1 + e ϑ [ r ] r (r) 1 = e r [cosϑ] e ϑ r = e r rtanϑ e ϑ r b) div(rota) = 1 ( r r r = 1 r tanϑ tanϑ 1 = ) 1 ϑ r cosϑ ( ) r sinϑ

8 Die Divergenz einer Rotation ist immer null (Beweis: Skript Kapitel 1.3). div rot A Das Volumenintegral über die Kugel ist. Das Oberflächenintegral ist. c) Integrationsweg verläuft in ϕ-richtung (in Kugelkoordinaten). Linienelement in ϕ-richtung: d s = e ϕ r sinϑdϕ Ad s = (r e r + e ϕ ) e ϕ r sinϑdϕ e r e ϕ =, e ϕ e ϕ = 1 π = dϕ = 4π Für die xy-ebene gilt ϑ = π ; außerdem ist r = a Ad s = 4πa Alternative Berechnung mit dem Stokesschen Satz: rotad f = Ad s Nach dem Satz von Stoke kann man über jede Fläche integrieren, die von dem ursprünglichen Integrationsweg begrenzt wird. Also hier die obere oder untere Hemisphäre oder die Kreisfläche (Scheibe) in der xy-ebene mit Radius a. Dabei ist die Orientierung des Flächenelements durch Umlaufsinn des ursprünglichen Integrationswegs bestimmt. Berechnung mit Scheibe (ϑ = π = const): d f = ( 1) }{{} Orientierung e ϑ r }{{} sinϑ drdϕ =1

9 rot Ad f = = π a π a a ( rtanϑ e r r e ϑ) e ϑ rdrdϕ r e }{{} ϑ e ϑ rdrdϕ 1 = 4π 1dR = 4πa Zusatz: Es wird nun noch die Berechnung der Oberflächenintegrals nach Stokes mit Zylinderkoordinaten gezeigt. Dies bietet hier keinen rechnerischen Vorteil; soll jedoch zeigen, dass es unerheblich ist, welches Koordinatensystem man benutzt. Transformation von B in Zylinderkoordinaten: Komponenten: Variablen: r = R +z A R = A r sinϑ+a ϑ cosϑ = rtanϑ sinϑ r cosϑ = A ϕ = A ϕ = A z = A r cosϑ A ϑ sinϑ = rtanϑ cosϑ+ r sinϑ = cos ϑ + r sinϑ = ( cos ϑ+sin ϑ ) = ϑ = arctan R z ( ( A z = / sin arctan R ) R ) z +z = Es gilt: sin arctanx = 1+ R z R = R z +z R Integriert wird über eine Kreisfläche in der xy-ebene z =. x 1+x A z = R

10 Flächenelement in z-richtung in Zylinderkoordinaten: d f = e z RdRdϕ Ad f = π a a = 4π 1dR = 4πa R e z e }{{} z RdRdϕ 1 Schwierigkeit der Aufgaben von einfach lösbar(*) bis hin zu anspruchsvoll (***).

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Satz von Gauß. Satz von Gauß 1-1

Satz von Gauß. Satz von Gauß 1-1 atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

12. Mehrfachintegrale

12. Mehrfachintegrale - 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r Sat von Stokes F (,) = (P(,),Q(,),R(,)) rot F n o d = P(,)d+Q(,)d +R(,)d R P Q rot F = F = Q = P R Q R P Links steht der Fluss des Vektorfeldes rot F durch die Fläche (Oberflächenintegral), rechts ein

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale Vorlesung: Analysis II für Ingenieure Wintersemester 7/8 Michael Karow Thema: Transformationsformel für Gebietsintegrale Transformation von Gebietsintegralen im 2 (Satz 24 im Skript) Seien, 2 kompakte

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /

Mehr

Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt

Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Aufgabe 3 Prof. Dr. Schön und Dr. Eschrig Wintersemester 004/005 Durch Trennung der Veränderlichen und anschließende Integration ergibt sich aus

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt 4: Lösungen

Mehr

7 Differential- und Integralrechung für Funktionen

7 Differential- und Integralrechung für Funktionen Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

1 Lösungsskizzen zu den Übungsaufgaben

1 Lösungsskizzen zu den Übungsaufgaben Lösungsskizzen zu den Übungsaufgaben. Lösungen zu den Aufgaben zum Kapitel.. Tutoraufgaben. Man stellt fest: fx, y x, y G. omit ist f beschränkt auf G a Da f auf G beschränkt, ist f auf G Riemann-Integrabel

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

Fluss durch einen Zylindermantel

Fluss durch einen Zylindermantel Fluss durch einen Zylindermantel Der Fluss eines Vektorfeldes F = F ϱ e ϱ + F ϕ e ϕ + F z e z nach außen durch den Mantel eines Zylinders mit Randkurve ϱ = ϱ(ϕ) ist 2π z max z min F ϱ ϱ F ϕ ϕ ϱ dz dϕ.

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Satz von Gauss, Fluss und Divergenz

Satz von Gauss, Fluss und Divergenz Satz von Gauss, Fluss und Divergenz F - - - 4 - - L Das Vektorfeld F beschreibe die Geschwindigkeit in einer Flüssigkeit, die über die Ebene fließt. Der Fluss von F über L ist die in Einheitszeit fließende

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 11

Technische Universität München Zentrum Mathematik. Übungsblatt 11 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 11 Hausaufgaben Aufgabe 11.1 Berechnen Sie jeweils die Jacobi-Matrix folgender

Mehr

Analysis II für M, LaG/M, Ph 12. Übungsblatt

Analysis II für M, LaG/M, Ph 12. Übungsblatt Analysis II für M, La/M, Ph. Übungsblatt Fachbereich Mathematik WS / Prof. Dr. Christian Herrmann 8.. Vassilis regoriades Horst Heck ruppenübung Aufgabe. erechnen Sie das ebietsintegral sin (x y) d, wobei

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

1 Krummlinige Koordinatensysteme

1 Krummlinige Koordinatensysteme 1 Krummlinige Koordinatensysteme 1.1 Ebene Polarkoordinaten Ebene Polarkoordinaten sind für zweidimensionale rotationssymmetrische Probleme geeignet. Die Länge der gedachten Verbindungslinie eines Punktes

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren Vorlesung: Analsis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Koordinatenssteme, klassische Differentialoperatoren Polarkoordinaten = cos() = sin() = 2 + 2 =(,) tan() = für 0. Winkel

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral - 1 - Vektoranalysis In diesem Kapitel untersuchen wir vornehmlich Vektorfelder und charakterisieren sie durch ihre Wirbel- und Quellstärke. Verstärkt findet diese Vektor(feld)analysis Anwendung in der

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

9. Die Integralrechnung II

9. Die Integralrechnung II 9. Die Integralrechnung II 9.. Mehrdimensionale Bereichsintegrale Dimension n des Integrationsbereiches B Dimension des Definitionsbereiches D. (i) n = : Einfachintegrale (Int-B = Gerade ; db = d ) db.

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Koaxialleiter E-Feldstärke, H-Feldstärke

Koaxialleiter E-Feldstärke, H-Feldstärke Koaxialleiter E-Feldstärke, H-Feldstärke blog.zahlenpresse.de 4. April 3 R 3 Abbildung : uerschnitt vom Koaxialleiter Für alle Berechnungen in diesem Dokument wird ein Koaxialleiter folgender Konstruktion

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

C4.6: Oberflächenintegrale

C4.6: Oberflächenintegrale C4.6: Oberflächenintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b. Elektrostatik:

Mehr

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1 Ferienkurs Elektrodynamik WS / Übungsblatt Tutoren: Isabell Groß, Markus Krottenmüller, Martin Ibrügger 9.3. Aufgabe - Geladene Hohlkugel In einer Hohlkugel befindet sich zwischen den Radien r und r eine

Mehr

3.2. VOLUMENINTEGRALE 121

3.2. VOLUMENINTEGRALE 121 3.2. VOLUMENINTEGRALE 121 3.2 Volumenintegrale Wenn man Systeme von vielen Massenpunkten m α an Positionen r α beschreiben will, so muss z.b. die Gesamtmasse M des Systems, den Vektor des Schwerpunktes

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (2. Juli 25) für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Sei f(x, y) eine in einem Gebiet zweimal stetig differenzierbare

Mehr