Mathematik für das Ingenieurstudium

Größe: px
Ab Seite anzeigen:

Download "Mathematik für das Ingenieurstudium"

Transkript

1 Mathematk für das Ingeneurstudum von Martn Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck m Internet: ISBN Zu Inhaltsverzechns schnell und portofre erhältlch be beck-shop.de DIE FACHBUCHHANDLUNG

2 Leseprobe Jürgen Koch, Martn Stämpfle Mathematk für das Ingeneurstudum ISBN (Buch): ISBN (E-Book): Wetere Informatonen oder Bestellungen unter sowe m Buchhandel. Carl Hanser Verlag, München

3 Komplee Zahlen und Funktonen Obwohl berets Leonhard Euler und Johann Carl Fredrch Gauß das Zechen für magnäre Enhet engeführt haben, wurde de Bedeutung der kompleen Zahlen für de Mathematk erst Anfang des 19. Jahrhunderts erkannt. Etwa zetglech fand durch de Erfndung der elektrschen Telegrafe der Ensteg n de elektronsche Nachrchtenübermttlung statt. Dadurch snd wr heute n der Lage, Informatonen mt Telefon, Fernsehen und Computer n Echtzet zu übermtteln. Trotzdem gbt es nach we vor gute Gründe dafür, dass vele Informatonen n ncht elektronscher Form, etwa durch Brefe, Bücher oder Zetschrften übermttelt werden. Mt den reellen und kompleen Zahlen verhält es sch ganz ähnlch. Vele Problemstellungen lassen sch durch komplee Zahlen enfacher beschreben und mthlfe kompleer Zahlen schneller und enfacher lösen. Trotzdem kommt man be ener ganzen he von Problemstellungen n der Mathematk auch ganz gut ohne komplee Zahlen zurecht. Zusammenhang mt kompleen Zahlen treten Begrffe we magnäre Enhet und agnärtel auf. Dadurch gewnnt man lecht den Endruck, dass komplee Zahlen fktve Geblde snd, de kene Bedeutung für de reale Welt haben. Genau das Gegentel st jedoch der Fall. Komplee Zahlen snd genau so real we de reellen Zahlen. An de reellen Zahlen haben wr uns nur schon gewöhnt. De Lebe zu den kompleen Zahlen st mestens kene Lebe auf den ersten Blck. Wer jedoch das Prnzp enmal durchschaut hat, möchte de kompleen Zahlen ne mehr mssen Defnton und Darstellung Wenn n der Mathematk ene neue Zahlenmenge engeführt wrd, muss es dafür enen plausblen Grund geben, sehe Abschntt 1.2. Es stellt sch also de Frage, welche mathematschen Probleme ncht mt reellen Zahlen gelöst werden können. Bem chnen mt reellen Zahlen snd wr mmer weder auf das Problem gestoßen, dass unter der Wurzel kene negatve Zahl stehen darf. Oder anders formulert: Es gbt kene reelle Zahl, deren Quadrat ene negatve Zahl ergbt. De grundlegende Idee der kompleen Zahlen besteht darn, de reellen Zahlen so zu erwetern, dass deses Manko behoben wrd Komplee Zahlen De Bass für de kompleen Zahlen wrd durch de Defnton ener magnären Enhet gelegt. De magnäre Enhet st dadurch gekennzechnet, dass das Quadrat der magnären Enhet 1 ergbt. De magnäre Enhet st somt kene reelle Zahl, sondern etwas Neues.

4 Komplee Zahlen und Funktonen In der Mathematk st es üblch, de komplee Enhet mt zu bezechnen. Um Verwechslungen mt der Abkürzung für de Stromstärke zu vermeden, verwendet man n der Elektrotechnk manchmal de Schrebwese j. Defnton 11.1 (agnäre Enhet) De magnäre Enhet st defnert durch 2 = 1. In Defnton 11.1 haben wr bewusst ncht de Formulerung = 1 gewählt. In Abschntt werden wr klären, we das Wurzelsymbol m Zusammenhang mt kompleen Zahlen zu verstehen st. Ausgehend von der kompleen Enhet defnert man de Menge der kompleen Zahlen. Dabe geht man so ähnlch we be Koordnaten von Punkten oder Vektoren vor. Jede komplee Zahl bestzt ene reelle und ene magnäre Komponente. Defnton 11.2 (Komplee Zahlen) De Menge der kompleen Zahlen st defnert durch C = {z = + y, y R, 2 = 1}. Dabe bezechnet de reelle Zahl den altel (z) und de reelle Zahl y den agnärtel (z) der kompleen Zahl z = + y. De Menge der reellen Zahlen st ene echte Telmenge der kompleen Zahlen. Se besteht aus allen kompleen Zahlen mt agnärtel null. Alle kompleen Zahlen der Form z = y, also alle kompleen Zahlen mt altel null, bezechnet man als ren magnäre Zahlen. Bespel 11.1 (Komplee Zahlen) a) De komplee Zahl z 1 = 1 hat den altel 1 und den agnärtel 1. b) De Zahl z 2 = 2 hat den altel 0 und den agnärtel 2. c) Durch z 3 = 1 wrd ene komplee Zahl mt altel 1 und agnärtel 0 festgelegt Gaußsche Zahlenebene Ene komplee Zahl hat zwe reelle Antele, den altel und den agnärtel. Dabe st unbedngt zu beachten, dass der agnärtel ene reelle Zahl st und de magnäre Enhet ncht enthält. Ene komplee Zahl bestzt zwe unabhängge Komponenten. Deshalb recht zur Darstellung kompleer Zahlen en Zahlenstrahl, we wr es von den reellen Zahlen gewohnt snd, ncht aus.

5 11.1 Defnton und Darstellung 433 Gaußsche Zahlenebene De grafsche Darstellung der Menge der kompleen Zahlen n enem kartesschen Koordnatensystem bezechnet man als Gaußsche Zahlenebene. De horzontale Achse st de reelle Achse und de vertkale Achse de magnäre Achse. De Darstellung durch z = + y bezechnet man als kartessche Form. y 1 1 z =+y Korrekterwese muss de Enhet be der Beschrftung der magnären Achse angegeben werden. An velen Stellen wrd jedoch dese mathematsche Fenhet gnorert und de magnäre Achse ohne de magnäre Enhet beschrftet. Oftmals werden komplee Zahlen n der Gaußschen Zahlenebene ncht nur durch Punkte, sondern durch Pfele dargestellt Polarkoordnaten Für komplee Zahlen haben sch mehrere Darstellungsformen etablert. In kartesschen Koordnaten verwendet man den altel und den agnärtel, um ene komplee Zahl zu beschreben. In Polarkoordnaten betrachtet man den Abstand ener kompleen Zahl vom Ursprung und den Wnkel, den ene komplee Zahl mt der postven reellen Achse bldet. Bem Arbeten mt kompleen Zahlen muss man mt beden Darstellungen vertraut sen. Es gbt Problemstellungen, de sch n kartesscher Form lechter lösen lassen als n Polarkoordnaten. Andere Probleme wederum lassen sch eleganter n Polarkoordnaten lösen. Defnton 11.3 (Betrag ener kompleen Zahl) Der Betrag der kompleen Zahl z st der Abstand von z zum Ursprung. In kartesscher Form glt z = + y z = 2 + y 2. y z = 2 +y 2 1 z =+y Wenn man zusätzlch zum Betrag auch noch enen Wnkel für ene komplee Zahl festlegt, dann st de Zahl dadurch endeutg beschreben. Be kompleen Zahlen wrd der Wnkel bezüglch der postven reellen Achse gemessen.

6 Komplee Zahlen und Funktonen Defnton 11.4 (Argument ener kompleen Zahl) Das Argument der kompleen Zahl z = + y mt z 0 st der Wnkel von z. Es glt: arg(z) = arctan ( y ) für > 0, y bel. arctan ( y ) + π für < 0, y 0 arctan ( y ) π für < 0, y < 0 π 2 für = 0, y > 0 π 2 für = 0, y < 0. y 1 arg(z) z =+y Der Arkustangens lefert Werte zwschen π 2 und π. Abhängg vom Quadranten, ndem 2 de komplee Zahl legt, muss man deshalb be der Wnkelberechnung π adderen oder subtraheren. De Formel zur Berechnung des Wnkels n Defnton 11.4 lefert dadurch Werte m Intervall von ( π, π]. Zahlen auf der postven reellen Achse haben das Argument 0, auf der postven magnären Achse das Argument π, auf der negatven reellen Achse 2 das Argument π und auf der negatven magnären Achse das Argument π 2. Be der kompleen Zahl Null legt ene Ausnahmestuaton vor. Der Zahl Null st ken endeutger Wnkel zugeordnet. Mestens umgeht man deses Problem, ndem man der Zahl Null den Wnkel null zuordnet. Be praktschen Problemstellungen wrd man oft mt Wnkelberechnungen konfrontert. In velen Programmersprachen gbt es deshalb ene erweterte Arkustangensfunkton, de n der gel mt atan2 bezechnet wrd: arg( + y) = atan2(y, ). De Wnkelzuordnung be den kompleen Zahlen hat enen Schönhetsfehler. Bem Wechsel über de negatve reelle Achse sprngen de Wnkelwerte um 2 π. Deser Schönhetsfehler lässt sch genau so weng besetgen we de Datumsgrenze entlang des 180. Längengrads. Defnton 11.5 (Polarform, Polarkoordnaten) De Darstellung ener kompleen Zahl z mt Betrag r und Wnkel ϕ n der Form z = r cos ϕ (z) + r sn ϕ (z) nennt man Polarform. Man bezechnet r und ϕ als Polarkoordnaten von z. y 1 ϕ z =rcosϕ+rsnϕ r

7 11.1 Defnton und Darstellung 435 In Polarkoordnaten snd auch Wnkel außerhalb des Intervalls ( π, π] zulässg. Dabe st zu beachten, dass Wnkel, de sch um en ganzzahlges Velfaches von 2 π unterscheden, be glechem Radus deselbe komplee Zahl darstellen Eponentalform Mtte des 18. Jahrhunderts hat Leonhard Euler enen verblüffenden Zusammenhang zwschen der Kreszahl π, der Eulerschen Zahl e und der magnären Enhet entdeckt: e π = 1. Durch de magnäre Enhet entsteht also ene mathematsche Verbndung zwschen der Wachstumskonstante e und der trgonometrschen Konstante π. Deser Zusammenhang lässt sch auf de e-funkton und de trgonometrschen Funktonen Snus und Kosnus erwetern. Satz 11.1 (Eulersche Identtät) Für jede reelle Zahl ϕ glt de Eulersche Identtät e ϕ = cos ϕ + sn ϕ. Dese Bezehung wrd auch als Satz von Euler oder Euler-Formel bezechnet. Außerdem glt stets e ϕ = 1. De Eulersche Identtät lässt sch mthlfe von Potenzrehen bewesen, sehe Kaptel 8. Durch de Eulersche Identtät und durch Polarkoordnaten ergbt sch de sogenannte Eponentalform ener kompleen Zahl. Defnton 11.6 (Eponentalform) De Darstellung ener kompleen Zahl z mthlfe der Eulerschen Zahl e z = r e ϕ y z =re ϕ nennt man Eponentalform. Dabe snd der Betrag z = r und das Argument arg(z) = ϕ de Polarkoordnaten der kompleen Zahl z. 1 ϕ r De Eponentalform st bem Arbeten mt kompleen Zahlen sehr hlfrech. Insbesondere werden wr de Potenzgesetze aus Satz 1.4 verwenden, um Potenzen und Wurzeln von kompleen Zahlen zu berechnen.

8 Komplee Zahlen und Funktonen Bespel 11.2 (Komplee Zahlen) De komplee Zahl z 1 = 1 + lässt sch von der kartesschen Form n de Eponentalform umrechnen: z 1 = 2, arg(z 1) = arctan 1 1 = π 4. z 2 = 2e 5 π 6 2 z 1 = 2e π 4 De Zahl z 2 = 2 e 5 π 6 lautet n kartesscher Form z 2 = 2 cos 5 π sn 5 π 6 = z 3 = 2e 5 π 6 2 De Zahl z 3 = 2 e 5 π 6 legt m drtten Quadranten. Defnton 11.7 (Konjugert komplee Zahl) De konjugert komplee Zahl z ener kompleen Zahl z erhält man durch Spegeln an der reellen Achse: z = + y z = y z = r e ϕ z = r e ϕ y y r ϕ ϕ z =+y = re ϕ r z = y = re ϕ Manchmal verwendet man auch de Bezechnung z für de konjugert komplee Zahl von z. De Eulersche Identtät besagt, dass man ene e-funkton mt magnärem Eponenten mthlfe von Snus und Kosnus ausdrücken kann. Umgekehrt lassen sch Snus und Kosnus auch mt e-funktonen mt magnären Eponenten darstellen. Dazu betrachten wr de Eulersche Identtät enmal für den Wnkel ϕ und enmal für den Wnkel ϕ. Durch Addton bzw. Subtrakton der beden Identtäten ergbt sch e ϕ = cos ϕ + sn ϕ e ϕ = cos ϕ sn ϕ e ϕ + e ϕ = 2 cos ϕ e ϕ = cos ϕ + sn ϕ e ϕ = cos ϕ sn ϕ e ϕ e ϕ = 2 sn ϕ Satz 11.2 (Darstellung von Snus und Kosnus durch komplee e-funktonen) Der Snus und der Kosnus lassen sch für jede reelle Zahl ϕ mthlfe von e-funktonen mt magnären Eponenten darstellen: cos ϕ = e ϕ + e ϕ 2 sn ϕ = e ϕ e ϕ 2

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium ISBN: Weitere Informationen oder Bestellungen unter

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium ISBN: Weitere Informationen oder Bestellungen unter Lesepobe Jügen Koch, Matn Stämpfle Mathematk fü das Ingeneustudum ISBN: 978-3-446-46- Wetee Infomatonen ode Bestellungen unte http://www.hanse.de/978-3-446-46- sowe m Buchhandel. Cal Hanse Velag, München

Mehr

1.11 Beispielaufgaben

1.11 Beispielaufgaben . Bespelaufgaben Darstellung komplexer Zahlen Aufgabe. Man stelle de komplexe Zahl z = +e 5f n algebrascher Form, also als x + y dar. Damt man de Formel für de Dvson anwenden kann, muss zunächst der Nenner

Mehr

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E Höhere nalss Komplexe Zahlen Tel Darstellung der komplexen Zahlen als Vektoren mt Polarkoordnaten trgonometrsch oder exponentell Eulersche Funkton E Date Nr. 500 Stand. November 08 FRIEDRICH W. BUCKEL

Mehr

Komplexe Zahlen. Teil 1. Grundrechenarten. Darstellung in der Gaußschen Zahlenebene. Datei Nr Friedrich Buckel. Stand 23.

Komplexe Zahlen. Teil 1. Grundrechenarten. Darstellung in der Gaußschen Zahlenebene. Datei Nr Friedrich Buckel. Stand 23. Höhere Analyss Komplexe Zahlen Tel Grundrechenarten Darstellung n der Gaußschen Zahlenebene Date Nr. 500 Stand. November 08 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK https/:mathe-cd.de 500 Komplexe Zahlen

Mehr

4 Die geometrische Darstellung der komplexen

4 Die geometrische Darstellung der komplexen 4 De geometrsche Darstellung der komplexen Zahlen Mt komplexen Zahlen kann man rechnen we mt gewöhnlchen Zahlen. Man kann mt hnen alle quadratschen Glechungen lösen. Aber das st be wetem ncht alles: Komplexe

Mehr

Komplexe Zahlen. Roger Burkhardt 2008

Komplexe Zahlen. Roger Burkhardt 2008 Komplexe Zahlen Roger Burkhardt (roger.burkhardt@fhnw.ch) 008 Enführung De Unvollkommenhet des Körpers der reellen Zahlen N 1,,,,... snd sowohl { } In der Menge der natürlchen Zahlen Addton we Multplkaton

Mehr

Lösungen aller Aufgaben und Lernkontrollen

Lösungen aller Aufgaben und Lernkontrollen Oft gbt es be den Aufgaben mehr als nur enen rchtgen Lösungsweg. Es st jedoch mest nur ene Lösung dargestellt. Aufgaben u Kaptel Lösung u Aufgabe a) nach Defnton von. b) 4 ( ) ( ). c) 5 4. d) ( ) (( )

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Denavit-Hartenberg-Notation

Denavit-Hartenberg-Notation DENAVIT und HARTENBERG haben ene Methode engeführt, de es erlaubt für alle knematsche Ketten de Lagen der Gleder zuenander enhetlch auszudrücken. De Gelenke, de de Gleder mtenander verbnden, dürfen dabe

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Potenzen einer komplexen Zahl

Potenzen einer komplexen Zahl Potenzen ener komplexen Zahl 1-E1 1-E Abraham cc de Movre Abraham de Movre (17 175) französscher Mathematker Abraham de Movre der als Emgrant n London lebte glt als ener der Ponere der Wahrschenlchketsrechnung.

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Theoretische Physik II Elektrodynamik Blatt 2

Theoretische Physik II Elektrodynamik Blatt 2 PDDr.S.Mertens M. Hummel Theoretsche Physk II Elektrodynamk Blatt 2 SS 29 8.4.29 1. Rechnen mt Nabla. Zegen Se durch Auswertung n kartesschen Koordnaten de folgende Relaton und werten Se de anderen Relatonen

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Das nächste Problem sind Gleichungen wie x 2 = 2. Wurzeln, führt dazu, dass auch die Gleichung x 2 = 2 Lösungen besitzt, nämlich

Das nächste Problem sind Gleichungen wie x 2 = 2. Wurzeln, führt dazu, dass auch die Gleichung x 2 = 2 Lösungen besitzt, nämlich Kompllexe Zahllen We kommtt man u den komplexen Zahlen? Zaahl lbeerree cchss-- eerrwee tteerrung:: gaanee Zaahl leen rraatt onaal lee Zaahl leen In der Grundschule rechnet man nur mt natürlchen Zahlen.

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Komplexe Zahlen. Überblick

Komplexe Zahlen. Überblick Höhere Analyss Komplexe Zahlen Überblck Zusammenfassung des Stoffes der ausführlchen Manuskrpte 500 bs 500 mt sehr velen Übungsaufgaben, deren Lösungen n den ausführlchen Texten u desen Themen stehen.

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

=, grad Z(s) = m n = grad N(s).

=, grad Z(s) = m n = grad N(s). 4 7... Stabltätsprüfung anhand der Übertragungsfunkton (.9) leferte den Zusammenhang zwschen der Gewchtsfunkton g(t) und der Übertragungsfunkton G(s) enes lnearen zetnvaranten Systems G (s) { g ( t)}.

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretsche Physk 2 (Theoretsche Mechank Prof. Dr. Th. Feldmann 28. Oktober 2013 Kurzzusammenfassung Vorlesung 4 vom 25.10.2013 1.6 Dynamk mehrerer Massenpunkte Dynamk für = 1... N Massenpunkte mt.a. komplzerter

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

6. Elektrische Wechselgrössen

6. Elektrische Wechselgrössen Grundlagen der Elektrotechnk GE 2 [Buch GE 2: Seten 72-14] Grundbegrffe Wechselgrössen Perodsche Wechselgrössen Lnearer und quadratscher Mttelwert Der Effektvwert Bezugspfele Verallgemenerte Zetfunktonen

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

lee ZZaahhl leenn IQ, Zahlen die als Brüche geschrieben werden. Damit hat auch eine Gleichung der Form 12 x = 3 eine Lösung, nämlich x = 4

lee ZZaahhl leenn IQ, Zahlen die als Brüche geschrieben werden. Damit hat auch eine Gleichung der Form 12 x = 3 eine Lösung, nämlich x = 4 Kompllexe Zahllen We kommtt man zzu den komplexen Zahlen? Zaahl lbeerree cchss-- eerrwee tteerrung:: gaanzzee Zaahl leen rraatt onaal lee Zaahl leen In der Grundschule rechnet man nur mt natürlchen Zahlen.

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Terme und Formeln Komplexe Zahlen

Terme und Formeln Komplexe Zahlen Terme und Formeln Komplexe Zhlen e ϕ + = 0 Rchrd Feynmn nnnte dese Glechung n senem Notzbuch de bemerkenswerteste Formel der Welt ; ndere nennen se de schönste Formel der Mthemtk. De Eulersche Identtät

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis

2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis 27 2 Glechstromtechnk 2.1 Der unverzwegte Stromkres 2.1.1 Der Grundstromkres n unverzwegter Stromkres st de geschlossene Hnterenanderschaltung verschedener Schaltelemente: Spannungsquellen, Wderstände

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

MECHATRONISCHE NETZWERKE

MECHATRONISCHE NETZWERKE MECHATRONISCHE NETZWERKE Jörg Grabow Tel 3: Besondere Egenschaften 3.Besondere Egenschaften REZIPROZITÄT REZIPROZITÄT Neben den allgemenen Enschränkungen (Lneartät, Zetnvaranz) be der Anwendung der Verpoltheore

Mehr

Über eine besondere Teilung einer Dreieckfläche

Über eine besondere Teilung einer Dreieckfläche Paper-ID: VGI 93202 Über ene besondere Telung ener Dreeckfläche Leopold Herzka Hofrat. R., Wen Österrechsche Zetschrft für Vermessungswesen 30 (), S. 3 6 932 BbT E X: @ARTICLE{Herzka_VGI_93202, Ttle =

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

Mathematikaufgabe 100

Mathematikaufgabe 100 Home Startsete Impressum Kontakt Gästebuch Aufgabe: Sechs Flugzeuge mt unterschedlchen Geschwndgketen und Abständen flegen n ener Warteschlefe m Kres. Lösen Se de Aufgabenstellung, daß alle Flugzeuge mt

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

3. Vorlesung Sommersemester

3. Vorlesung Sommersemester 3. Vorlesung Sommersemester 1 Bespele (Fortsetzung) 1. Der starre Körper: Formulerung der Zwangsbedngungen später. Anschaulch snd schon de Frehetsgrade: dre der Translaton (z. B. Schwerpuntsoordnaten)

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr