I) 1-dimensionale Modelle (= mit einer Systemvariablen)

Größe: px
Ab Seite anzeigen:

Download "I) 1-dimensionale Modelle (= mit einer Systemvariablen)"

Transkript

1 System = Menge von Objekten, zwischen denen Relationen bestehen statisches Modell kann keine zeitl. Veränderung beschreiben dynamisches Modell beschreibt zeitabhängige Antwort auf eine äussere Veränderung jedes dynamische Modell enthält implizit ein statisches Modell nichtautonome Modelle hängen explizit von der Zeit ab in diskreten Modellen treten Differenzengleichungen an Stelle der Diff.gleichungen I) 1-dimensionale Modelle (= mit einer Systemvariablen) 1-Box-Modell Visualisierung Modell = Konzept zur vereinfachten Darstellung eines komplexen Systems Aufstellen einer Diff.gl.: linear zeitunabhängige Parameter zeitabhängige Parameter (zeitabhängiger Input) nicht linear zeitunabhängige Parameter (Gl.gew.lsg., Stabilität) (zeitabhängige Parameter) a. lineare Systeme mit zeitunabhängigen Parametern dc/dt = k w C in k tot C Stationärzustände: Nullsetzen C = k w C in / k tot lineare Modelle haben max. 1 Attraktor (= asymptotisch stabil = global) Lösung = Lsg. des homogenen Systems + partikuläre Lsg. homogen: dc/dt = -k tot C C(t) = Ae -ktott A = Anfangsbedingung C(0) partikulär: z. B. Stationärlsg. C C(t) = Ae -ktott + C = (C 0 C )e -ktott + C Anpassungszeit: τ κ = -lnκ / k Anpassungszeit = Zeit, bis sich Modell innerhalb vorgegebener Grenzen seinem Stationärzustand angenähert hat b. lineare Systeme mit zeitabhängigen Parametern (= Input) dc/dt = j in (t) kc i. exponentiell wachsender/fallender Input j in (t) = j in (0)e βt dc/dt = j in (0)e βt kc β>0 wachsender Input β<0 fallender Input Lösung: C(t) = C(0)e -kt j in (0)e -kt /(k+β) + j in (0)e βt /(k+β) falls t>>k -1 e -kt = 0 C(t) = j in (0)e βt /(k+β) = j in (t)/(k+β) Stationärlsg. zum aktuellen Input: C (t) = j in (t)/k (falls j in zum Zeitpunkt t konst. bliebe, wäre C (t) die dazugehörige Gl.gewichtslsg.) Fall A: adiabatische Störung (β<<k) C(t) = j in (0)e βt /k = j in (t)/k = C (t) Gillian Grün, von 6

2 Fall B: nicht adiabatische Störung C(t) = j in (0)e βt /(k+β) = j in (t)/(k+β) β>0 wachsender Input C(t) < C β<0 fallender Input C(t) > C System hinkt immer dem aktuellen Gl.gewichtszustand hinterher ii. periodische Störung (z.b. Jahreszeiten) adiabatische Störung = so langsam, dass sich System ständig an verändernden Stationärzustand anpassen kann j in (t) = j 0 + j 0 sin(ωt) dc/dt = j 0 + j 1 sin(ωt) kc Lösung: C(t) = j 0 /k + (C 0 - j 0 /k)e -kt + j 1 sin(ωt atan(ω/k))/(ω²+k²) ½ + j 1 ωe -kt /(k²+ω²) falls t>>k -1 e -kt = 0 C(t) = j 0 /k + j 1 sin(ωt atan(ω/k))/(ω² + k²) ½ Fall A: adiabatische Störung (ω<<k) k² + ω² = k² atan(ω/k) = 0 C(t) = (j 0 +j 1 sin(ωt))/k = j in (t)/k = C (t) Fall B: (ω>>k) k² + ω² = ω² atan(ω/k) = π/2 C(t) = j 0 /k + j 1 sin(ωt π/2))/ω (Phasenverschiebung: -π/2) System hinkt dem Input um eine Viertelperiode hinterher grosses ω kleine Amplitude j 1 /ω lineare Systeme filtern externe Schwankungen, die wesentlich schneller sind als systemeigene Reaktionszeiten, aus System heraus c. nichtlineare Systeme nichtlineare Systeme lassen dc/dt = f(c) f(c) J kc sich oft stückweise durch lineare Modelle approximieren Stationärzustände: Nullsetzen mehr als 1 Möglichkeit: f(c) = 0 Stabilität der Stationärzustände: dc/dt = f(c) df/dc bestimmen C einsetzen df/dc C > 0 instabil invariante Bereiche = Abschnitte zw. Fixpunkten eines 1-dimensionalen, nichtlinearen Modells df/dc C < 0 stabil df/dc C = 0 labil Gillian Grün, von 6

3 II) mehrdimensionale Modelle (= mit mehreren Systemvariablen) (Analogien zum 1-dimensionalen Fall) Dimension eines Modells = Anzahl Systemvariablen a. lineare Systeme mit 2 Systemvariablen Mehrbox-Modelle stehen bezüglich ihrer Struktur zw. Einbox- und räumlich 2-Box-Modell Visualisierung kontinuierlichen Modellen Aufstellen eines Diff.gl.systems: dc 1 /dt = J 1 + k 11 C 1 + k 12 C 2 dc 2 /dt = J 2 + k 21 C 1 + k 22 C 2 Stationärzustände: Nullsetzen C 1 = (k 12 J 2 k 22 J 1 )/(k 11 k 22 k 12 k 21 ) C 2 = (k 21 J 1 k 11 J 2 )/(k 11 k 22 k 12 k 21 ) Lösung = Lsg. des homogenen Systems + partikuläre Lsg. homogen: C 1 (t) = A 11 e λ1t + A 12 e λ2t C 2 (t) = A 21 e λ1t + A 22 e λ2t λ aus charakteristischem Polynom: λ² SpurPλ + detp = 0 SpurP = k 11 + k 22 detp = k 11 k 22 k 12 k 21 λ 1,2 = (k 11 +k 22 ± ((k 11 +k 22 )²+4k 12 k 21 ) ½ ) / 2 A 11 = ((k 11 λ 2 )(C 1 C 1 ) + k 12 (C 2 C 2 )) / (λ 1 λ 2 ) A 12 = ((k 11 λ 1 )(C 1 C 1 ) + k 12 (C 2 C 2 )) / (λ 2 λ 1 ) A 21 = (k 21 (C 1 C 1 ) + (k 22 λ 2 )(C 2 C 2 )) / (λ 1 λ 2 ) A 22 = (k 21 (C 1 C 1 ) + (k 22 λ 1 )(C 2 C 2 )) / (λ 2 λ 1 ) partikulär: Stationärlsg.en C 1, C 2 C 1 (t) = A 11 e λ1t + A 12 e λ2t + C 1 C 2 (t) = A 21 e λ1t + A 22 e λ2t + C 2 Regeln zu den Eigenwerten: k 12, k 21 positiv Ew. reell k 12, k 21 positiv; k 11, k 22 negativ; -k 11 > k 21 ; -k 22 > k 12 Ew. reell, negativ -k 11 = k 21 ; -k 22 = k 12 ein Ew. = 0 Eigenwerte des linearen Systems bestimmen dessen zeitl. Verhalten betragsmässig kleinster Eigenwert bestimmt i.a. Anpassungszeit eines linearen Systems 2 Spezialfälle: i. hierarchisch: k 12 = 0 oder k 21 = 0 Dreiecksform der Matrix P C 1 (t) wie 1-dim. Modell, C 2 (t) wie exp. wachsender Input ii. komplexe Ew.: dc 1 /dt = k 1 C 2 C 1 (t) = A 11 e λ1t + A 12 e λ2t dc 2 /dt = k 2 C 1 C 2 (t) = A 21 e λ1t + A 22 e λ2t lineare Modelle mit rein imaginären Eigenwerten sind strukturell instabil charakt. Polynom: λ² + k 1 k 2 = 0 λ 1,2 = ±i(k 1 k 2 ) ½ = ±iω C 1 (t) = A 11 e iωt + A 12 e -iωt C 2 (t) = A 21 e iωt + A 22 e -iωt e iωt = cos(ωt) + isin(ωt) nur Realteil interessiert: C 1 (t) = B 11 cos(ωt) + B 12 sin(ωt) C 2 (t) = B 21 cos(ωt) + B 22 sin(ωt) Anfangsbedingungen einsetzen B s Gillian Grün, von 6

4 Fixpunkt = Zentrum Stabilität der Stationärzustände: Systemverhalten in dessen 1. λ 1, λ 2 < 0, reell stabiler Stern Nähe lässt sich nicht durch 2. λ Linearisierung ermitteln 1, λ 2 > 0, reell instabiler Stern 3. λ 1 > 0, λ 2 < 0 oder λ 1 < 0, λ 2 > 0 Sattelpunkt 4. λ 1, λ 2 komplex, Re(λ 1, λ 2 ) < 0 stabil mit Oszillation 5. λ 1, λ 2 komplex, Re(λ 1, λ 2 ) > 0 instabil mit Oszillation 6. λ 1, λ 2 komplex, Re(λ 1, λ 2 ) = 0 ungedämpfte Oszillation (= Zentrum) b. nicht lineare Systeme mit 2 Systemvariablen dc 1 /dt = f 1 (C 1, C 2 ) dc 2 /dt = f 2 (C 1, C 2 ) natürliche Modelle sind selten wirklich linear Stationärzustände: Nullsetzen mehr als 1 Lösung möglich Stabilität der Stationärzustände: Jacobi-Matrix Ew. Bestimmen Regeln verwenden Gillian Grün, von 6

5 III) Modelle in Raum und Zeit δc/δt = Input Output ± Produktion/Reaktion + Term für Advektion + Term für Diffusion Fluss F = Masse pro Fläche pro Zeit Konzentrationsgesetz (= Kontinuitätsgleichung = Satz von Gauss): δc/δt = -δf x /δx = -divf bei 3 Dimensionen: δc/δt = -(δf x /δx + δf y /δy + δf z /δz) δf x /δx < 0 δc/δt > 0 δf x /δx > 0 δc/δt < 0 a. Advektion (= gerichteter Transport, Geschw. v) Fluss F Adv = vc F x = v x C δc Adv /δt = -δ(vc)/δx = -vδc/δx Mischungszeit: τ Adv = l/v l: Strecke b. Diffusion (= ungerichteter Transport, Diffusionskoeff. D oder K z ) Fluss F Diff = -DδC/δx δc Diff /δt = -δ(-dδc/δx)/δx = Dδ²C/δx² (= 1. Fick sches Gesetz) (= 2. Fick sches Gesetz) Mischungszeit: τ Diff = l²/d Spezialfall: Gas/Wasser-Austausch innerhalb Grenzfilm über Wasseroberfläche: nur molekulare Diffusion Henry-Koeff.: H c = p/c Sättg. p: Partialdruck des Wassers in der Luft C 0 > C Sättg. Übersättigung C 0 < C Sättg. Untersättigung Grenzfilm: F = -DδC/δx = -D(C Sättg. C 0 )/ x (stationär, nur Diffusion linear) F = -v g (C Sättg. C 0 ) = -v g (C(x+ x) C(x)) v g : Gasaustauschgeschw. [m/s] falls Wasserkörper vollst. Durchmischt C 0 = C Änderung des Wasserinhalts: Verdunstung VdC/dt = -FA = Av g (C Sättg. C 0 ) dc/dt = Av g (C Sättg. C 0 )/V = v g (C Sättg. C 0 )/h = k g (C Sättg. C 0 ) k g : Austauschrate c. Diffusion und Advektion Mischungsvergleich: τ Diff /τ Adv = lv/d l* = D/v falls l<l* Diffusion dominant falls l>l* Advektion dominant δc/δt = J kc vδc/δx + Dδ²C/δx² Transportprozesse = gerichtet oder Folge vieler zufälliger Prozesse (=zeitabhängige Transportgleichung) Stationärzustände: Nullsetzen C(x) = A 1 e λ1x + A 2 e λ2x + J/k λ 1,2 = (v±(v²+4dk) ½ ) / 2D = v(1±(1+4dk/v²) ½ ) / 2D Anfangsbedinungungen A 1, A 2 Gillian Grün, von 6

6 dimensionslose Grössen: Peclet-Zahl: Pe = x r v/d x r : typische Länge (z.b. Bachbreite) Damköhler-Zahl: Da = Dk/v² 4 Extremfälle von Systemen mit Advektion und Diffusion: Da << 1, v² >> kd Advektion wichtig, Reaktion unwichtig Peclet-/Damköhler-Zahl messen rel. Einfluss von gerichtetem und diffusivem Transport und Transformation Pe >> 1, v >> D/x r x r >> D/v Adv. dominiert über Diff. schnelle Adv. Pe << 1, v << D/x r x r << D/v Diff. dominiert über Adv. langsame Adv. Da >> 1, v² << kd Advektion unwichtig, Reaktion wichtig k << D/x r Diff. dominiert über Reaktion langsame Reaktion k >> D/x r Reaktion dominiert über Diff. schnelle Reaktion Hysterese = Abhängigkeit eines Systems von seiner Vorgeschichte Synergismus = Zus.wirken verschiedener externer Kräfte, sodass Gesamtwirkung kleiner als Summe der Einzelwirkungen ist Gillian Grün, von 6

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 10.1 Systemdefinition Eine

Mehr

Universität Koblenz-Landau Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften

Universität Koblenz-Landau Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Universität Koblenz-Landau Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes (Lehrbeauftragter) Systemanalyse 2 Kapitel 6: Nichtlineare Modelle Nichtlineare

Mehr

4. Woche: Mehrdimensionale Modelle

4. Woche: Mehrdimensionale Modelle Systemanalyse I: 4. Woche: Mehrdimensionale Modelle Nicolas Gruber Umweltphysik Institut für Biogeochemie und Schadstoffdynamik ETH Zürich nicolas.gruber@env.ethz.ch 1 Inhalt INHALT 1. Zusammenfassung

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes 6. Nichtlineare Modelle 6.1 Nichtlineare Modelle

Mehr

Analytische Lösungen der Transportgleichung Transportmodellierung

Analytische Lösungen der Transportgleichung Transportmodellierung Analytische Lösungen der Transportgleichung 1D-Transportgleichung Wenn ein gelöster Stoff sich sowohl advektiv, als auch diffusiv in einer Flüssigkeit bewegt, dann gilt folgende Gleichung ( nc) t + x x

Mehr

1 Nicht-lineare dynamische Systeme

1 Nicht-lineare dynamische Systeme 1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:

Mehr

Methode der unbestimmten Koeffizienten für lineare Differentialgleichungen zweiter Ordnung

Methode der unbestimmten Koeffizienten für lineare Differentialgleichungen zweiter Ordnung Differentialgleichungen zweiter Ordnung Für bestimmte rechte Seiten f kann eine partikuläre Lösung u der Differentialgleichung u (t) + pu (t) + qu(t) = f (t) durch einen Ansatz mit unbestimmten Koeffizienten

Mehr

Transport Einführung

Transport Einführung Transport Einführung home/lehre/vl-mhs-1/inhalt/folien/vorlesung/8_transport/deckblatt.tex Seite 1 von 24. p.1/24 1. Einführung 2. Transportgleichung 3. Analytische Lösung Inhaltsverzeichnis 4. Diskretisierung

Mehr

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb.

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb. Tutoriumsaufgaben. Aufgabe a) Wir nutzen den Drallsatz für die olle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Θ S φ = M(t) rs + cos(φ) F c + F H () m x = S + F H F c Gl.

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung:

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: (3q.6) folgt auch direkt, wenn ein exp-ansatz für x(t),

Mehr

Lineare Differenzen- und Differenzialgleichungen

Lineare Differenzen- und Differenzialgleichungen Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK K. Taubert Universität Hamburg SS8 Linearisierung 2 LINEARISIERUNG und das VERHALTEN VON LÖSUNGEN NICHTLINEARER DIFFERENTIALGLEICHUNGEN

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007 Differenzengleichung Differentialgleichung 1. Ordnung (konstante Koeff.) Gestalt x n+1 =ax n +b allgemeine Lösung x n = a n x 0 +b((a n -1)/(a-1)) für a 1 oder x n = x 0 +b n für a=1 partikuläre Lösung

Mehr

Stabilität linearer Differentialgleichungssysteme 1-1

Stabilität linearer Differentialgleichungssysteme 1-1 Stabilität linearer Differentialgleichungssysteme Ein lineares homogenes Differentialgleichungssystem mit konstanten Koeffizienten u = Au, u = (u 1,..., u n ) t, ist Stabilität linearer Differentialgleichungssysteme

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

1.3 Zweidimensionale Systeme

1.3 Zweidimensionale Systeme 132 KAPITEL IV. QUALITATIVE THEORIE UND DYNAMISCHE SYSTEME Im Fall a 3 > 0 ist das Gleichgewicht asymptotisch stabil. Für a 2 3 > 4a 1a 2 haben wir < < 0 und es liegt ein stabiler Knoten vor (siehe den

Mehr

ÜBUNGEN UR THEORETISCHEN PHYSIK C Bewertungsschema für Bachelor Punkte Note < 6 5. 6-7.5 4.7 8-9.5 4. -.5 3.7-3.5 3.3 4-5.5 3. 6-7.5.7 8-9.5.3 3-3.5. 3-33.5.7 34-35.5.3 36-4. nicht bestanden bestanden

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Parameterdef. an nichtl. Zweipolkennl.

Parameterdef. an nichtl. Zweipolkennl. Parameterdef. an nichtl. Zweipolkennl. nichtlin. Zweipole Typen von Approximationsfunktionen KENNLINIENAPPROXIMATION Rektifikationsmethode y 5α 4α FUNKTION β < β > y = αx β β = 3α 2α α β < β =.5.5 2 2.5

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

1D-Transportgleichung

1D-Transportgleichung Analytische Lösungen der Transportgleichung 1-Transportgleichung Wenn ein gelöster Stoff sich sowohl advektiv, als auch diffusiv in einer Flüssigkeit bewegt, dann gilt folgende Gleichung ( nc t + x x &

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Nichtlineare elektrische Systeme am 24. 10. 2008 Name / Vorname(n): Kenn-Matr.Nr.: 1 2 erreichbare Punkte 7 4 erreichte

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Der Duffing-Oszillator

Der Duffing-Oszillator 11.04.2006 Inhalt Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen. Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile

Mehr

Stabilitätsfragen bei autonomen Systemen

Stabilitätsfragen bei autonomen Systemen 1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Kapitel 7. Differenzengleichungen

Kapitel 7. Differenzengleichungen apitel 7 Differenzengleichungen I n h a ltsverze ichnis DIFFERENZENGLEICHUNGEN... 3 EINFÜHRUNG UND BEISPIELE... 3 DIFFERENZENGLEICHUNG 1. ORDNUNG... 3 ELEMENTARE DIFFERENTIALGLEICHUNGEN... 4 GEWÖHNLICHE

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 7. Zeitdiskrete Modelle 7.1

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Planare Systeme II Einleitung Dieser Vortrag beschäftigt sich mit unterschiedlichen, allgemeinen Lösungen von Differentialgleichungssystemen und ihrer graphischen

Mehr

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle 1. Zeitdiskrete

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Gedämpfte harmonische Schwingung

Gedämpfte harmonische Schwingung Gedämpfte harmonische Schwingung Die Differentialgleichung u + 2ru + ω 2 0u = c cos(ωt) mit r > 0 modelliert sowohl eine elastische Feder als auch einen elektrischen Schwingkreis. Gedämpfte harmonische

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 11 WS 2007/2008 2/25 Rekapitulation Simulation des Wärmetransportes

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Biologische Oszillatoren und Schalter - Teil 1

Biologische Oszillatoren und Schalter - Teil 1 Biologische Oszillatoren und Schalter - Teil 1 Elena Süs 11.12.2012 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Motivation 2 Historische Entwicklung

Mehr

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Höhere Mathematik II für den Studiengang BAP Hausaufgabe 2 04.11.2008 1 Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Lösungen 1. Geben Sie die allgemeine Lösung der folgenden Differenzialgleichungen

Mehr

29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1)

29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1) 292 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System y = A y, t R, ( wobei A C n n, und wollen ein Fundamentalsystem bestimmen Grundlegende Beobachtung:

Mehr

Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert

Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Poincaré-Schnitte Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Themen 1. Was sind Poincaré-Schnitte?. Anwendung: Poincaré-Schnitte Mathematica-Beispiel: Attraktor

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Teil 9. Differentialgleichungen

Teil 9. Differentialgleichungen Teil 9 Differentialgleichungen 129 130 9.1 Spezielle Differentialgleichungen erster Ordnung Differentialgleichung erster Ordnung y = f(x, y), y = y(x) Anfangsbedingung y(x 0 ) = y 0 Festlegung der Integrationskonstante

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen 4 Schwingungen 41 Pendel 4 Untersuchung von oszillierenden Systemen um was geht es? Schwingungen = Oszillationen Beschreibung von schwingenden Systemen Methoden zur Analyse, Modellierung und Simulation

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

10. Wellenpakete im Vakuum

10. Wellenpakete im Vakuum ω m. Wellenpakete im Vakuum. Informationsübertragung durch elektromagnetische Wellen Ein wichtiger Anwendungsbereich elektromagnetischer Strahlung ist die Informationsübertragung. Monochromatische ebene

Mehr

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel).

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel). 3.7 Chaos Wir untersuchen weiter autonome Systeme der Form dy i dt = f i(y,y 2,..y N ), y i (0) = a i, i =...N () (f i hängt nicht explizit von der Zeit ab). Eindeutigkeit der Lösung: aus y(t) folgt genau

Mehr

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände Bifurkationstheorie 1. Verzweigungen stationärer Zustände Die Lage, Anzahl und Stabilität der stationären Zustände von nichtlinearen Systemen hängt in der Regel noch von bestimmten Systemparametern ab.

Mehr

Musterlösungen Blatt Theoretische Physik IV: Statistische Physik

Musterlösungen Blatt Theoretische Physik IV: Statistische Physik Musterlösungen Blatt 4.7.004 Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay Eindimensionales Ising-Modell. Das eindimensionale Ising-Modell für N Spins mit Wechselwirkung zwischen

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Theorie A (WS2005/06) Musterlösung Übungsblatt

Theorie A (WS2005/06) Musterlösung Übungsblatt Theorie A (WS2005/06) Musterlösung Übungsblatt 3 0.02.06. Stammfunktionen: dx sin(x) = cos(x), dx x = 2(x) 3/2, 2. Partielle Integration: dxu(x) v (x) = u(x) v(x) dx cos(x) = sin(x), dxx n = n + x(n+)

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Zusatzmaterial zu Kapitel 6

Zusatzmaterial zu Kapitel 6 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG Zusatzmaterial zu Kapitel 6 Zu Kapitel 62: Methoden zur Stabilitätsprüfung Einleitung Bei der Feststellung der asymptotischen Stabilität (siehe Kapitel 63)

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 06/07 5. Vorlesung, korrigierte Fassung Michael Karow Themen heute:. Gewöhnliche Lineare Differentialgleichungen. Ordnung mit konstanten Koeffizienten (a) Die

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Spinodale Entmischung

Spinodale Entmischung Benjamin Andrae Spinodale Entmischung Seminarvortrag im Hauptseminar zur statistischen Mechanik bei Prof. Dr. Erwin Frey Inhalt: Vorbemerkung zur Methode Qualitatives Quantitatives Weiterführendes: Van-der-Waals

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr