Brennverlauf und p-v-diagramm

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Brennverlauf und p-v-diagramm"

Transkript

1 Brennverlauf und p-v-diagramm 4-Takt-Ottomotor 2-Takt-Ottomotor Quelle: (KRAEMER ET AL., 1983)

2 rozesse im p V und T s-diagramm Quelle: FHTW Berlin und TU Cottbus Quelle: Grohe Otto- und Dieselmotoren Wärmezufuhr vor und nach OT Quelle: TU Cottbus

3 rozesse im p V und T s-diagramm Ottokreisprozess (Gleichraumprozess) p-v- und T-S-Diagramm des idealen Ottoprozesses, Grohe Otto- und Dieselmotoren - Gleichraumverbrennung - als Vergleichsprozess wird der Gleichraumprozess gewählt - der gesamte Kraftstoff wird schlagartig verbrannt bei konstantem Volumen Zustandsänderungen: 1-2 isentrope Verdichtung 2-3 isochore Wärmezufuhr bei konstantem Volumen (Gleichraumverbrennung, unendlich schnelle Verbrennung) 3-4 isentrope Ausdehnung (Expansion) 4-l isochore Wärmeabfuhr bei konstantem Volumen (Abgas wird unendlich schnell an die Umgebung abgegeben) - schraffierten Flächen im p V- und T.S- Diagramm stellen die Nutzarbeit W N (oder mechanische Arbeit) oder Nutzwärme Q N der vollkommenen Maschine dar - zieht man die aufgewendete Verdichtungsarbeit zwischen 1 und 2 von der Expansionsarbeit zwischen 3 und 4 ab mechanische Arbeit des Kreisprozesses als Fläche - zugeführte Wärme erscheint im T-S-Diagramm als Fläche a1234b - abgeführte Wärme erscheint im T-S-Diagramm als Fläche b41a Differenz von zu- und abgeführter Wärme ist gleich der Nutzwärme

4 rozesse im p V und T s-diagramm Idealer Dieselprozess (gemischter Vergleichsprozess) p-v- und T-S-Diagramm des idealen Dieselprozesses, Grohe Otto- und Dieselmotoren - Kombination aus Gleichraum- und Gleichdruckprozess - auch gemischter Vergleichprozess oder Seiligerprozess genannt - Annahme: ein Teil des Kraftstoff verbrennt schlagartig (Gleichraumverbrennung) - Restmenge wird so zugeführt, das Verbrennung bei konstantem Druck abläuft (Gleichdruckverbrennung) Zustandsänderungen: l-2 isentrope Verdichtung 2-3 ischore Wärmezufuhr bei konstantem Volumen (Gleichraumverbrennung) 3-4 isobare Wärmezufuhr bei konstantem Druck (Gleichdruckverbrennung) 4-5 isentrope Ausdehnung (Expansion) 5-l isochore Wärmeabfuhr bei konstantem Volumen - schraffierten Flächen im p V- und T.S- Diagramm stellen die Nutzarbeit W N (oder mechanische Arbeit) oder Nutzwärme Q N der vollkommenen Maschine dar - zugeführte Wärme erscheint im T-S-Diagramm als Fläche a12345b - abgeführte Wärme erscheint im T-S-Diagramm als Fläche b51a - Differenz von zu- und abgeführter Wärme ist gleich der Nutzwärme Vergleich Otto- und Dieselprozess: - Gleichraumprozess ist ein Sonderfall des gemischten Vergleichsprozesses - lässt man die Gleichdruckverbrennung null werden, fällt unkt 4 auf 3 - aus dem gemischten Vergleichsprozess wird der Gleichraumprozess

5 nderungen an Kreisprozessen 3.6. Reale Kreisprozesse von 4-Takt-Motoren Der wirkliche Arbeitsprozess unterscheidet sich erheblich von dem idealen rozess. es treten folgende Abweichungen auf: - Dissoziation der Verbrennungsgase o ab C tritt Molekülaufspaltung ein, dabei Wärme wird aufgenommen - nicht nur reine Ladung im Zylinder, auch Restgas vom vorangegangen Arbeitsprozess - Kraftstoff verbrennt nur unvollständig - Verbrennung erfolgt weder genau bei konstantem Volumen, noch bei konstantem Druck - Gas tauscht mit den Wänden Wärme aus - beim Ladungswechsel treten Strömungsverluste auf (es werden 2 Takte benötigt) - an den Kolbenringen geht Gas verloren (Blow-by) - spezifische Wärmekapazität verändert sich mit der Gastemperatur Verlauf des wirklichen Arbeitsprozesses wird am realen Motor durch Druckmessung im Zylinder ermittelt man spricht von Indizieren - Kurbelwinkel muss erfasst werden, damit jedem Druck auch das zugehörige Volumen zugeordnet werden kann Bild 11, Indikator und Gleichraumdiagramm (4-Takt-Motor), Quelle 2 1. ist Ladungswechselschleife negative Arbeit indizierte Arbeit = Hochdruckschleife Ladungswechselschleife (Flächenbetrachtung) Durch Indizierung können verschiedene Wirkungsgrade (Gütegrad, indizierte oder Innenwirkungsgrad, mechanischer Wirkungsgrad, effektiver Wirkungsgrad) ermittelt werden. Einfügen FK neu Seite 191 p-v Diagramm + Fehlererkennung, Tabelle HB 189

6 nderungen an Kreisprozessen 4. Weitere Kenngrößen 4.1. Mittlerer indizierter Kolbendruck oder Mitteldruck indizierte Arbeit = Hochdruckschleife Ladungswechselschleife (Flächenbetrachtung) - kann als Fläche dargestellt werden (Fläche A des Indikatordiagramms) - entspricht der in einem Zylinder je Arbeitsspiel geleisteten Arbeit W - Umwandlung der Fläche in flächengleiches Rechteck (Bild 12) Höhe h entspricht dem mittleren Kolbendruck p Bild 12 - mittlerer Kolbendruck, Quelle TU Cottbus damit kann man die Zylinder je Arbeitsspiel geleistete Arbeit beschreiben: W p V i h p i mittlerer (indizierter) Kolbendruck = p mi (4.18) V h Hubvolumen [p i ] bar andere Bezeichnung: spezifische Kolbenarbeit W pi Arbeit pro Hubvolumen meist [kj/dm 3 ] (4.19) V h

7 nderungen an Kreisprozessen 4.2. Leistung - man unterscheidet verschiedene Leistungen - abhängig von Ermittlungsstelle, Betriebszustand Innenleistung i - heißt auch indizierte Leistung - Grundlagen: Leistung ist Arbeit in der Zeiteinheit - weil sie aus dem Indikatordiagramn bestimmt wird - sie wird vom Arbeitsgas auf den Kolben übertragen - Berechnung mit Hilfe des mittleren Kolbendrucks i pivh zni z = Zylinderzahl (4.20) n = Drehzahl i = l / 0,5 (2-T-M / 4-T-M) Nutzleistung eff oder e - oder effektive Leistung (DIN 1940) - nach DIN Nettoleistung - Leistung die an der Motorkupplung zur Verfügung steht - wird mit einer Leistungsbremse gemessen o Messwerte hängen vom Betriebszustand des Motors ab - um die Reibungsleistung kleiner als die Innenleistung e p V e h zni (4.21) - Nutzleistung unterschiedet sich von der Innenleistung durch die Reibungsleistung

8 nderungen an Kreisprozessen Verlauf des indizierten Wirkungsgrades eines Ottomotors mit Drosselregelung über Last und Drehzahl. Alle Rechte vorbehalten. Robert Bosch GmbH, 2002 e i m (4.22) Reibungsleistung setzt sich zusammen aus: 1.Reibungsleistung an/in - Kolben und Kolbenringen - in den Lagern und anderen Triebwerksteilen des Motors. 2. Leistung zum Antrieb der für den Motorbetrieb notwendigen Hilfsrmaschinen - Wasserpumpe - Einspritzpumpe - Ölpumpe - Lichtmaschine - Lüfter Leistungsmessung 1 Leistungsmessung nach DIN-Norm o Motor wird so gemessen, wie er im Betrieb gefahren wird o mit Ansaugfilter, Abgasanlage, o treibt alle seine Hilfsmaschinen selbst an 2. Leistungsmessung nach SAE-Norm (Society of Automotive Engineers) - Messwerte liegen 5-20% über den DIN-Werten - Motoren laufen ohne die serienmäßige Ansaug- und Abgasanlage - alle Hilfsmaschinen werden fremdangetrieben - Vergaser/Einspritzung und Zündung speziell für die Messung auf Höchstleistung eingestellt - nach der neuen SAE-Norm wird der Motor auch wie nach DIN mit Ansaug- und Auspuffanlage und mit allen Hilfsmaschinen betrieben

9 nderungen an Kreisprozessen daher weisen Leistungswerte zwischen neuen SAE- und der DIN-Messung nur noch kleine Unterschiede auf (SAE-Norm liefert geringfügig kleinere Leistungswerte als die DIN-Norm) o rühren von unterschiedlichen Bezugsgrößen (Luftdruck, Lufttemperatur) her Hubraumleistung l - oder Literleistung - Kenngröße für Motorbelastung und Bauvolumen - große Hubraumleistung hohe Motorbelastung bei kleinem Motor - lange Lebensdauer kleine Hubraumleistung e 1 mit VH zvh [V H ]=l (4.23) V H 4.3 Wirkungsgrad Erfahrungswerte: kw Ottomotor Ç i = kw/l kw Dieselmotor Ç i = kw/l kw Dieselmotor mit Aufladung Ç i = kw/l Motorradmotor (2- und 4-T) Ç i = kw/l Rennmotor Ç i ca 120 kw/l Rennmotor mit Aufladung Ç i ca 450 kw/l Lkw Dieselmotor Ç i = kw/l Lkw Dieselmotor mit Aufladung Ç i = kw/l und Ladeluftkühlung Ç i = kw/l - ist das Verhältnis zweier Leistungen - über Wirkungsgrade kann ein Motor beurteilt werden Durch Indizierung können verschiedene Wirkungsgrade (Gütegrad, indizierte oder Innenwirkungsgrad, mechanischer Wirkungsgrad, effektiver Wirkungsgrad) ermittelt werden. Gütegrad - Quotient aus Innenleistung und Leistung der vollkommenen Maschine - sagt aus wie nahe der reale Arbeitsprozess dem Vergleichsprozess kommt G indizierte Leistung Leistung der vollkommenen Maschine i v (4.24) Erfahrungswerte: Ottomotor Ç G = 0,4... 0,7 Dieselmotor Ç G = 0,6... 0,8

10 nderungen an Kreisprozessen Indizierter Wirkungsgrad oder Innenwirkungsgrad - Verhltnis von Innenleistung (indizierte Leistung) zur Wrmezufuhr) i indizierte Leistung zugeführtewärmestrom i Q zu (4.25) mit Qzu BH u B Kraftstoffverbrauch (Masse / Zeit) H u unterer Heizwert (spezifischer Heizwert) Mechanischer Wirkungsgrad - es werden alle Leistungsverluste durch Reibung erfasst - einschlieçlich der Antriebsleistung fér die Hilfsmaschinen effektiveleistung e m betrt ca. 80 % (4.26) indizierte Leistung i Effektiver Wirkungsgrad oder Nutzwirkungsgrad - Verhltnis von Nutzleistung zur Wrmezufuhr - Optimalwerte werden nur in bestimmtem Betriebszustand erreicht - im Leerlauf (Nutzleistung = 0) ist der Nutzwirkungsgrad = 0 e e BH u e i i v v BH u m G th m i (4.27) Optimalwerte:Ottomotor Ç eff = 0, ,3 Dieselotor Ç eff = 0,3... 0,45 Bestwerte fér Ñ e : kw - Ottomotor: Ñ e =... 0,38 KW - Direkteinspritzer - Diesel: Ñ e =... 0,42 LKW - Dieselmotor: Ñ e =... 0,45 groçer Schiffsdieselmotor: Ñ e >... 0, Mittlerer effektiver Kolbendruck ist eine RechengrÖÇe (p eff = p e ) - genau mittlerer indizierte Kolbendruck p i - wichtig fér Konstrukteure zur Motorenauslegung aus e pevh zni und e i m pe p i m p e e V zni (4.28) h fér Neukonstruktionen werden Erfahrungswerte fér den mittleren effektiven Kolbendruck mit Hilfe dieser Gleichung ermittelt weitere MÖglichkeit der Ermittlung des effektiven mittleren Kolbendruckes Éber Heizwert und Liefergrad (siehe Seiten 52 und 53) p e H a m G thçl G (4.29) o

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Kolbenmaschinen 3 Kenngrößen und Kennfelder Herzog

Kolbenmaschinen 3 Kenngrößen und Kennfelder Herzog 3 Kenngrößen und Kennfelder 3.1 Kenngrößen 3.1.1 Indizierte Mitteldruck 3.1.2 Indizierte Leistung 3.1.3 Indizierter (innerer) Wirkungsgrad 3.1.4 Gütegrad 3.1.5 Effektive Leistung und effektiver Wirkungsgrad

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

Otto- und Dieselmotoren

Otto- und Dieselmotoren Kamprath-Reihe Dipl.-Ing. Heinz Grohe Prof. Dr.-Ing. Gerald Russ Otto- und Dieselmotoren Arbeitsweise, Aufbau und Berechnung von Zweitaktund Viertakt-Verbrennungsmotoren 14., überarbeitete und aktualisierte

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Grundlagen der Verbrennung Idealprozesse Berechnungsmodelle zur Analyse und Simulation des Arbeitsprozesses Analyse ausgeführter Motoren

Grundlagen der Verbrennung Idealprozesse Berechnungsmodelle zur Analyse und Simulation des Arbeitsprozesses Analyse ausgeführter Motoren Inhalt der Lehrveranstaltung Grundlagen der Verbrennung Idealprozesse Berechnungsmodelle zur Analyse und Simulation des Arbeitsprozesses Analyse ausgeführter Motoren Sommersemester 202 Vereinfachter Vergleichsprozess

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Temperatur und Druck beim Ottomotor

Temperatur und Druck beim Ottomotor Temperatur und Druck beim Ottomotor Eine numerische Berechnung Sascha Hankele 2008-07-23 (Sascha Hankele) Ottomotor 2008-07-23 1 / 25 Der Ottomotor (Sascha Hankele) Ottomotor 2008-07-23 2 / 25 Zum Ottomotor

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

6 Energiebilanz am 4-Takt-Dieselmotor

6 Energiebilanz am 4-Takt-Dieselmotor 33 6 Energiebilanz am 4-Takt-Dieselmotor Einem Motor wird Energie in Form von Brennstoff zugeführt. Indem man die Brennstoffmenge misst und den Energiegehalt des Brennstoffs (Heizwert) bestimmt, kann man

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

(ohne Übergang der Wärme)

(ohne Übergang der Wärme) Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression

Mehr

2.3 Prozess des vollkommenen Motors 2.4 Grundlagen zur Erstellung von Simulationsmodellen für Verbrennungsmotoren

2.3 Prozess des vollkommenen Motors 2.4 Grundlagen zur Erstellung von Simulationsmodellen für Verbrennungsmotoren Thermodynamische Grundlagen. Verbrennung und Kraftstoffe. Kreisprozesse.. arnot-prozess.. Gleichraumprozess..3 Gleichdruckprozess..4 Seiligerprozess.3 Prozess des vollkommenen Motors.4 Grundlagen zur Erstellung

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess)

Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess) Maschine: 4-Takt Dieselmotor Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess) (1)-(2) adiabatische Kompression (4)-(1) isochore Abkühlung (Ausgangszustand) Hubraum V 1 = 500

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O

Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O Wie stark sich das Distickstoffmonooxid auf die Leistung eines Motors auswirkt sieht man sehr gut anhand einer exemplarischen

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Kennlinien eines 4-Takt Dieselmotors

Kennlinien eines 4-Takt Dieselmotors HTBL Wien 1 Kennlinien eines Dieselmotors Seite 1 von 5 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at Kennlinien eines 4-Takt Dieselmotors Didaktische Inhalte: Kennfeld und Kennlinien eines Dieselmotors;

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Beispielaufgabe zur Energiewandlung

Beispielaufgabe zur Energiewandlung Prof. Dr.-Ing. K. Thielen Technische Thermodynamik THM, StudiumPlus Beispielaufgabe zur Energiewandlung Bei dem Automobilhersteller Audi soll ein neuer Verbrennungsmotor konstruiert werden. Der Motor soll

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Einführung in die Verbrennungskraftmaschine

Einführung in die Verbrennungskraftmaschine Institut für erbrennungskraftmaschinen Einführung in die erbrennungskraftmaschine,.05.0 Institut für erbrennungskraftmaschinen Ed-Übung Übersicht Grundlagen der hermodynamik Prozess und thermischer Wirkungsgrad

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

Verbrennungskraftmaschine

Verbrennungskraftmaschine Wirtz Luc 10TG2 Verbrennungskraftmaschine Eine Verbrennungskraftmaschine ist im Prinzip jede Art von Maschine, die mechanische Energie in einer Verbrennungskammer gewinnt. Die Kammer ist ein fester Bestandteil

Mehr

Adiabatische Expansion. p. 30

Adiabatische Expansion. p. 30 Adiabatische Expansion p. 30 Isotherme Kompression p. 31 Adiabatische Kompression p. 32 PV Diagramm und Arbeit im Carnotzyklus 1. Isotherme Expansion 2. Adiabatisch Expansion 3. Isotherme Kompression 4.

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen

Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen Aufgabe 1.3-1 Ein Heizgerät verbraucht 5 m³/h Leuchtgas (H u = 21018 kj/m³) und erwärmt 850 dm³/h Wasser um 30 C. Die Wärmekapazitä t des Wassers

Mehr

Verbrennungsmotorische Berechnungen

Verbrennungsmotorische Berechnungen Verbrennungsmotorische Berechnungen 2 2.1 Stöchiometrie 2.1.1 Mindestluftmenge Bei den in Verbrennungsmotoren verwendeten Kraftstoffen handelt es sich im Allgemeinen um Kohlenwasserstoff-Verbindungen.

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Untersuchungen zum Betriebsfeld eines Kolbenkompressors

Untersuchungen zum Betriebsfeld eines Kolbenkompressors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter rof. Dr.-Ing. B. Sessert März 03 raktikum Kraft- und Arbeitsmaschinen Versuch 4 Untersuchungen zum Betriebsfeld eines Kolbenkomressors

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

Übungen Kolbenmaschinen

Übungen Kolbenmaschinen 080309Maurer Übungen Kolbenmaschinen (Die Numerierung A1, A2,... kann Lücken aufweisen!) A1: Einfluß des Gemischheizwertes, des Liefergrades, des thermischen Wirkungsgrades, des Gütegrades auf die effektive

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 26: Stirling-Motor UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 26 Stirling-Motor Der

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

W12. Stirling-Prozess

W12. Stirling-Prozess W12 Stirling-Prozess Thermodynamische Kreisprozesse sind die physikalische Grundlage der Erzeugung mechanischer Arbeit durch Wärmeenergiemaschinen. In diesem Versuch soll ein Einblick in technische Anwendung

Mehr

tgt HP 2007/08-1: Brennholzspalter

tgt HP 2007/08-1: Brennholzspalter tgt HP 2007/08-: Brennholzspalter Der Spaltkeil (Pos. ) wird von einem Hydraulikzylinder (Pos. 3) und der Zugstange (Pos. 2) in das zu spaltende Brennholz gezogen. Der Antrieb der Hydraulikpumpe erfolgt

Mehr

- 1 - Name:... Fachbereich Maschinenbau Prof. Dr.-Ing. W. Grundmann

- 1 - Name:... Fachbereich Maschinenbau Prof. Dr.-Ing. W. Grundmann - 1 - Name:... Fachbereich Maschinenbau Prof. Dr.-Ing. W. Grundmann Matr.-Nr.:... Prüfungsleistung im Fach Kolbenmaschinen 1 Allgemeine Hinweise: Die Prüfung besteht aus einem Fragen- und einem Aufgabenteil.

Mehr

Heissluftmotor ******

Heissluftmotor ****** luftmotor 8.3.302 luftmotor ****** 1 Motivation Ein luft- bzw. Stirlingmotor erzeugt mechanische Arbeit. Dies funktioniert sowohl mit einer Beheizung als auch mit einem Kältebad. Durch Umkehrung der Laufrichtung

Mehr

Erlaubte Lösungsvarianten: entweder die Aufgaben 1 & 2, oder die 2 & 3!!! Andere Aufgabenkombinationen werden nicht bewertet!!!

Erlaubte Lösungsvarianten: entweder die Aufgaben 1 & 2, oder die 2 & 3!!! Andere Aufgabenkombinationen werden nicht bewertet!!! Prof. Dr.-Ing. V. Gheorghiu Klausur KoM / EA, 312 1 Name:. MN: Erlaubte Lösungsvarianten: entweder die Aufgaben 1 & 2, oder die 2 & 3!!! Andere Aufgabenkombinationen werden nicht bewertet!!! Aufgabe 1

Mehr

Energietechnik SS 2005

Energietechnik SS 2005 Energietechnik SS 2005 Prof. Dr.-Ing. G. Wilhelms Das ideale Gas in Maschinen und Anlagen (I) Das ideale Gas in Gasturbinen (IG) IG 1 - Joule-Prozess IG 2 - Ericcson-Prozess IG 3 - andere Vergleichsprozesse

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben Physiker

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I. Übung

Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I. Übung Institut für Fahrzeugsystemtechnik Teilinstitut Fahrzeugtechnik Leiter: Prof. Dr. rer. nat. Frank Gauterin Rintheimer Querallee 2 76131 Karlsruhe Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I Übung

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436 Inhaltsverzeichnis 1 Allgemeine Grundlagen... 1 1.1 Thermodynamik... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 WasistThermodynamik?... 9 1.2 SystemundZustand... 11 1.2.1 SystemundSystemgrenzen...

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Betriebsfeld und Energiebilanz eines Ottomotors

Betriebsfeld und Energiebilanz eines Ottomotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 2013 Praktikum Kraft- und Arbeitsmaschinen Versuch 1 Betriebsfeld und Energiebilanz eines

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

tgt HP 2012/13-1: Mikro-Blockheizkraftwerk

tgt HP 2012/13-1: Mikro-Blockheizkraftwerk tgt HP 2012/13-1: Mikro-Blockheizkraftwerk Die Versuchsanlage eines Mikro-Blockheizkraftwerkes soll ein modernes Einfamilienhaus mit Heizwärme und elektrischem Strom versorgen. Anlagenschema: Brennstoff:

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Lektion 1.2: Einteilung der Verbrennungskraftmaschinen (Teil 1)

Lektion 1.2: Einteilung der Verbrennungskraftmaschinen (Teil 1) Lektion 1.2: Einteilung der Verbrennungskraftmaschinen (Teil 1) Das Ziel der Lektion: Wichtige Informationen über die innenmotorischen Vorgänge und konstruktive Ausführungen der Verbrennungskraftmaschinen

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben, das

Mehr

5.1 Ladungswechsel. 5.2 Gemischaufbereitung und Motorsteuerung. Kolbenmaschinen 5 Ladungswechsel und Gemischaufbereitung Herzog

5.1 Ladungswechsel. 5.2 Gemischaufbereitung und Motorsteuerung. Kolbenmaschinen 5 Ladungswechsel und Gemischaufbereitung Herzog 5 Ladungswechsel und Gemischaufbereitung 5.1 Ladungswechsel 5.2 Gemischaufbereitung und Motorsteuerung 5.1 Ladungswechsel Ventiltrieb Ladungswechselverluste Steuerzeiten Nockenkraft Ventiltrieb eines 4-Ventil-Motors

Mehr

Thermodynamik I Klausur SS 2010

Thermodynamik I Klausur SS 2010 Thermodynamik I Klausur 00 Prof. Dr. J. Kuck, Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten/eite Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und

Mehr

Praktikum Kleinventilator

Praktikum Kleinventilator Gesamtdruckerhöhung in HTW Dresden V-SM 3 Praktikum Kleinventilator Lehrgebiet Strömungsmaschinen 1. Kennlinien von Ventilatoren Ventilatoren haben unabhängig von ihrer Bauart einen bestimmten Volumenstrom

Mehr

KATALOG DER PRÜFUNGSFRAGEN

KATALOG DER PRÜFUNGSFRAGEN KATALOG DER PRÜFUNGSFRAGEN Die nachfolgenden Prüfungsfragen ersetzen den Prüfungsfragenkatalog der Vorgängervorlesung Verbrennungskraftmaschinen Grundzüge von 3. März 2007 sowie die die nachfolgenden Ausgaben.

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Workshop Profilfach Umwelttechnik (TG) Jahrgangsstufe 2. LPE15: Elektro- und Hybridfahrzeuge

Workshop Profilfach Umwelttechnik (TG) Jahrgangsstufe 2. LPE15: Elektro- und Hybridfahrzeuge Workshop Profilfach Umwelttechnik (TG) Jahrgangsstufe 2 LPE5: Elektro- und Hybridfahrzeuge Thomas Geisler, Carl-Engler-Schule Karlsruhe Egbert Hausperger, Gewerbeschule Bühl 24.7.24 Inhaltsverzeichnis

Mehr

Ernst-Michael Hackbarth Wolfgang Merhof. Verbrennungsmotoren. Prozesse, Betriebsverhalten, Abgas

Ernst-Michael Hackbarth Wolfgang Merhof. Verbrennungsmotoren. Prozesse, Betriebsverhalten, Abgas Ernst-Michael Hackbarth Wolfgang Merhof Verbrennungsmotoren Prozesse, Betriebsverhalten, Abgas Aus dem Programm --... Fahrzeugtechnik Lehrbücher Grundzüge des Kolbenmaschinenbaus I Verbrennungskraftmaschinen

Mehr

MOTORENPRÜFSTAND FÜR GASMOTOREN

MOTORENPRÜFSTAND FÜR GASMOTOREN MOTORENPRÜFSTAND FÜR GASMOTOREN P r o f. D r - I n g. K a p i s c h k e Seite 1 Praktikum Kolben- und Strömungsmaschinen 1. Wirkungsgradbestimmung Zielsetzung: Im Rahmen dieses Versuches sollen sowohl

Mehr

Motor Steuerung. Grundlagen. Bildquelle: Auto & Technik. Grundlagen. AGVS Ausbildungszentrum Berner Oberland 1/10

Motor Steuerung. Grundlagen. Bildquelle: Auto & Technik. Grundlagen. AGVS Ausbildungszentrum Berner Oberland 1/10 Bildquelle: Auto & Technik Motor AGVS Ausbildungszentrum Berner Oberland 1/10 L:\Kurse\ab 2012\AF 1.2\1 Theorien\Motor.doc 26.08.2013 INHALTSVERZEICHNIS BENZINMOTOR AUFBAU... 3 DIESELMOTOR... 4 4-TAKT

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

Thermodynamik 1 Klausur 08. September 2016

Thermodynamik 1 Klausur 08. September 2016 Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Motorkunde 5. 1. Motorkennlinien, praktische Arbeiten am Dieselmotor (Entlüften, Einstellarbeiten)

Motorkunde 5. 1. Motorkennlinien, praktische Arbeiten am Dieselmotor (Entlüften, Einstellarbeiten) Motorkunde 5 1. Motorkennlinien, praktische Arbeiten am Dieselmotor (Entlüften, Einstellarbeiten) 2. Ventilspiel Kontrollieren und Einstellen Vollastkennlinie: Die Charakteristik eines Motors kann auf

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

Betriebsfeld und Energiebilanz eines Dieselmotors

Betriebsfeld und Energiebilanz eines Dieselmotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert Mai 2017 Praktikum Kraft- und Arbeitsmaschinen Versuch 2 Betriebsfeld und Energiebilanz eines

Mehr

Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I. Übung

Übung zur Vorlesung Grundlagen der Fahrzeugtechnik I. Übung Institut für Fahrzeugsystemtechnik Lehrstuhl für Fahrzeugtechnik Leiter: Prof. Dr. rer. nat. Frank Gauterin Rintheimer Querallee 2 76131 Karlsruhe Übung zur orlesung Grundlagen der Fahrzeugtechnik I Übung

Mehr

Polytrope Zustandsänderung

Polytrope Zustandsänderung Sowohl isotherme als auch isentroe Zustandsänderungen werden in Maschinen nie streng erreicht. Reale Komressions- und Exansionsrozesse lassen sich aber oft recht gut durch allgemeine Hyerbeln darstellen,

Mehr

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 12. März 2014 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr

Aufgabe 1 ( = 80)

Aufgabe 1 ( = 80) Aufgabe 1 (4 + 42 + 4 + 30 80) Ein rechtslaufender, reversibler, geschlossener Kreisprozess (KP) mit Luft ( 1.4, J 287 ) besteht aus folgenden Zustandsänderungen: K 1-2 Isentrope, wobei im Zustand 1 der

Mehr

Energieverbrauch von Nebenaggregaten

Energieverbrauch von Nebenaggregaten n Energiebilanz Energieverbrauch Entscheidung Trennung Antrieb Wie viel Energie geht in die Nebenaggregate in Abhängigkeit von Fahr-und Betriebszuständen Potential der Absenkung des Gesamtenergieverbrauchs

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 27. August 2012 Technische Universität Braunschweig Prof. Dr. ürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Antriebsarten Lehrerinformation

Antriebsarten Lehrerinformation Lehrerinformation 1/10 Arbeitsauftrag Wie funktioniert ein Auto eigentlich? Die SuS lernen den Antrieb (Motor) kennen. Sie lernen, was der Unterschied zwischen einem Diesel- und einem Benzinmotor ist.

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Technische Universität Hamburg

Technische Universität Hamburg NAME, Vorname Studiengang Technische Universität Hamburg ÈÖÓ º Öº¹ÁÒ º Ö Ö Ë Ñ ØÞ Prüfung am 16. 08. 2016 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer:

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: /

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / Schriftliche Prüfung aus VO Kraftwerke am 23.01.2017 KW 01/2017 Name/Vorname: / Matr.-Nr./Knz.: / 1. CO 2 Vergleich (25 Punkte) Zur Erzeugung von elektrischer Energie stehen zwei Kraftwerkstypen zur Auswahl:

Mehr