Lineare Abbildungen. i=0 c ix i n. K n K m

Ähnliche Dokumente
[UV2] bedeutet Abgeschlossenheit bezüglich der Addition, [UV3] ist die Abgeschlossenheit bzgl. der Skalarmultiplikation. Bezeichnung U V.

Lineare Algebra I Zusammenfassung

Lineare Abbildungen und Matrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

4 Lineare Abbildungen und Matrizen

Vektorräume. Kapitel Definition und Beispiele

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra I (WS 13/14)

1 Lineare Abbildungen

Kapitel 7 Lineare Abbildungen und Matrizen II

7.2 Die adjungierte Abbildung

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

1 Eigenschaften von Abbildungen

5 Lineare Abbildungen

5 Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen

Lineare Abbildungen und Darstellungsmatrizen

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

3 Lineare Abbildungen und Matrizen

Euklidische und unitäre Vektorräume

1 Linearkombinationen

4 Lineare Abbildungen und Matrizen

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

2.2 Kern und Bild; Basiswechsel

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

β 1 x :=., und b :=. K n β m

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:

Lineare Algebra und analytische Geometrie I

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra

Klausur zur Vorlesung Lineare Algebra und Geometrie I

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

LINEARE ALGEBRA II. FÜR PHYSIKER

13 Partielle Ableitung und Richtungsableitung

Summen und direkte Summen

Kap 5: Rang, Koordinatentransformationen

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik für Anwender I

35 Matrixschreibweise für lineare Abbildungen

Grundlagen der Mathematik 1

Ausgewählte Lösungen zu den Übungsblättern 4-5

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

IV.3. RANG VON MATRIZEN 81

2.5 Gauß-Jordan-Verfahren

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16

Lineare Algebra I (WS 13/14)

Aufgaben zur linearen Algebra und analytischen Geometrie I

5.7 Lineare Abhängigkeit, Basis und Dimension

Eigenwerte und Diagonalisierung

Mathematik für Physiker, Informatiker und Ingenieure

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

Wiederholung: lineare Abbildungen

Übersicht Kapitel 9. Vektorräume

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

8 Lineare Abbildungen und Matrizen

Lineare Algebra Weihnachtszettel

Kapitel III. Lineare Abbildungen

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

5 Matrizen. In dem linearen Gleichungssystem. wollen wir die Koeffizienten zusammenfassen zu einer Matrix A =

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Lineare Algebra und analytische Geometrie I

Einführung in die Mathematik für Informatiker

1 Mengen und Abbildungen

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

Der Rangsatz für lineare Abbildungen

Basis eines Vektorraumes

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

Mathematik für Anwender I

Mathematik für Anwender I

Lineare Algebra I: Eine Landkarte

Lineare Algebra I. December 11, 2017

2.3 Lineare Abbildungen und Matrizen

5. Matrizen und Determinanten

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Vorlesung Abbildungen und Matrizen

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

6. Normale Abbildungen

Projektive Räume und Unterräume

x 2 + y 2 = f x y = λ

Bestimmung der Dimension

Lineare Algebra I (WS 13/14)

Übungen zur Linearen Algebra 1

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j.

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Lineare Abbildungen und Matrizen

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Kapitel 13. Lineare Gleichungssysteme und Basen

3.5 Duale Vektorräume und Abbildungen

70 IV. ENDLICH-DIMENSIONALE VEKTORRÄUME

Koordinaten und darstellende Matrizen

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

3.9 Elementarmatrizen

Kapitel 12. Lineare Abbildungen und Matrizen

Äquivalenz von Matrizen

Transkript:

Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht es darum, dass wir Vektorräume (oder andere algebraische Objekte) nicht unterscheiden wollen, wenn sie nur durch eine andere Bezeichnung der Elemente auseinander hervorgehen. 4.1 Definition und Beispiele Definition 4.1.1 V und W seien K-Vektorräume. Eine Abbildung T : V W heißt eine lineare Abbildung, falls für alle v 1, v 2 V und alle λ K gilt: T(v 1 + v 2 λ) = T(v 1 ) + T(v 2 )λ. Beispiel 4.1.2 (1.) Die Identität id V : V V ist linear. (2.) Die Abbildung D : K[x] K[x], n i=0 c ix i n i=1 ic ix i ist linear (Differenzieren). (3.) Sei T K (m,n). Dann ist die Abbildung K n K m v Tv linear. Wir können also jeder Matrix eine lineare Abbildung zuordnen. Bemerkung 4.1.3 Es gilt T(0) = 0, weil T(0) = T(0 + 0) = T(0) + T(0). Ferner gilt für alle v, w V und alle λ K T(vλ) T(v + w) = T(v)λ = T(v) + T(w). 62

Der folgende Satz zeigt, dass lineare Abbildungen bereits durch Angabe der Bilder einer Basis eindeutig bestimmt sind: Satz 4.1.4 (Satz von der linearen Fortsetzung) Sei V ein endlichdimensionaler K-Vektorraum mit geordneter Basis B = (b 1,...b n ). Sei W ein beliebiger K-Vektorraum, und seien c 1,..., c n W beliebige Vektoren. Dann gibt es genau eine lineare Abbildung T : V W mit T(b i ) = c i. Beweis Zu v V gibt es eindeutig bestimmte Skalare λ i mit v = n i=1 b iλ i. Dann muss T(v) = n i=1 T(v i)λ i = n i=1 c iλ i sein. Also ist T eindeutig bestimmt. Man rechnet auch leicht nach, dass die so definierte Abbildung in der Tat linear ist: Sei dazu v = n i=1 b iλ i, w = n i=1 b iµ i und λ K. Dann T(v + wλ) = T( = = n b i (λ i + µ i λ)) i=1 n c i (λ i + µ i λ) i=1 n n c i λ i + ( c i µ i )λ i=1 Beispiel 4.1.5 Sei B = {b 1, b 2 } mit b 1 = i=1 = T(v) + T(w)λ ( ( 2 1, b 2 = eine Basis von R 2. Ferner seien c 1 = Abbildung 2 1 und c 2 = 1 0 0 zwei Vektoren aus R 3. Dann ist die 1 T : R 2 R 3 ( ( 2 1 λ 1 + λ 2 2 1 λ 1 + 0 0 λ 2 1 1 x1 linear. Wir würden aber gerne T angeben können. Dazu schreiben wir x 2 e 1 = e 2 = ( 1 0) ( 0 = b 1 b 2 = b 1 + 2b 2. 63

Dann gilt und somit T(e 1 ) = c 1 c 2 = T(e 2 ) = c 1 + 2c 2 = x1 T = 2x 1 2x 2 x x 1 x 2. 2 x 2 Die lineare Abbildung T ist also die zur Matrix 2 2 1 1 0 1 2 1 0 2 1 1 gehörende lineare Abbildung. Wir können dieses Beispiel leicht verallgemeinern: Satz 4.1.6 Zu jeder linearen Abbildung T : K n K m gibt es eine Matrix K (m,n) so, dass T die zu dieser Matrix gehörende lineare Abbildung ist. Von jetzt an wollen wir zwischen Matrizen und den zugehörenden linearen Abbildungen K n K m nicht mehr unterscheiden. Zunächst ist aber nicht klar, ob Matrizen etwas mit allgemeinen linearen Abbildungen zwischen Vektorräumen zu tun haben. Definition 4.1.7 Sei T : V W eine lineare Abbildung. Dann definieren wir Kern(T) := {v V : T(v) = 0} Bild(T) := {T(v) : v V }. Beachten Sie: Kern(T) V und Bild(T) W. Es gilt sogar noch mehr, dass Kern und Bild nämlich Unterräume sind: Lemma 4.1.8 Kern(T) V und Bild(T) W. Beweis Kern(T) { }, weil 0 Kern(T). Seien v, w Kern(T), λ K. Dann gilt T(v + wλ) = T(v) + T(w)λ = 0, also ist v + wλ Kern(T). Der Fall Bild(T) W geht ähnlich. 64

Der Kern der linearen Abbildung, die zu einer Matrix T K (m,n) gehört, ist genau der Lösungsraum von Tx = 0. Der Vektorraum, der von den Spalten aufgespannt wird, ist genau das Bild von T. Mit Hilfe des Kerns hat man eine sehr schöne Charakterisierung von Injektivität: Satz 4.1.9 Eine lineare Abbildung T : V W ist genau dann injektiv, wenn Kern(T) = {0} gilt. Beweis Klar ist, dass für eine injektive Abbildung Kern(T) = {0} gilt, denn sonst hätte 0 W mehr als ein Urbild. Sei nun T nicht injektiv. Dann gibt es v, w V mit T(v) = T(w), aber v w. Das liefert T(v w) = 0, also 0 v w Kern(T). Es gilt folgende sehr wichtige Dimensionsformel: Satz 4.1.10 Sei T : V W eine lineare Abbildung, wobei dim(v ) <. Dann gilt dim(kern(t)) + dim(bild(t)) = dim(v ). Beweis Sei v 1,...,v k eine Basis von Kern(T). Dann können wir v 1,..., v k zu einer Basis v 1,..., v n von V ergänzen. Wir zeigen, dass dann T(v k+1 ),...,T(v n ) eine Basis von Bild(T) ist. Die Menge {T(v 1 ),...,T(v n )} ist ein Erzeugendensystem von Bild(T). Weil T(v 1 ) =... = T(v k ) = 0, ist sogar T(v k+1 ),...,T(v n ) ein Erzeugendensystem von Bild(T). Dieses Erzeugendensystem ist linear unabhängig: Wenn es linear abhängig wäre, gäbe es Skalare λ k+1,..., λ n, die nicht alle gleich 0 sind, mit n i=k+1 T(v i)λ i = 0. Dann ist aber n i=k+1 v iλ i Kern(T), d.h. 0 n i=k+1 v iλ i v 1,...,v k, Widerspruch zur linearen Unabhängigkeit der v 1,..., v n. Dieser Satz (und sein Beweis) haben einige interessante Folgerungen: Korollar 4.1.11 Sei U V, wobei V ein endlichdimensionaler Vektorraum ist. Dann gibt es eine lineare Abbildung T : V V mit Kern(T) = U. Beweis Wir wählen eine Basis von U und ergänzen diese zu einer Basis von V. Wir definieren T nun so, dass T die Elemente der Basis von U auf 0 abbildet, die Elemente der Basis, die nicht in U liegen, werden auf Vektoren 0 geschickt. Korollar 4.1.12 Sei U K n. Dann gibt es eine Matrix T K (n,n) so, dass U = {x K n : Tx = 0} gilt. Neben dem Rang einer Matrix T K (m,n) kann man auch den Spaltenrang definieren als die Dimension des von den Spalten von T aufgespannten Unterraumes von K m definieren. Der Spaltenraum ist genau das Bild der zu T gehörenden linearen Abbildung. Den zuvor definierten Rang wollen wir, zur Unterscheidung, nun den Zeilenrang nennen. Es gilt: 65

Satz 4.1.13 Für T K (m,n) gilt Zeilenrang(T) = Spaltenrang(T). Beweis Wir betrachten die lineare Abbildung T : K n K m, die durch die Matrix T erklärt ist. Dann ist offenbar Spaltenrang(T) = dim(bild(t)). Ferner wissen wir bereits n Zeilenrang(T) = dim Kern(T). Aus der Dimensionsformel 4.1.10 folgt die Behauptung. Definition 4.1.14 Sei A = (α (i,j) ) i=1,...,m;j=1,...n K (m,n). Dann heißt A := (α j,i ) j=1,...,n;i=1,...m K (n,m) die zu A transponierte Matrix. Satz 4.1.15 (1.) (AB) = B A. (2.) Rang(A) = Rang(A ). (3.) A K n,n ist invertierbar A ist invertierbar. Dann gilt ferner (A 1 ) = (A ) 1. Beweis (1.) Sei A = (α i,j ) K (m,n) und B = (β i,j ) K (n,p). Dann ist der (i, j)-eintrag von AB gleich dem (j, i)-eintrag von (AB) : Weiter gilt (AB) i,j = (B A ) j,i = also (AB) j,i = (B A ) j,i. n α i,k β k,j = (AB) j,i k=1 n (B ) j,k (A ) k,i = k=1 (2.) Das folgt aus Zeilenrang gleich Spaltenrang. n β k,j α i,k, (3.) Übung. k=1 4.2 Zur Algebra linearer Abbildungen Satz 4.2.1 Es seien V und W Vektorräume über K. Sind T und S lineare Abbildungen V W, und ist λ K, so ist auch T + Sλ eine lineare Abbildung V W. Die Menge aller linearen Abbildungen V W wollen wir als Hom(V, W) bezeichnen. Die Bezeichnung kommt daher, dass strukturerhaltende Abbildungen in der Mathematik meistens als Homomorphismen bezeichnet werden. In diesem Sinne sind lineare Abbildungen Homomorphismen. Es gilt: 66

Korollar 4.2.2 Die Menge Hom(V, W) mit der üblichen Addition und Skalarmultiplikation ist ein Vektorraum. Korollar 4.2.3 Sind V und W endlichdimensionale Vektorräume, so ist Hom(V, W) ein Vektorraum der Dimension dim(v ) dim(w). Beweis Sei (b 1,..., b n ) eine Basis von V, und sei (c 1,...,c m ) eine Basis von W. Dann gibt es genau eine lineare Abbildung T i,j : V W mit T i,j (b i ) = c j und T i,j (b k ) 0 für k i. Diese linearen Abbildungen bilden eine Basis von Hom(V, W). Wir können lineare Abbildungen auch hintereinander ausführen, und erhalten so wieder eine lineare Abbildung: Satz 4.2.4 V, W, Z seien K-Vektorräume. Sind T : V W und S : W Z lineare Abbildungen, dann ist auch S T eine lineare Abbildung V Z. Beweis Übung, bzw. einfach. 4.3 Lineare Operatoren, Endomorphismen Eine lineare Abbildung T : V V heißt linearer Operator oder Endomorphismus. Der Endomorphismus V V mit v 0 für alle v V wird auch mit 0 V bezeichnet. Es gilt Satz 4.3.1 (Endomorphismenring) End(V ) := (Hom(V, V ), +,,0 V,id V ) ist ein nichtkommutativer Ring. Ferner ist End(V ) ein Vektorraum und es gilt für alle λ K. (T S)λ = T (Sλ) = (Tλ) S Bijektive Abbildungen kann man eventuell invertieren. Die inversen Elemente von bijektiven linearen Abbildungen sind wieder linear: Lemma 4.3.2 Ist T End(V ) bijektiv, so ist T 1 linear. Beweis Zu zeigen ist T 1 (v + wλ) = T 1 (v) + T 1 (w)λ. Weil T bijektiv ist, ist dies gleichbedeutend mit T(T 1 (v + wλ)) = T(T 1 (v) + T 1 (w)λ) Das ist aber sicherlich richtig, weil T linear ist. 67

Bijektive Endomorphismen auf V heißen Automorphismen. Die Automorphismen auf V bilden eine Gruppe GL(V ). Ist V = K n schreibt man auch GL(n, K). Bijektive Homomorphismen V W heißen Isomorphismen. Isomorphismen bilden linear unabhängige Mengen auf linear unabhängige Mengen ab, und linear abhängige Mengen werden auf linear abhängige Mengen abgebildet. Wenn es zwischen V und W einen Isomorphismus gibt, so heißen V und W isomorph, geschrieben V = W. Es können nur Vektorräume gleicher Dimension isomorph sein! Satz 4.3.3 V und W seien endlichdimensionale K-Vektorräume und dim(v ) = dim(w). Für lineare Abbildungen T : V W sind dann die folgenden Bedingungen äquivalent: (i) T ist bijektiv (ii) Kern(T) = {0} (iii) Bild(T) = W (d.h. T ist injektiv) (d.h. T ist surjektiv) (iv) T bildet eine gegebene Basis von V auf eine Basis von W ab. (v) T bildet jede Basis von V auf eine Basis von W ab. Beweis Siehe Vorlesung. Satz 4.3.4 (Hauptsatz über endlichdimensionale Vektorräume) Ist V ein Vektorraum mit dim(v ) = n, so gilt V = K n Beweis Ist v 1,..., v n eine Basis von V, und ist e 1,...,e n eine (z.b. die kanonische) Basis von K n, so gibt es nach Satz 4.3.3 eine bijektive lineare Abbildung T mit T(v i ) = e i. 4.4 Darstellung linearer Abbildungen durch Matrizen V und W seien K-Vektorräume, und B = (b 1,...,b n ) sei eine geordnete Basis von V, C = (c 1,..., c m ) sei eine geordnete Basis von W. Für eine lineare Abbildung T : V W definieren wir eine Matrix [T] B C K(m,n) wie folgt: Die i-te Spalte von [T] B C sei [T(b i)] C, der Koordinatenvektor des Bildes von b i unter der linearen Abbildung T. Das ist sehr sinnvoll, wie der folgende Satz zeigt: Satz 4.4.1 [T(v)] C = [T] B C [v] B. 68

Beweis Sei v = n i=1 b iλ i, also [v] B = λ 1. λ n. Dann ist T(v) = n i=1 T(b i)λ i. Wir schreiben das Element T(b i ) bezüglich der Basis C, d.h. T(b i ) = m j=1 c jα j,i. Mit anderen Worten, [T] B C = (α j,i) j=1,...,m;i=1,...,n. Wir können nun T(v) auch bzgl. C darstellen: m n T(v) = c j α j,i λ i, also j=1 i=1 n i=1 α 1,iλ i [T(v)] C =. = [T] B C n i=1 α m,iλ i Die Zuordnung einer Matrix zu einer linearen Abbildung ist sogar ein Vektorraumisomorphismus. In diesem Sinne kann man etwas ungenau sagen, dass lineare Abbildungen dasselbe sind wie Matrizen. Satz 4.4.2 V und W seien K-Vektorräume mit dim(v ) = n, dim(w) = m, und B und C seien geordnete Basen von V und W. Dann ist die Abbildung [ ] B C ein Vektorraumisomorphismus. ist offenbar linear und injektiv, aus Dimensions- Beweis Die Abbildung [ ] B C gründen also auch bijektiv. : Hom(V, W) K(m,n) T [T] B C λ 1. λ n (4. Dieser Satz sagt noch nichts darüber aus, ob die Hintereinanderausführung von linearen Abbildungen auch eine vernünftige Interpretation in der Matrizenwelt hat. Der nächste Satz sagt, dass dies aber in der Tat der Fall ist: Satz 4.4.3 V, W und Z seien endlichdimensionale K-Vektorräume mit geordneten Basen B, C und D. Wenn T Hom(V, W) und S Hom(W, Z) ist, so gilt [S T] B D = [S]C D [T]B C. Beweis Klar, weil auf der rechten Seite des Gleichheitszeichens eine Matrix M steht mit M [v] B = [(S T)(v)] D. Diese Matrix ist aber die nach Satz 4.4.2 eindeutig bestimmte Darstellungsmatrix von S T bzgl. der Basen B und D. Korollar 4.4.4 Es seien V und W endlichdimensionale K-Vektorräume mit geordneten Basen B und C. Dann gilt für lineare Abbildungen T : V W: In diesem Fall gilt T ist bijektiv [T] B C [T 1 ] C B = ([T]B C ) 1. ist invertierbar. 69

Im Fall dim(v ) = dim(w) = n hat die Zuordnung von Matrizen zu linearen Abbildungen in Hom(V, W) also noch eine weitere interessante und wichtige Eigenschaft: Die Abbildung (4. respektiert auch die Ringoperation. In diesem Sinne spricht man auch von einem Ringisomorphismus. Der Ring der linearen Operatoren ist also letztlich dasselbe wie der Matrizenring. 4.5 Basistransformation Sei wieder T : V W eine lineare Abbildung. In diesem letzten Abschnitt wollen wir uns mit der Frage beschäftigen, welcher Zusammenhang zwischen Matrizen [T] B C und [T]B C besteht, wenn sowohl C und B als auch C und B Basen von W und V sind. Die Frage wird durch folgenden Satz vollständig beantwortet: Satz 4.5.1 Sei T : V W eine lineare Abbildung. Ferner sollen B und B geordnete Basen von V sein, und C und C geordnete Basen von W. Mit id V und id W bezeichnen wir die identischen Abbildungen auf V und W. Dann gilt: [T] B C = [id W] C C [T]B C [id V ] B B. Beweis Das folgt unmittelbar aus 4.4.3. Bemerkung 4.5.2 Die Darstellungsmatrizen [id V ] B B aus Abschnitt 3.5. M B B Wir wollen uns diesen Satz an zwei Beispielen klarmachen: Beispiel 4.5.3 Wir betrachten die lineare Abbildung T( x 1 x1 + x x 2 ) = 2. 2x 3 x 1 x 3 sind genau die Matrizen Wenn B und C jeweils die kanonische Basis von R 3 und R 2 bezeichnet, so gilt [T] B 1 1 0 C = 1 0 2 Wir suchen nun die Darstellungsmatrix von T bezüglich der geordneten Basen B = ( 1 0, 1 1 1 0 ), 1 1 0 ( ( C 0 1 = (, ) Wir benötigen dazu die beiden Matrizen [id R 3] B B und [id R 2] C C 70

Die erste Matrix ist einfach Ferner ist Wir erhalten [id R 2] C C 1 1 [T] B C = 1 0 [id R 3] B B = = ([id R 2]C C ) 1 = 1 1 0 1 0 2 1 1 1 0 1 0 1 1 0 1 0 1 = 1 1 1 1 1 0 1 1 1 0 1 0 4 1 2 =. 1 2 1 1 1 0 (4.2) Rechnen wir dies am Beispiel v = 3 1 nach: Es gilt [v] B = 1 1 und 0 1 7 [T] B C [v] B =. 4 ( 7 4 Wir müssen noch = [T(v)] 4 C überprüfen: Es gilt T(v) = = 7 ( ( 3) 0 1 + 4. Beispiel 4.5.4 Sei 5 6 6 T = 1 4 2 aus R (3,3). 3 6 4 Wir wollen die durch T definierte lineare Abbildung R 3 R 3 bezüglich der Basis ausdrücken. Es gilt Wir haben und B = ( 2 0, 2 1, 3 1 ) 1 0 3 [T] B B = ([id]b B ) 1 T [id] B B. [id] B B = 2 2 3 0 1 1 =: P 1 0 3 P 1 = 3 6 5 1 3 2 1 2 2 71

Dann P 1 TP = 2 0 0 0 2 0 0 0 1 Das kann man leicht nachprüfen, denn T 2 0 = 2 2 0, 1 1 T 2 1 = 2 2 1, 0 0 T 3 1 = 1 3 1. 3 3 Definition 4.5.5 Zwei Matrizen M,N K (n,n) heißen ähnlich, wenn es P GL(n, K) gibt mit P 1 MP = N Satz 4.5.6 Ähnlichkeit ist eine Äquivalenzrelation auf K n. Beweis Es gilt I 1 MI = M, also reflexiv. Wenn P 1 MP = N gilt, so gilt auch PNP 1 = (P 1 ) 1 NP 1 = M, also ist die Relation auch symmetrisch. Zur Transitivität: Gilt P 1 MP = N und Q 1 NQ = S, so ist (PQ) 1 M(PQ) = Q 1 (P 1 MP)Q = S. Ziel: Finde Normalformen, d.h. auf jeder Äquivalenzklasse bezüglich der Relation Ähnlichkeit gebe man einen kanonischen Vertreter an. 4.6 Zusammenfassung Sie wissen, was lineare Abbildungen sind, und können Beispiele linearer Abbildungen angeben. Sie haben gelernt, dass lineare Abbildungen bereits vollständig durch Angabe der Bilder von Basisvektoren bestimmt sind. Sie kennen die Definition des Kerns einer linearen Abbildung und die Dimensionsformel dim(kern(t)) + dim(bild(t)) = dim(v ). Zeilenrang=Spaltenrang Jeder Unterraum des R n ist Lösungsraum eines linearen Gleichungssystems. Sie wissen, was Transponieren für Matrizen bedeutet. Man kann jede lineare Abbildung durch eine Matrix darstellen. 72

Der Vektorraum der linearen Abbildungen V W ist zum Vektorraum der dim(w) dim(v )-Matrizen isomorph. Hintereinanderausführung linearer Abbildungen entspricht Matrizenmultiplikation. Sie wissen, was der Endomorphismenring und was GL(n, K) ist. Der Endomorphismenring ist zum Ring der n n-matrizen isomorph (wobei wir aber Ringisomorphismen nicht präzise definiert haben). Die Injektivität einer linearen Abbildung T ist gleichbedeutend mit Kern(T) = {0}. Sie haben gelernt, wie sich Darstellungsmatrizen bei Basiswechsel transformieren. Sie kennen die Definition von Ähnlichkeit von Matrizen und können Sie vom Begriff der Äquivalenz unterscheiden. 73