8. Abgabeblatt Lösungen. Aufgabe 29 Aufgabe 30 Aufgabe 31 Aufgabe 32 Summe:

Größe: px
Ab Seite anzeigen:

Download "8. Abgabeblatt Lösungen. Aufgabe 29 Aufgabe 30 Aufgabe 31 Aufgabe 32 Summe:"

Transkript

1 Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 8. Abgabeblatt Lösungen Aufgabe 9 Aufgabe Aufgabe Aufgabe Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe 9 (Nachweise mit der Dimensionsformel, 4 = + + Punkte). Seien U,U,U V Untervektorräume eines endlich dimensionalen K Vektorraumes V über einem Körper K. (a) Zeigen Sie mittels eines Gegenbeispiels, dass die folgende Formel (*) im Allgemeinen falsch ist: dim K (U + U + U )=dim K (U )+dim K (U )+dim K (U )+dim K (U \ U \ U ) dim K (U \ U ) dim K (U \ U ) dim K (U \ U ) Hinweis: Nutzen Sie V = R und drei (explizit anzugebende) UVR der Dimension. (b) Zeigen Sie, dass unter der Annahme U U die Formel (*) gilt. Hinweis: Sie dürfen annehmen, dass unter der Voraussetzung gilt: (U + U ) \ U = (U \ U )+(U \ U ). Wenn Sie dies beweisen, erhalten Sie einen Bonuspunkt. (c) Sei nun n unddim K V = n. Nutzen Sie die Dimensionsformel für Untervektorräume (und keine Basen), um folgende Aussagen zu zeigen: Lösung: (i) Gilt dim K (U )+dim K (U ) >n,sofolgtu \ U 6= {}. (ii) Gilt dim K (U )=dim K (U )=dim K (U )=n, so ist dim K (U \ U \ U ) n. (a) Sei nun K = R und V = R. Wir definieren folgende Untervektorräume des R : U =Lin( ), U =Lin( ), U =Lin( ) =) U + U + U =Lin(,, =) dim R (U + U + U ) = dim R (R )=. )=Lin(, )=R (vgl. P (a)).

2 Andererseits gilt o ensichtlich (Bild!) U \ U = {}, U \ U = {} und U \ U = {}. (Formal, nicht verlangt: Ist v U \ U )9, R: = () = =) = =. =) U \ U {}). Es folgt dim R (U )+dim R (U )+dim R (U )+dim R (U \ U \ U ) dim R (U \ U ) dim R (U \ U ) dim R (U \ U ) =+++ =6= =dim R (U + U + U ). (b) Wir zeigen erst den Hinweis (U + U ) \ U =(U \ U )+(U \ U ): : (gilt nur wegen U U ) Sei u (U + U ) \ U ) u U + U und u U ) Es gibt u U, u U mit u = u + u ) u = u {z} {z} u U U U ) u = u {z} + u {z} U U U UVR U ) u U \ U U \U (U \ U )+(U \ U ). : (gilt immer) Sei u (U \ U )+(U \ U ) ) Es gibt u U \ U, u U \ U mit u = u + u. ) u = u {z} + u {z} U U Außerdem u = u {z} U UVR U + u U {z} + U. U U ) u (U + U ) \ U. Dimensionsformel (beachte U + U + U =(U + U )+U ) ) dim K (U + U + U ) = dim K (U + U )+dim K (U ) dim K ((U + U ) \ U ) =(U \U )+(U \U ) Dim-Formel (mal) = dimk (U )+dim K (U ) dim K (U \ U ) +dim K (U ) dimk (U \ U )+dim K (U \ U ) dim K ((U \ U ) \ (U \ U )). =U \U \U Das liefert die geforderte Gleichung. Alternative Lösung: Man kommt auch ohne den Hinweis aus, indem man stattdessen folgende Überlegungen tri t: Gilt U U,soistU + U + U = U + U (*) und U \ U = U, U \ U \ U = U \ U (**).

3 (Die Aussage (*) bedarf eigentlich noch eines Beweises). Dimensionsformel ) dim K (U + U + U ) ( ) = dim K (U + U )=dim K (U )+dim K (U ) dim K (U \ U ) = dim K (U )+dim K (U ) dim K (U \ U ) + dim K (U ) dim K (U \ U ) ( ) = + dim K (U \ U \ U ) dim K (U \ U ). ( ) = Dies liefert die geforderte Gleichung. (c) (i) Dimensionsformel ) dim K (U \ U ) = dim K (U )+dim K (U ) >n (Vorauss.) dim K (U + U ) U +U V UVR >n n =. apple dim K (V )=n Daher dim K (U \ U ) > ) U \ U 6= {}. (ii) Dimensionsformel ) dim K (U \ U ) = dim K (U )+dim K (U ) dim K (U + U ) U +U V UVR apple dim K (V )=n (n ) + (n ) n = n ( ) Dimensionsformel ) dim K (U \ U \ U ) = dim K (U \ U )+dim K (U ) dim K ((U \ U )+U ) ( ) (n ) + (n ) n = n. (U \U )+U V UVR apple dim K (V )=n Aufgabe (Dimensionen und direkte Summen von Untervektorräumen, 4 = Punkte). Gegeben seien die folgenden Untervektorräume des Q -Vektorraums Q 4 : U A, A, AA und U A, A, AA (a) Ermitteln Sie jeweils die Dimension und eine Basis von U, U und U + U. (b) Ermitteln Sie die Dimension von U \ U. (c) Geben Sie einen Untervektorraum W Q 4 an, so dass Q 4 = U Sie Ihre Wahl). W (und begründen Lösung:

4 (a) (i) Basis und Dimension für U :DiegegebenenVektorenwerdenalsZeileneinerMatrix aufgefasst und per Gauß-Algorithmus über elementare Zeilenumformungen in Zeilenstufenform gebracht. A A Z+Z!Z A =: B Vorlesung =) U = ZR(A) =ZR(B) und die Nicht-Nullzeilen von B bilden eine Basis von ZR(B) =U ) B := ( A, A ) ist eine Basis von U. =) dim Q (U )= (ii) Basis und Dimension für U :DiegegebenenVektorenwerdenalsZeileneinerMatrix aufgefasst und per Gauß-Algorithmus über elementare Zeilenumformungen in Zeilenstufenform gebracht. A A Hier ist A bereits in Zeilenstufenform. Vorlesung =) U = ZR(A) und die Nicht-Nullzeilen von A bilden eine Basis ) B := ( A, A, A ) ist eine Basis von U. =) dim Q (U )= (iii) Basis und Dimension von U + U : (a),(b) und P(a) ) U + U =Lin( A, A, A, A, A ) Die gegebenen Vektoren werden als Zeilen einer Matrix aufgefasst und per Gauß- 4

5 Algorithmus über elementare Zeilenumformungen in Zeilenstufenform gebracht. ( )Z+Z!Z B A Z+Z!Z,( /)Z+Z4!Z4 A Z$Z4,Z4$Z5 A. Vorlesung =) U +U = ZR(A) =ZR(B) und die Nicht-Nullzeilen von B bilden eine Basis von ZR(B) =U + U ) B := ( A, A, A, A ) ist eine Basis von U + U. =) dim Q (U + U )=4 (b) Dimensionsformel ) dim K (U \ U )=dim K (U )+dim K (U ) dim K (U + U )=+ 4=. (c) Ansatz (nicht Teil der Lösung): Betrachte die Matrix B in Zeilenstufenform für U (vgl. (a)(i)), bei welcher die Nullzeilen gelöscht sind: B = Wir wählen die zwei Einheitsvektoren aus, welche in B eingefügt die Zeilenstufenform beibehalten. Hier ist das e,e 4. Sei W =Lin(e,e 4 ). In (a) wurde gesehen, dass U =Lin((b,b )) mit b = A, b = A. P(a) ) U + W =Lin((b,b,e,e 4 )) Schreiben wir die Vektoren zeilenweise in eine Matrix, so sehen wir, dass diese in Zeilenstufenform ist ) (b,b,e,e 4 )sindlinearunabhängig dim Q (Q 4 )=4 ) (b,b,e,e 4 )istbasisvonq 4 ) U + W =Lin((b,b,e,e 4 )) = Q 4. 5

6 e,e 4 linear unabhängig ) dim Q (W )=. (a) ) dim Q (Q 4 )=4=+=dim Q (U )+dim Q (W ) Q 4 =U +W, VL 8.5 ) Q 4 = U W. Aufgabe (Definition linearer Abbildungen durch Bilder einer Basis, 4 = + + Punkte). Gegeben folgende Vektoren im R : v A, v A, v A w A, w 4 A, w A Dann ist (v,v,v )einebasisdesr.seifernerf die eindeutig bestimmte lineare Abbildung f : R! R mit f(v )=w, f(v )=w,f(v )=w (vgl. P(a)). (a) Sei v A = (v 4 v )+v und v A = v v.bestimmensief(v) und f(v ). (b) Finden Sie A M(, R), so dass f = Ã. Hinweis: Laut Vorlesung muss dafür gelten: f(x) =A x für alle x R. (c) Kann es eine lineare Abbildung ' : R! R geben mit '(@ A) A, '(@ A) A, '(@ 4 Begründen Sie Ihre Antwort. Lösung: A) A? (a) A) = f( 4 (v v )+v ) f linear = 4 f(v )+ 4 f(v )+f(v ) A 4A A A A) = f(v ) f(v )=@ A A (b) Vorlesung ) Die i-te Spalte der Matrix A ist das Bild f(e i )desi-ten Einheitsvektors e i unter f, d.h. A f(e ) f(e ) f(e ) A f(e )undf(e )sindaus(a)bekanntberechnealsonochf(e ). Gesucht sind,, R mit e = v + v + v. 6

7 Löse LGS für,, (Z = Zeile, Z = Zeile, Z = Zeile ): () ( )Z+Z!Z,( )Z+Z!Z () e = v + v + A A A 4 Z ) = 4 Z ) =) Z =. 4 Wir erhalten also: e = 4 v ) f(e )= 4 f(v ) 4 f(v )= 4 ) v 4 A f(e ) f(e ) f(e ) 4A A A A 4 (c) Diese lineare Abbildung existiert nicht. Wir stellen zunächst fest, A =@ A A. (Der systematische Ansatz zur Bestimmung von =und =wäre hier das Lösen des folgenden LGS A A Durch die drei gegebenen Bedingungen sollte ' eindeutig festgelegt sein, wenn die drei gegebenen A eine Basis des R bilden. Dies ist hier nicht der Fall, weswegen Eigenschaften wie Linearität oder Eindeutigkeit verletzt werden können (vgl. P(a)).) Angenommen ' wäre eine lineare Abbildung, dann müsste Folgendes A Def. = ' '(@ A) ' = lin. A) =@ A A 4 Widerspruch! A, Aufgabe (Beispiele und Gegenbeispiele für lineare Abbildungen, 4 = + + Punkte). Entscheiden Sie jeweils, ob die Abbildungen f i zwischen den gegebenen R-Vektorräumen linear sind oder nicht (geben Sie jeweils einen Beweis oder ein Gegenbeispiel).

8 (a) (i) f : R! R,x=(x,x )! x x (ii) f : R! R,x=(x,x )! (x +, x,x + x ) (iii) f : R! R,x=(x,x,x )! (x, x, ) cos( ) sin( ) (b) f 4 : M(, R)! M(, R),A! A mit festem (, ] sin( ) cos( ) (c) Verschiebungsabbildung: f 5 : R N! R N,(a n ) nn! (a n+ ) nn. Lösung: (a) (i) f ist nicht linear, denn: Wähle = R, x =(, 4) R,sogilt (ii) f ist nicht linear, denn: Wähle f ( x) = f ((6, 8)) = 6 8=48, aber f (x) = f ((, 4)) = ( 4) = 4. = R, x =(, 4) R,sogilt f ( x) = f ((6, 8)) = (, 6, 4), aber f (x) = f ((, 4)) = (4, 8, ) = (8, 6, 4). (iii) f ist linear, denn: Seien x =(x,x,x ),x =(x,x,x ) R, und R. Danngilt: f (x + x ) = f ((x + x,x + x,x + x )) = ((x + x ), (x + x ), ) = (x, x, ) + (x, x, ) = f (x)+f (x ), f ( x) = f (( x, x, x )) = ( x, ( x ), ) = ( x, (x ), ) = (x, x, ) = f (x). cos( ) sin( ) (b) f 4 ist linear, denn: Sei S :=. sin( ) cos( ) Seien A, B M(, R), R. Danngilt: und f 4 (A + B) =S (A + B) =S A + S B = f 4 (A)+f 4 (B), f 4 ( A) =S ( A) = SA = f 4 (A). (c) f 5 ist linear, denn: Seien (a n ) nn, (b n ) nn R N, R beliebig. Dann gilt: f 5 ((a n ) nn +(b n ) nn ) und f 5 ( (a n ) nn ) Def. Add. = f 5 ((a n + b n ) nn ) Def. f 5 = (a n+ + b n+ ) nn Def. Add. = (a n+ ) nn +(b n+ ) nn Def. f 5 = f5 ((a n ) nn )+f 5 ((b n ) nn ) Def. skal. Mult. = f 5 (( a n ) nn ) Def. f 5 = ( a n+ ) nn Def. skal. Mult. = (a n+ ) nn Def. f 5 = f5 ((a n ) nn ) Abgabe: In Zweiergruppen, bis spätestens Donnerstag, den. Dezember 8, 9:5 Uhr. (Die Zettelkästen für das Abgabeblatt sind im. OG, INF 5, vor dem Dekanat.) Homepage der Vorlesung: 8

9. Abgabeblatt Lösungen. Aufgabe 33 Aufgabe 34 Aufgabe 35 Aufgabe 36 Summe:

9. Abgabeblatt Lösungen. Aufgabe 33 Aufgabe 34 Aufgabe 35 Aufgabe 36 Summe: Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 9. Abgabeblatt Lösungen Aufgabe Aufgabe 4 Aufgabe 5 Aufgabe 6 Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe (Nachrechnen

Mehr

7. Abgabeblatt Lösungen. Aufgabe 25 Aufgabe 26 Aufgabe 27 Aufgabe 28 Summe:

7. Abgabeblatt Lösungen. Aufgabe 25 Aufgabe 26 Aufgabe 27 Aufgabe 28 Summe: Lineare lgebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester /9 7. bgabeblatt Lösungen ufgabe 5 ufgabe 6 ufgabe 7 ufgabe Summe: Übungsgruppe: Namen: Tutor(in): ufgabe 5 (Dimension

Mehr

5. Abgabeblatt - Lösungen. Aufgabe 17 Aufgabe 18 Aufgabe 19 Aufgabe 20 Summe:

5. Abgabeblatt - Lösungen. Aufgabe 17 Aufgabe 18 Aufgabe 19 Aufgabe 20 Summe: Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 08/09 5. Abgabeblatt - Lösungen Aufgabe 7 Aufgabe 8 Aufgabe 9 Aufgabe 0 Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe

Mehr

Aufgabe P33 (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende Vektoren im R 4 :

Aufgabe P33 (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende Vektoren im R 4 : Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 9. Präsenzblatt Lösungen Aufgabe P (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende

Mehr

6. Abgabeblatt - Lösungen. Aufgabe 21 Aufgabe 22 Aufgabe 23 Aufgabe 24 Summe:

6. Abgabeblatt - Lösungen. Aufgabe 21 Aufgabe 22 Aufgabe 23 Aufgabe 24 Summe: Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 6. Abgabeblatt - Lösungen Aufgabe Aufgabe Aufgabe Aufgabe 4 Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe (Dimensionen

Mehr

3. Abgabeblatt - Lösungen. Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: a b := a + b 1, a b := a + b a b.

3. Abgabeblatt - Lösungen. Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: a b := a + b 1, a b := a + b a b. Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/2019 3. Abgabeblatt - Lösungen Aufgabe 9 Aufgabe 10 Aufgabe 11 Aufgabe 12 Summe: Übungsgruppe: Namen: Tutor(in):

Mehr

13. Abgabeblatt Lösungen. Aufgabe 49 Aufgabe 50 Aufgabe 51 Aufgabe 52 Summe:

13. Abgabeblatt Lösungen. Aufgabe 49 Aufgabe 50 Aufgabe 51 Aufgabe 52 Summe: Lineare Algebra Prof Dr R Dahlhaus Dr S Richter, N Phandoidaen Wintersemester 8/9 3 Abgabeblatt Lösungen Aufgabe 9 Aufgabe Aufgabe Aufgabe Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe 9 (erechnung von

Mehr

2. Abgabeblatt - Lösungen. Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Summe:

2. Abgabeblatt - Lösungen. Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Summe: Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/2019 2. Abgabeblatt - Lösungen Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Summe: Übungsgruppe: Namen: Tutor(in):

Mehr

1 C C 6. 3 A, v 4 =

1 C C 6. 3 A, v 4 = Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9. Präsenzblatt - Lösungen Aufgabe P (Dimensionen von Vektorräumen über verschiedenen Körpern). Für einen Körper K

Mehr

Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/ Präsenzblatt - Lösungen

Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/ Präsenzblatt - Lösungen Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 208/209 5. Präsenzblatt - Lösungen Aufgabe P7 (Lineare Unabhängigkeit in verschiedenen Vektorräumen). Untersuchen Sie

Mehr

(p). (g). C A 7! a 0p 0 + a 1 p 1 + a 2 p 2 + a 3 p 3 a 3. Ba 1. a 2

(p). (g). C A 7! a 0p 0 + a 1 p 1 + a 2 p 2 + a 3 p 3 a 3. Ba 1. a 2 Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9. Präsenzblatt Lösungen Aufgabe P4 (Darstellungsmatrix für Abbildungen zwischen Polynomräumen). Für D N betrachten

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die

Mehr

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 212/13 Institut für Analysis 14.1.213 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Aufgabe 1 Höhere Mathematik I für die Fachrichtung Physik 12. Übungsblatt Sei

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum

Mehr

Lösung Semesterendprüfung (Nachprüfung)

Lösung Semesterendprüfung (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung (Nachprüfung Aufgabe : Aufgabe : a Gemäss Def. der Vorlesung müssen wir

Mehr

)=(2 1 ( 2) 2) ( ) = 12 (Blockmatrix-Regel) Jede Zeile passend mit 1. Zeile addieren. Zeilentausch, 2. Zeile

)=(2 1 ( 2) 2) ( ) = 12 (Blockmatrix-Regel) Jede Zeile passend mit 1. Zeile addieren. Zeilentausch, 2. Zeile Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 28/29 3. Präsenzblatt Lösungen Aufgabe P49 (erechnung von Determinanten). Sei n 2 N, n 2. Gegeben seien folgende Matrizen

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Musterlösung zur Nachklausur Lineare Algebra I

Musterlösung zur Nachklausur Lineare Algebra I Musterlösung zur Nachklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw falsch? Setzen Sie in jeder Zeile genau ein Kreuz Für jede korrekte Antwort erhalten Sie 0,5

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 13/2 29.1.27 en zur Probeklausur Aufgabe 1 (ca. 6 Punkte) Sei

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 3/4 Heimarbeitsblatt 4 Die Lösungshinweise dienen

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Klausur zur Vorlesung Lineare Algebra I

Klausur zur Vorlesung Lineare Algebra I Heinrich Heine Universität Düsseldorf 31.07.2010 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 120

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

Lösung Lineare Algebra I Sommer 2018 Version A

Lösung Lineare Algebra I Sommer 2018 Version A Lösung Lineare Algebra I Sommer 208 Version A. (25 Punkte) Kreuzen Sie direkt auf dem Abgabeblatt an, ob die Behauptungen oder sind. Sie müssen Ihre Antworten nicht begründen! Bewertung: Punkt für jede

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Übungsblatt 13. Lineare Algebra I für Informatiker, Dr. Frank Lübeck, SS 2010

Übungsblatt 13. Lineare Algebra I für Informatiker, Dr. Frank Lübeck, SS 2010 Übungsblatt 3 Lineare Algebra I für Informatiker, Dr Frank Lübeck, SS Für Matrikelnummer: 9787 Abgabezeitpunkt: Do Jul :: CEST Dieses Blatt wurde erstellt: Do 5 Jul 8:47:36 CEST Diese Übung besteht aus

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/201 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.201, 11 Uhr Lösungen der

Mehr

Lineare Algebra I Lösung der Probeklausur

Lineare Algebra I Lösung der Probeklausur David Blottière Patrick Schützdeller WS 6/7 Universität Paderborn Lineare Algebra I Lösung der Probeklausur Aufgabe : M i) M ist linear unabhängig. Seien a,b,c R mit Daraus folgt : Also gilt a = b = c

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Lösung Test 1 (Nachprüfung)

Lösung Test 1 (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Test (Nachprüfung Aufgabe : a Gemäss den Algorithmen im Kap.. der Vorlesung bringen wir die

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 0..08 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra I HS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Die Aussage Dieser Satz ist falsch ist wahr falsch Dies ist die einfachste Form des Lügner-Paradoxes ist der folgende selbstbezügliche

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

Von einem Parallelogramm ABCD sind die Punkte A =(1, 5), C =(13, 4) und D =(5, 7) bekannt. Berechne den Punkt B.

Von einem Parallelogramm ABCD sind die Punkte A =(1, 5), C =(13, 4) und D =(5, 7) bekannt. Berechne den Punkt B. Lineare Algebra WS2/22 Übungsblatt Übung. Von einem Parallelogramm ABD sind die Punkte A =(, 5), =(3, 4) und D =(5, 7) bekannt. Berechne den Punkt B. Übung 2. Stelle rechnerisch fest, ob das Viereck A

Mehr

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18.

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18. Goethe-Universität Frankfurt Institut für Mathematik Lineare Algebra Wintersemester 218/19 Prof Dr Jakob Stix Martin Lüdtke Übungsblatt 11 15 Januar 219 Aufgabe 1 (5=1+1+1,5+1,5 Punkte) Berechnen Sie die

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Lineare Algebra Probeklausur (WS 2014/15)

Lineare Algebra Probeklausur (WS 2014/15) Lineare Algebra Probeklausur (WS 2014/15) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift (Kugelschreiber

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Wiederholungsklausur zur Linearen Algebra I

Wiederholungsklausur zur Linearen Algebra I Wiederholungsklausur zur Linearen Algebra I Prof. Dr. C. Löh/D. Fauser/J. Witzig 20. April 2017 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

2.5 Gauß-Jordan-Verfahren

2.5 Gauß-Jordan-Verfahren 2.5 Gauß-Jordan-Verfahren Definition 2.5.1 Sei A K (m,n). Dann heißt A in zeilenreduzierter Normalform, wenn gilt: [Z1] Der erste Eintrag 0 in jeder Zeile 0 ist 1. [Z2] Jede Spalte, die eine 1 nach [Z1]

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 7 Was die Menschen verbin, ist nicht der Glaube, sondern der Zweifel Peter Ustinow Universelle Eigenschaft der

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch Aufgabe. (8 Punkte) Es sei (G, ) eine Gruppe und e G ihr neutrales Element. Für h G sei µ h : G G die Abbildung, die durch g G : µ h (g) := h g gegeben ist. a) Zeigen Sie, dass für jedes h G die Abbildung

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f(v) = u} (Andere Bezeichnung: f(v) wird in Analysis-Vorlesung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana.

Lineare Algebra. 5. Übungsstunde. Steven Battilana. Lineare Algebra 5. Übungsstunde Steven Battilana stevenb@student.ethz.ch November, 6 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen +: E E! E, (x, y) 7! x + y (Addition) : E E! E, (x, y) 7! x

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch,

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch, Lineare Algebra I - 2. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Klausur: voraussichtlich Mittwoch, 4.2. 4:3 Uhr, A3 A 2 Mat(n, n; K) Dann ist 7 A : Mat(n, ; K)! Mat(n, ; K) b! A b ein Endomorphismus.

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen D-MATH Lineare Algebra I HS 2017 Dr. Meike Akveld Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen 1. a) Seien v 1, v 2 V, λ K, dann sind Also ist id V linear. b) Seien v

Mehr

Lösung der Klausur zur Linearen Algebra I

Lösung der Klausur zur Linearen Algebra I Technische Universität Dortmund Fakultät für Mathematik Platznummer: Wintersemester 16/17 17.02.2017 Lösung der Klausur zur Linearen Algebra I Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt.

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. 82 Kapitel III: Vektorräume und Lineare Abbildungen Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. Wir

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Humboldt-Universität zu Berlin.0.08. Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik A. Filler Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Bitte lösen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung ϕ : V W

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung heißt lineare

Mehr

Basis eines Vektorraumes

Basis eines Vektorraumes Basis eines Vektorraumes Basisergänzungssatz: Ist U V ein Unterraum von V und dim V = n, so kann jede Menge linear unabhängiger Vektoren aus U zu einer Basis von U erweitert werden Und es gilt: Beweis:

Mehr