) r i. cos( i. (r i. sin( i

Größe: px
Ab Seite anzeigen:

Download ") r i. cos( i. (r i. sin( i"

Transkript

1 Thomas Tack und Hans Walser Orthogonale Regresson und Streuellpsen Zu enem Dreeck gbt es unendlch vele Ellpsen, de de Dreecksseten von nnen berühren. De flächengrößte deser Ellpsen st de Stener-Innenellpse. De dazu duale Umellpse st de flächenklenste Ellpse durch de Eckpunkte des Dreecks: Abb.: Stener-Innenellpse und -Umellpse enes Dreecks Es zegt sch, dass de Stener-Ellpsen zu ener Ellpsenschar gehören, de zu belebgen ebenen Punktwolken durch Hauptachsentransformaton berechnet werden kann. De statstschen Begrffe Varanz und Kovaranz zegen dabe ene geometrsche Bedeutung. Abb. : Punktwolke: PISA-Ergebnsse oder ellptsche Galae? De Punktwolke W: {( ) } se (ohne Enfluss auf Varanz und Kovaranz) berets so verschoben, dass der Schwerpunkt m Koordnatenursprung legt: 0. De Punkte der Wolke seen n Polarkoordnaten gegeben: P ( ) P (r cos( ) r sn( )) De Kovaranz se n C :, de Varanzen n V: n bzw. n V.

2 Wr betrachten ene Ursprungsgerade g mt dem Stegungswnkel. Für jeden Punkt der Wolke glt dann folgende Überlegung: Abb. 3: Projekton auf Ursprungsgerade Es st: c r cos( cos( ) + ) r sn( ) (cos( )cos( ) + sn( )sn( )) und analog: d r sn( ) sn( ) + r (sn( )cos( ) cos( ) cos( )sn( )) De Ursprungsgerade wrd m folgenden so bestmmt werden, dass se ene Etremalegenschaft n Bezug auf Varanz und Kovaranz der Punktwolke erfüllt. Se wrd sch später als Hauptachse der gesuchten Ellpsenschar erwesen. Wr defneren nun de beden Funktonen: n n n V( ) : c ( cos( ) + sn( )) cos( ) + cos( )sn( ) + sn ( ) n n n V cos( ) + C cos( )sn( ) + V sn ( ) n n n F( ) : d ( sn( ) + cos( )) V sn ( ) C cos( )sn( ) + V cos( )

3 F( ) st der mttlere Flächennhalt "orthogonalen" Quadrate: Abb. 4: Quadrate der Lote Dazu analog st V( ) st de Varanz der auf der Gerade g legenden Punkte: Abb. 5: Varanz der projzerten Punkte De FunktonV( ) stellt ene Verallgemenerung der Varanz dar, denn es glt: V (0) V und V ( ) V De Funktonen V und F snd um gegenenander phasenverschoben: V( ) F( ± ). Wegen sn ( ) + cos( ) glt: V( ) + F( ) V + V konst. Daraus ergbt sch V'() F'(). Enem Mamum der (nchtkonstanten) Funkton V( ) entsprcht daher en Mnmum von F( ) und umgekehrt. 3

4 Berechnung der Etrema: V '( ) V cos( )sn( ) + C (cos( ) sn ( )) + V sn( )cos( ) (V V ) sn( )cos( ) + C (cos( ) sn ( )) (V V )sn( ) + C cos( ) F '( ) V"( ) (V V )cos( ) 4C sn( ) F "( ) V '( ) 0 sn( ) (V V ) C cos( ) sn( ) C tan( ) cos( ) V -V und daher arctan C +k V -V (für V V ) Für V V erhält man ± 45. Im folgenden gelte: V V Im Intervall [ ; [ gbt es ene Mamumstelle und ene Mnmumstelle. Anders als be den gebräuchlchen Regressonsgeraden werden her ncht de senkrecht bzw. waagerecht gemessenen Abstände n der Quadratsumme zum Mnmum gemacht sondern de orthogonal gemessenen. Man könnte daher von "orthogonaler Regresson" sprechen. Es bezechne 0 den Wnkel 0 : arctan C V -V und : 0 + Der Test mt der zweten Abletung ergbt: 0 V"( ) (V V) + 4C, wobe das negatve Vorzechen für V > V glt. Man erhält für V V( ) V F F( ) > V: 0 ma ma V( ) V mn F mn F( 0) Anderenfalls gelten de umgekehrten Zuordnungen. Bespel: A(5 4), B(7 ), C(0 7). Es glt: V 389, V 6, C 3, 0 36,74, 53, 5 und, da V < V, Vma V( ), Vmn V( 0) De Etremwerte werden später unter Verwendung des Matrzenkalküls berechnet. 4

5 Genau we bem Übergang von der Varanz zur Standardabwechung m Endmensonalen sollte man auch be F und V de Wurzel zehen. Man erhält dadurch Maßstabsnvaranz und de rchtgen Enheten. In Polarkoordnaten und mt den Daten aus dem Bespel ergbt sch: Abb. 6: Graphen zu r V( ), r V( ) und r F() Betrachten wr de Ursprungsgerade mt Stegungswnkel (wegen V < V ), de durch de "Talle" der zu r F( ) gehörgen Kurve und glechzetg durch de Schetelpunkte von r V( ) verläuft. Der Wnkel st nunmehr so bestmmt, dass de Summe der n Abb. 4 dargestellten Abstandsquadrate der Punkte von deser Gerade mnmal st: F( ) Fmn. Entsprechend lest man an der zu V gehörgen Kurve ab, dass de n Rchtung der Geraden entsprechend gemessene Varanz V( ) mamal st, d.h. V( ) V ma. Darstellung mt Quadratschen Formen De Kovaranzmatr V C K: C V hat de Determnante det(k) V V C. Wegen der Unglechung von Cauch-Schwarz glt ohnehn: det(k) 0. C Im Falle der Glechhet würde für den Korrelatonskoeffzenten folgen: r VV Daraus ergäbe sch, dass alle Punkte auf ener (stegenden oder fallenden) Gerade lägen. Fordert man, dass de Punktwolke aus Punkten besteht, de ncht alle auf ener Geraden legen, ergbt sch als Mndestanzahl 3 sowe, dass det(k) > 0. Daraus folgt, dass de Kovaranzmatr postv defnt st. 5

6 Man erhält dadurch de postv defnte quadratsche Form V + C Q(, ) : K : ( ) K ( ) V + C + V In Polarkoordnaten: Q(r, ) r V( ) t C + V Glechhet trtt nur für 0 bzw. r 0 en. Hält man den Wnkel fest, so wachsen de Funktonswerte quadratsch mt r. De quadratsche Form kann also als Parabolod mt Schetelpunkt m Koordnatenursprung dargestellt werden. Jeder Schntt mt ener Ebene, de de z-achse enthält, st ene Parabel: Abb. 7: Darstellung von Q(, ) z Hauptachsentransformaton Be den Nveaulnen von Q(, ) z (z > 0) handelt es sch um Ellpsen: Bewes: Um den "gemschten" Term n führt man mt Hlfe der Drehmatr Q(, ) V + C + V zu elmneren, und der Substtuton cos( ) sn( ) c s T: T(): : sn( ) cos( ) s c. Tu neue Koordnaten en: t t t t Q K (Tu) KTu u T KTu 6

7 Das Produkt der n der Mtte stehenden dre Matrzen wrd eplzt ausgerechnet zu t TKT c s V C c s s c C V s c c s Vc + C s Vs + C c s c Cc + Vs Cs + Vc Vc + Csc + Vs C (c s) + (V V)sc C (c s ) + (V V )sc Vc C sc + Vs (*) ' V( ) V ( ) ' V( ) F( ) Für de Wnkel0 und nmmt dese Matr Dagonalgestalt an. Zur Verenfachung der Darstellung se m folgenden V > V und 0 vorausgesetzt. Man erhält de Matr Vma 0 0 V mn De Berechnung der Etremwerte n der Hauptdagonalen erfolgt nun ncht etwa numersch über das Ensetzen des berechneten Wnkels n de trgonometrschen Funktonen sondern nach den Rechenregeln für Determnanten. Es glt nämlch enersets, dass das Produkt der gesuchten Etremwerte bekannt st: t V V det(t KT) det(k) ma Anderersets ergbt de Addton der n der Hauptdagonale von (*) stehenden Terme wegen sn ( ) + cos( ) de ebenfalls bekannte Summe mn Vma + Vmn V + V De Werte V ma, V mn snd daher de Lösungen der quadratschen Glechung X (V + V )X + det(k) 0 Es handelt sch um de charakterstsche Glechung der Kovaranzmatr. De gesuchten Etremwerte snd also de Egenwerte der Kovaranzmatr: + ± + V V (V V ) 4C De Egenwerte snd bede postv und (falls V V C 0) vonenander verscheden. Als Bezechnung se < verenbart. De zugehörgen Egenvektoren snd: t ± + (V V (V V ) 4C C ) 7

8 De zum Wert z > 0 gehörge Nveaulne hat m gedrehten Koordnatensstem de Glechung: t Vma 0 u u u + u 0 V mn z Es handelt sch also we behauptet um ene Ellpse. Wählt man spezell z det(k) V V C, so ergbt sch u u +, also u u + De Halbachsen haben de Längen,. Normerung der Egenvektoren und Multplkaton mt desen Werten ergbt de Schetelpunkte m ursprünglchen Koordnatensstem. De Ellpse berührt den Graphen von V( ) von nnen: Abb. 8 De Lage und de Maße ermöglchen es, ene Koordnatenglechung der Ellpse drekt aus derjengen von r F() durch ene Inverson am Kres + R zu bestmmen. Abb. 9 Inverson am Kres 8

9 Be ener Inverson am Kres muss das Produkt der Raden r r R sen. Aus 4 r r R folgt mt R : 4 V 4 V C det(k) dass r F( ) det(k) Ausmultplzeren ergbt ene Koordnatenglechung der Inversonskurve: rf( ) r (V sn ( ) C sn( )cos( ) + V cos( )) 4 V C + V R Also geht F( ) durch Inverson über n de Ellpse: V C + V det(k) Benutzt man weder Matrzen, lässt sch dese Ellpsenglechung sehr knapp mt der nversen Kovaranzmatr schreben: Wegen K V C det(k) C V st se äquvalent zu t K Defnton: Se W ene ebene Wolke aus Punkten, de ncht alle auf ener Geraden legen. K se de Kovaranzmatr. De Ellpsen mt der Glechung V C + V k det(k) oder kurz K k t sowe hre Translatonen heßen Streuellpsen von W. De Ellpse mt k heßt "Standardstreuellpse". Aus der Annahme folgt V, V,det(K) > 0 und dass de Mndestpunktanzahl 3 beträgt. De Ellpsen snd also wohldefnert. Der Grenzfall Kres trtt genau dann auf, wenn V V C 0. De Streuellpsen snd de geometrschen Orte der Punkte, de denselben Mahalanobs-Abstand K bzw. t t ( a) K ( a) vom Zentrum mt Ortsvektor a haben. Se snd be bvarater Normalvertelung de Konturlnen glecher Wahrschenlchketsdchte. Das Mahalanobs-Abstandsmaß geht den zu messenden Daten ncht voraus sondern entsteht gewssermaßen erst mt hnen. De (eukldsche) Abstände werden entsprechend der Varanz n der jewelgen Rchtung gewchtet. 9

10 Abb. 0 Bespel für Streuellpsen De engezechneten Geraden snd Translatonen der Egenräume der Kovaranzmatr und Hauptachsen der Ellpsen. Man könnte se als Drtte Regressonsgeraden bezechnen. In desem Bespel wäre ene Verwendung der üblchen ersten oder zweten Regressonsgerade wegen der Glechartgket der dargestellten Daten ganz unangebracht, denn bede Komponenten des Datensatzes snd n glecher Wese fehlerbehaftet. De erste Regressonsgerade würde her etwa 8 flacher, de zwete etwa 30 steler verlaufen als de Hauptachse. Stener-Ellpsen als spezelle Streuellpsen Satz: De Punktwolke bestehe aus den Punkten A( 0), B(+ b c), C(b c) mt(c 0). Dann glt: t De Streuellpse K st de Stener-Innenellpse des Dreecks. t De Streuellpse K st de Stener-Umellpse des Dreecks. Bewes: a) Berechnung der Streuellpse: Für de Punktwolke ABC mt A( 0), B(+ b c), C(b c) glt: V 6+ b 3 V c C 3 bc b bc 4c c bc Daher: K, det(k) und K 3 bc c 3 c bc 3 + b 6 + b 4bc c 4c De Streuellpsen snd also: + k d.h.: c bc + (3 + b ) ck 0

11 b) Berechnung der Stener-Ellpse: Jedes ebene Dreeck kann (zusammen mt senen Stener-Ellpsen) durch de umkehrbaren Abbldungen Verschebung, Drehung, zentrsche Streckung und Spegelung auf en geegnetes Dreeck A( 0), B(+ b c), C(b c) mt c 0 abgebldet werden. Das Dreeck mt b 0,c 3 st glechsetg. Sene Stener-Ellpsen snd daher bekannt: es handelt sch (aus Smmetregründen) um den Innenkres: + und um den Umkres: + 4. b/ 3 Wenn man das glechsetge Dreeck durch de affne Abbldung mt M 0 c/ 3 auf das Dreeck A( 0), B(+ b c), C(b c) abbldet, geht sen Innenkres n de Stener- Innenellpse über. Denn ene affne Abbldung erhält Telverhältnsse, und de Innenellpse berührt we der Innenkres de Dreecksseten n den Setenmtten. De Spaltenvektoren von M haben (als Bldvektoren der orthogonalen Kresraden) konjugerte Rchtung. Das legt zusammen mt dem Zentrum de Ellpse berets fest. Se se durch de Koordnaten, beschreben. b c De Umkehrabbldung st gegeben durch: M 0 3 c Durch Ensetzen n de Kresglechung erhält man: b c 0 3 c Daraus folgt: De Stener-Innenellpse hat de Glechung: b 3 ( ) + c c c bc + (b + 3) c Der Verglech zegt: Für k st de Streuellpse also de Stener-Innenellpse. Streckung mt dem Faktor ergbt für k de Umellpse. De Berechnung der Streuellpsen st offenbar von der Anzahl der zugrunde legenden Punkte unabhängg. Der Begrff der Stener-Ellpse kann daher durch de m Satz genannte Charakterserung allgemener gefasst werden. Korollar: Zu jeder Punktwolke W gbt es Stener-Ellpsen. Der Etremalegenschaft der Stener-Ellpsen entsprcht be den Streuellpsen de Egenschaft der "effektvsten Darstellung".

12 De Ezentrztät der Streuellpsen hängt vom Korrelatonskoeffzenten r und vom Verhältns der Varanzen t: V V ab: t ( t) 4r t t ( t) 4r t Für V V ( also t ) glt: r r + Für r 0 glt: t für (0 < t ) und t für ( t) t Auch unkorrelerte Punktwolken haben also m Allgemenen kene Krese als Streuellpsen. Es gbt unkorrelerte Punktwolken mt Streuellpsen belebger Ezentrztät. Deser Feststellung enthält ene Warnung vor zu großem Vertrauen n de Aussagekraft des optschen Endrucks, den ene statstsche Graphk erwecken kann. Falls möglch, sollte man V und V mt derselben Enhet darstellen. Anwendung ergeben sch n Mustererkennung und Echthetsprüfung von Geldschenen 3. Ellptsche Galaen bestehen aus Mllarden von Sternen. Mt bvarater Statstk kann jeder Streuellpsen der jewelge Antel an der Gesamtzahl der Sterne zugeordnet werden. Abbldungsverzechns: [Abb. ] PISA-Konsortum (Hrsg.) PISA 003. Der zwete Verglech der Länder n Deutschland - Was wssen und können Jugendlche?, Münster, New York, München, Berln: Wamann 005. S. 53. (Schwarz-weß-nvertert) Abdruck mt freundlcher Genehmgung des Verlags. [Abb. 0] Daten aus: A Handbook of Small Data Sets. Ed. b D.J. Hand et al.. London: Chapman and Hall 994. Lteraturverzechns: Koecher, Ma: Lneare Algebra und Analtsche Geometre/Berln;Hedelberg; New York;Toko: Sprnger 983. [ISBN ] Tack, Thomas: De drtte, verte und fünfte Regressonsgerade. MNU, Mathematscher und naturwssenschaftlcher Unterrcht 59/ (5..006), S [ISSN ] Internetquellen [Stand: jewels 6. Aprl 007]: [S.5f] Empfehlenswerte Lnks: Anschrften der Verfasser: Thomas Tack, Kaptelshof, D-539 Bonn Hans Walser, Gerlkonerstrasse 9, CH-8500 Frauenfeld last modfed:. Ma 007

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

1.11 Beispielaufgaben

1.11 Beispielaufgaben . Bespelaufgaben Darstellung komplexer Zahlen Aufgabe. Man stelle de komplexe Zahl z = +e 5f n algebrascher Form, also als x + y dar. Damt man de Formel für de Dvson anwenden kann, muss zunächst der Nenner

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Lösungen aller Aufgaben und Lernkontrollen

Lösungen aller Aufgaben und Lernkontrollen Oft gbt es be den Aufgaben mehr als nur enen rchtgen Lösungsweg. Es st jedoch mest nur ene Lösung dargestellt. Aufgaben u Kaptel Lösung u Aufgabe a) nach Defnton von. b) 4 ( ) ( ). c) 5 4. d) ( ) (( )

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E Höhere nalss Komplexe Zahlen Tel Darstellung der komplexen Zahlen als Vektoren mt Polarkoordnaten trgonometrsch oder exponentell Eulersche Funkton E Date Nr. 500 Stand. November 08 FRIEDRICH W. BUCKEL

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

Die mathematischen Grundlagen der Wellenmechanik

Die mathematischen Grundlagen der Wellenmechanik De mathematschen Grundlagen der Wellenmechank Zustände und deren Darstellung En physkalsches System wrd durch enen Zustand u charaktersert, ndem es durch ene bestmmte expermentelle Präparaton gebracht

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

4 Die geometrische Darstellung der komplexen

4 Die geometrische Darstellung der komplexen 4 De geometrsche Darstellung der komplexen Zahlen Mt komplexen Zahlen kann man rechnen we mt gewöhnlchen Zahlen. Man kann mt hnen alle quadratschen Glechungen lösen. Aber das st be wetem ncht alles: Komplexe

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Konzept der Chartanalyse bei Chart-Trend.de

Konzept der Chartanalyse bei Chart-Trend.de Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Konzept der Chartanalyse be Chart-Trend.de Konzept der Chartanalyse be Chart-Trend.de... Bewertungsgrundlagen.... Skala und Symbole.... Trendkanalbewertung.... Bewertung

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

ijk n j x k + O( 2 ) für i =1, 2, 3 x k + O( 2 ) für i =1, 2, 3 ijk n j ~ (i~ ijk )n j x k + O( 2 ) für i =1, 2, 3. (V.28)

ijk n j x k + O( 2 ) für i =1, 2, 3 x k + O( 2 ) für i =1, 2, 3 ijk n j ~ (i~ ijk )n j x k + O( 2 ) für i =1, 2, 3. (V.28) V.3 Drehungen 83 V.3 Drehungen Jetzt werden dredmensonale Drehungen und hre Wrkung betrachtet. Wenn ~n der Enhetsvektor entlang der Drehachse und der Wnkel der Drehung snd, kann wrd de Transformaton des

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Komplexe Zahlen. Teil 1. Grundrechenarten. Darstellung in der Gaußschen Zahlenebene. Datei Nr Friedrich Buckel. Stand 23.

Komplexe Zahlen. Teil 1. Grundrechenarten. Darstellung in der Gaußschen Zahlenebene. Datei Nr Friedrich Buckel. Stand 23. Höhere Analyss Komplexe Zahlen Tel Grundrechenarten Darstellung n der Gaußschen Zahlenebene Date Nr. 500 Stand. November 08 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK https/:mathe-cd.de 500 Komplexe Zahlen

Mehr

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematk für das Ingeneurstudum von Martn Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck m Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzechns schnell und portofre

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gauslng, M.Sc. C. Hendrcks, M.Sc. Sommersemester 1 Bergsche Unverstät Wuppertal Fachberech C Mathematk und Naturwssenschaften Angewandte Mathematk / Numersche Analyss Enführung

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretsche Physk 2 (Theoretsche Mechank Prof. Dr. Th. Feldmann 28. Oktober 2013 Kurzzusammenfassung Vorlesung 4 vom 25.10.2013 1.6 Dynamk mehrerer Massenpunkte Dynamk für = 1... N Massenpunkte mt.a. komplzerter

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Komplexe Zahlen. Roger Burkhardt 2008

Komplexe Zahlen. Roger Burkhardt 2008 Komplexe Zahlen Roger Burkhardt (roger.burkhardt@fhnw.ch) 008 Enführung De Unvollkommenhet des Körpers der reellen Zahlen N 1,,,,... snd sowohl { } In der Menge der natürlchen Zahlen Addton we Multplkaton

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Semnar Enführung n de Kunst mathematscher Unglechungen Cauchys erste Unglechung und de Unglechung vom arthmetschen und geometrschen Mttel Sopha Volmerng. prl 0 Inhaltsverzechns Cauchys erste Unglechung.

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Statistik Exponentialfunktion

Statistik Exponentialfunktion ! " Statstk " Eponentalfunkton # $ % & ' $ ( )&* +, - +. / $ 00, 1 +, + ) Ensemble von radoaktven Atomkernen Zerfallskonstante λ [1/s] Lebensdauer τ 1/λ [s] Anzahl der pro Zetenhet zerfallenden Kerne:

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell Modellerung von Hydrosystemen Numersche und daten-baserte Methoden BHYWI-22-21 @ 2018 Fnte-Elemente-Methode Selke-Modell Olaf Koldtz *Helmholtz Centre for Envronmental Research UFZ 1 Technsche Unverstät

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

Beschreibung von Vorgängen durch Funktionen

Beschreibung von Vorgängen durch Funktionen Beschrebung von Vorgängen durch Funktonen.. Splnes (Sete 6) a +b c Zechenerklärung: [ ] - Drücken Se de entsprechende Taste des Graphkrechners! [ ] S - Drücken Se erst de Taste [SHIFT] und dann de entsprechende

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

( a ) z + ( 1 b ) z = ( 1 c ) z.

( a ) z + ( 1 b ) z = ( 1 c ) z. Hans Walser, [2000509a] Fermat mt negatven Exponenten Anregung: T. G., B. Vgl. [Morgan 200] Ausgangsrage Gesucht snd Lösungen a,b,c! der Glechung: a z + b z = c z, z! 2 Bespele und Gegenbespele a) Für

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

Manhattan-Metrik anhand des Beispiels

Manhattan-Metrik anhand des Beispiels Bestmmung durch Manhattan-Metrk 3 Manhattan-Metrk anhand des Bespels Gesucht werden de zwe Standorte für zwe Ausleferungslager. De Standpunkte der Nachfrager () snd durch de Koordnaten ( x/y ) gegeben.

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

Komplexe Zahlen. Überblick

Komplexe Zahlen. Überblick Höhere Analyss Komplexe Zahlen Überblck Zusammenfassung des Stoffes der ausführlchen Manuskrpte 500 bs 500 mt sehr velen Übungsaufgaben, deren Lösungen n den ausführlchen Texten u desen Themen stehen.

Mehr

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9 WS 2016/17 Prof. Dr. Horst Peters 06.12.2016, Sete 1 von 9 Lehrveranstaltung Statstk m Modul Quanttatve Methoden des Studengangs Internatonal Management (Korrelaton, Regresson) 1. Überprüfen Se durch Bestmmung

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Seminar über Numerische Mathematik

Seminar über Numerische Mathematik Andreas Mester Semnar über Numersche Mathematk Semnar m Wntersemester 008/009 Unverstät Kassel Fachberech Mathematk Inhaltsverzechns Bezer-Kurven 1 1 Enletung 1 Der Algorthmus von de-castelau.1 Parabeln....................................

Mehr

Statistische Kennzahlen für die Lage

Statistische Kennzahlen für die Lage Statstsche Kennzahlen für de Lage Bsher: gernge Informatonsverdchtung durch Vertelungsbeschrebung Jetzt: stärere Zusammenfassung der Daten auf hr Zentrum ls Raabe: Wahrschenlchetsrechnung und Statstsche

Mehr

Das nächste Problem sind Gleichungen wie x 2 = 2. Wurzeln, führt dazu, dass auch die Gleichung x 2 = 2 Lösungen besitzt, nämlich

Das nächste Problem sind Gleichungen wie x 2 = 2. Wurzeln, führt dazu, dass auch die Gleichung x 2 = 2 Lösungen besitzt, nämlich Kompllexe Zahllen We kommtt man u den komplexen Zahlen? Zaahl lbeerree cchss-- eerrwee tteerrung:: gaanee Zaahl leen rraatt onaal lee Zaahl leen In der Grundschule rechnet man nur mt natürlchen Zahlen.

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Optimierung 4.3 A2 : Warenhauszentrale a 2 +b 2 =c 2 Materialbörse Mathematik

Optimierung 4.3 A2 : Warenhauszentrale a 2 +b 2 =c 2 Materialbörse Mathematik Zechenerklärung: [ ] - Drücken Se de entsprechende Taste des Graphkrechners! [ ] S - Drücken Se erst de Taste [SHIFT] und dann de entsprechende Taste! [ ] A - Drücken Se erst de Taste [ALPHA] und dann

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr