Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt"

Transkript

1 Hochschule Eden / Leer Physikalische Cheie Praktiku Reale Gase, Kritischer Punkt Vers.Nr. 1 April 015 Allgeeine Grundlagen Reale Gase, Kopressionsfaktor (Realgasfaktor), Van der Waals Gleichung, Kritischer Punkt, Virialgleichung. Grundlagen zu Versuch Bei hohe Druck und niedriger Teperatur weichen Gase beträchtlich vo idealen Verhalten ab. Wird ein solches reales Gas bei konstanter Teperatur verdichtet, ergibt sich eine Serie von P,V Daten, die eine Isothere definieren. Bei genügend niedriger Teperatur führt die Kopression eines gegebenen Gases zur Verflüssigung. Bei der graphischen Darstellung von P gegen V erhält an dann ein Druckplateau bei Dapfdruck der Flüssigkeit. Wenn an die Teperatur schrittweise erhöht, wird dieses Druckplateau ier schäler und bei Erreichen der "ischen Teperatur" T kr wird daraus ein Punkt. Dieser Punkt, der "ische Punkt" ist charakteristisch für ein jedes Gas und definiert die ischen Konstanten für dieses Gas, d.h. T, P und V,. Oberhalb T ist eine Verflüssigung unöglich, bei welche Druck auch ier. Ein Gas wird aber beträchtlich vo idealen Gasgesetz abweichen, wenn seine Teperatur und sein Druck zu nahe bei T und/oder P liegen. Van der Waals Gleichung Van der Waals führte als Erster zwei einfache Modifikationen in die Gasgleichung ein, die das Gasgesetz auf reale Gase erweitert. Er berücksichtigte die zwischenolekularen Kräfte durch die Einführung des "Binnendrucks" (a n /V oder a/v ) und das Voluen der Gasoleküle durch das Ausschlussvoluen n b: (1) a P + n V P + a V (V - n b) = n R T (V - b) = oder Eine einfachere For dieser Gleichung ergibt sich, wenn sie algebraisch nach P aufgelöst wird: a () P = - (V - b) V Eine weitere Uforung zeigt, dass die Gleichung dritter Ordnung in V ist: ( ) P V ( b P + ) V + a V a b = 0 Die Van der Waals Koeffizienten a und b werden epirisch bestit, u die beste Anpassung der Gleichung an ein spezielles Gas zu erhalten. Sie können auch aus den ischen Konstanten berechnet werden. Dazu benützt an die Tatsache, dass die ische Isothere a ischen Punkt einen horizontalen Wendepunkt besitzt. Diese Tatsache bedingt, dass sowohl die erste als 1

2 auch die zweite Ableitung der Van der Waals Gleichung a ischen Punkt Null sein üssen: dp a (4) = - + = 0 dv (V - b ) V d P (5) = d V R T (V - b ) 6 a - = 0 4 V Einsetzen von T, P und V, in die Gleichungen, 4 und 5 ergibt die Gleichungen 6, 7 und 8, die nach den zwei Unbekannten a und b aufgelöst werden können: kr a (6) P = (V, - b) V, kr a (7) 0 = + (V, - b ) V, R T kr 6 a (8) 0 = (V, - b ) V, 4 Da nur zwei Gleichungen zur Bestiung von zwei Unbekannten nötig sind, ist a und b überbestit. Da V, a wenigsten genau bekannt ist, wird nach P und T aufgelöst: (9a) 7 (R a = T 64 P ) (9b) R b = T 8 P Man sollte sich bei all diesen Überlegungen aber i Klaren darüber sein, dass die VdW Gleichung auf eine sehr groben Modell basiert und die Realität eines Gases nur sehr ungenau beschreibt.

3 Theore der korrespondierenden Zustände. Dieses Theore lässt sich folgenderaßen forulieren: Alle Gase it gleicher reduzierten Teperatur T r und reduzierte Druck P r nehen das gleiche reduzierte Voluen V r ein. Die reduzierten Variablen sind wie folgt definiert: T r = T/T P r = P/P V r = V /V, In der Praxis ist dieses Theore nicht universell gültig. Es ist jedoch gelungen, das Korrespondenzprinzip durch Einführung eines von Stoff zu Stoff veränderlichen Paraeters so zu erweitern, dass es in guter Näherung allgeein erfüllt ist. In Verbindung it den kubischen Zustandsgleichungen von Redlich Kwong Suave (RKS-Gleichung) und anderen, wird es in der erweiterten For i Cheieingenieurwesen praktisch angewandt. Realgasfaktor U it Gleichung den Druck eines Gases in eine gegebenen Zustand zu berechnen, üssen V, T und n für diesen Zustand bekannt sein. Bei realen Gasen kann an n aus Gleichung 10 erhalten, wenn der diensionslose Realgasfaktor (Kopressionsfaktor) Z. bekannt ist. P V P V (10) Z = = n R T Für ideale Gase ist Z = 1. Bei Erhöhen des Drucks nit Z noralerweise ab (auf Grund interolekularer Anziehungskräfte) bis zu eine Miniu von ungefähr 0, bei Kritischen Punkt. Danach nit Z wieder zu (auf Grund von Abstoßungskräften it kurzer Reichweite) und überschreitet 1 bei hohen Drücken. Für diesen Versuch kann der Wert von Z it genügender Genauigkeit unter Verwendung des Prinzips der korrespondierenden Zustände erhalten werden. Unter Verwendung dieses Prinzips lässt sich Z als Funktion von P r und T r darstellen, siehe Zeichnung. Wenn an P r und T r für einen gegebenen Zustand berechnet kann an durch Interpolation aus de Graphen (Abb.) auf der nächsten Seite Z bestien, it Gleichung 10 erhält an n. (Abb.1)

4 (Abb.) 4

5 Virialgleichung: U das Verhalten eines realen Gases zu beschreiben kann an an Stelle der kubischen Zustandsgleichungen auch die Virialgleichung verwenden: P V B(T) C(T) D(T) (11) Z = = V V V Die Teperaturfunktionen B(T), C(T),... bezeichnet an als.,.,... Virialkoeffizienten. Sie werden in der Praxis epirisch so an die Messdaten angepasst, dass sich ein guter Fit ergibt. Die höheren Tere, 4, etc... werden eist nicht benötigt. Ustellen der verbleibenden Gleichung ergibt eine For, die besser zu Kurvenfitten it der Methode der kleinsten Fehlerquadrate geeignet ist: P 1 B(T) C(T) (1) = 0 V V V π (1) B = b = d N L Die Virialgleichung lässt sich theoretisch begründen. Die Virialkoeffizienten bringen die zwischenolekularen Kräfte zu Ausdruck, wobei B(T) die Wechselwirkungen zwischen Molekülpaaren, C(T) die zwischen Dreiergruppen von Molekülen, erfasst. Wenn an das einfache Hartkugelodell verwendet, das der Van der Waals Gleichung zugrunde liegt, ergibt sich: In der Praxis sind B und b aber verschieden. Aufgabenstellung Von de vorgegeben Gas sind verschiedene Isotheren zu essen. Dabei soll die ische Isothere gefunden werden. Das ische Verhalten ist zu beobachten. Aus den so gewonnenen Daten sollen angegeben bzw. berechnet werden: 1. die ischen Zustandsgrößen P. und T.,. die Van der Waals Konstanten a und b.. Von allen Ihren geessenen P,V,T Datenpunkten, wählen sie den P,V,T Punkt aus, der sich a idealsten verhält, und bestien dait T r und P r, 4. interpolieren Sie den Realgasfaktor aus de Graphen (Seite 4 dieser Anleitung) für Z= f(t r,p r ) für den Datenpunkt von., heften Sie diesen bitte zu Protokoll und zeichnen die Interpolation farbig ein. 5. berechnen Sie n u.a. it den Daten aus. und 4., 6. berechnen Sie V für den Datenpunkt von., 7. it der Van der Waals Gleichung berechnen Sie den Druck für den Datenpunkt von. und vergleichen ihn it de geessenen Wert, 8. berechnen Sie it Ihren Daten den Virialkoeffizienten B (nehen Sie C, D,... zu null an) (Virialgleichung benutzen), 9. Zeichnen Sie alle Isotheren in ein PV-Diagra, 10. Vergleichen Sie die erhaltenen Werte soweit öglich it Literaturwerten. 5

6 Versuchsaufbau Das Gerät zur Messung des ischen Punktes besitzt als wesentliche Bestandteile eine transparente, voluenkalibrierte Glaskapillare und ein Druckerzeugungssyste it Manoeter. Die Kopressions- und Messkapillare besteht aus äußerst widerstandsfähige Spezialglas. Sie wurde einer Prüfung it Pa bei 60 C unterzogen. Der obere Betriebspunkt für das Gerät liegt bei ca Pa und 55 C.!!! Als Messarke dient die das Messvoluen begrenzende Quecksilbersäule! Unterer Meniskusrand! Die Druckkaer aus rostfreie Stahl ist it ca. 60 g Quecksilber gefüllt und bildet it der Messkapillare ein druckdichtes Syste. In der Druckkaer kann it eine Handrad über einen Spindelbetrieb ein Kolben bewegt werden. Die Drehung des Handrades i Uhrzeigersinn bewirkt einen Kolbenhub und dait eine Voluenverkleinerung. Die Einstellung des Voluens kann sehr feinfühlig erfolgen, ax. 16 Udrehungen für den gesaten Kolbenhub. Der Druck wird von eine großen Manoeter angezeigt. SICHERHEIT Druck: Sie werden bis zu eine Druck von 50 Bar in einer Glaskapillare arbeiten. Überschreiten Sie unter keinen Uständen Pa. Teperatur: Da eine Teperaturerhöhung den Druck über das Liit treiben kann, ändern Sie die Teperatureinstellung a Therostaten nie, wenn Quecksilber in der Kapillare ist. (Ausnahe: wenn Sie in der Nähe des ischen Punktes Änderungen von 0.1 C vornehen.) Überschreiten Sie unter keinen Uständen 55 C. Sonstiges: Der untere Anschlag des Handrades ist gut fühlbar und Sie dürfen auf keinen Fall versuchen it Gewalt zu überdrehen. Nach der Messung drehen Sie den Druckkolben zu unteren Anschlag zurück. Die Messkapillare darf keinen äußeren echanischen Belastungen ausgesetzt werden. Die beiden Ventile dienen zu Beschicken des Geräts it Gas. Drehen Sie auf keinen Fall daran. Versuchsdurchführung. Setzen Sie den Therostaten bei Rauteperatur (ca. 0 C- C) in Gang. Der obere Deckel des Teperierantels der Messkapillare ist nicht befestigt, achten Sie darauf, dass die Ströungsgeschwindigkeit des Wassers nicht zu hoch ist, da es sonst überlaufen kann. Erste Isothere: Wenn die Teperatur (± 0.1 C) stabil ist, bringen Sie das Quecksilber bis zur 4,0 l Marke. (Noralerweise liest an bei Quecksilbersäulen in Glasrohren a oberen Rand des Meniskus ab, hier ist ausdrücklich der untere Rand des Meniskus vor Hersteller vorgeschrieben). Notieren Sie Teperatur, 6

7 Druck und Voluen in C, Pa und l. Klopfen Sie leicht an das Manoeter u dessen Reibung zu überwinden. Wenn Druck und Voluen konstant sind, können Sie sicher sein, dass das therische Gleichgewicht erreicht ist. Wiederholen Sie die Druckessungen bei den folgenden Voluina (prüfen Sie ab und zu ob die Teperatur konstant geblieben ist): 4,0,5,0,5,0 1,5 1,5 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0, 0, l. Stellen Sie die Voluina ier so ein, das Sie das Quecksilber von unten an die jeweilige Marke heran drehen. Wenn Sie versehentlich über die jeweilige Voluen- Marke gedreht haben, senken Sie das Quecksilber wieder etwas ab und koen erneut von unten. Warten Sie ier bis das Gleichgewicht erreicht ist, bevor Sie Ihre Messdaten ablesen. (Klopfen a Manoeter nicht vergessen) Solange die Voluina noch groß sind, wird das sehr schnell gehen, bei den kleinen Voluina werden Sie länger warten üssen, da hier erst ein Teil des Gases Kondensieren uss. Stoppen Sie in jede Fall, wenn Sie Pa erreicht haben, auch wenn Ihre Messreihe noch nicht zu Ende ist. Falls Flüssigkeit auftritt, registrieren Sie das Voluen und den Druck, bei de das geschieht. Von da an registrieren Sie das Gesatvoluen von Gas + Flüssigkeit also wie zuvor auch weiter a Quecksilber ablesen. Wenn Sie alle Daten für diese Isothere geessen haben, drehen Sie das Handrad wieder zurück, so dass kein Quecksilber ehr zu sehen ist (bis V > 4 l). Weitere Isotheren: Wiederholen Sie die oberen Schritte bei 0 C, 40 C und 50 C. Ungefähr 10 Minuten sollten jeweils ausreichen, u die Teperatur zu stabilisieren. 7

8 Kritisches Verhalten und Kritische Isothere: Die folgende Tabelle gibt Ihnen Anhaltspunkte für die ischen Konstanten einiger Gase. Bei Vergleich Ihrer Daten it der Tabelle sollten Sie in der Lage sein, die Identität Ihres Gases festzustellen. GAS KRITISCHER DRUCK KRIT. TEMPERATUR (10 5 Pa) ( C) CO ~ 74 ~ 1 Ethan ~ 49 ~ Freon 1 ~ 8 ~ 9 Freon ~ 48 ~ 6 SF 6 ~ 8 ~ 45 (es handelt sich nur u Anhaltspunkte -> keine Literaturwerte) Kritischer Punkt Es soll der ische Punkt bestit und das Verhalten des Systes in seiner Nähe beobachten werden. Bringen Sie die Teperatur ca. ein halbes Grad unter die in der obigen Tabelle angegebene. Teperatur, stellen das Voluen auf die Mitte des Druckplateaus ein und warten Sie, bis das Gleichgewicht erreicht ist. Dann erhöhen Sie die Therostateinstellung u 0.1 und beobachten sorgfältig den Flüssigkeitseniskus in der Kapillare während ehrerer Minuten. (Wenn es keine Änderung bis zu Erreichen des Gleichgewichts gegeben hat, erhöhen Sie die Teperatur ein weiteres Mal u 0.1 ). Notieren Sie Ihre Beobachtungen und versuchen Sie die ische Teperatur auf ein zehntel Grad genau zu bestien. Das ist der Punkt, an de gerade eben keine Phasengrenze ehr zu beobachten ist. Zur besseren Erkennbarkeit halten Sie ein weißes Papier it einigen diagonalen Linien hinter die Kapillare und beobachten. Kritische Isothere Belassen Sie die Einstellung des Therostaten auf der ischen Teperatur und gehen auf 4 l Voluen zurück und essen die koplette ische Isothere (s.o.). Danach drehen Sie das Handrad wieder zurück und stellen a Therostaten die Sollteperatur auf 0 C ein und schalten ab. 8

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt Hochschule Emden / Leer Physikalische Chemie Praktikum Reale Gase Kritischer Punkt Vers.Nr. 1 April 2017 Allgemeine Grundlagen Reale Gase Kompressionsfaktor (Realgasfaktor) Van der Waals Gleichung Kritischer

Mehr

Reale Gase. 1. Grundlagen. a 2. pv m. 1.1. Van der Waals-Gleichung. Die allgemeine Gasgleichung für ideale Gase lautet:

Reale Gase. 1. Grundlagen. a 2. pv m. 1.1. Van der Waals-Gleichung. Die allgemeine Gasgleichung für ideale Gase lautet: Reale Gase Stichworte: Van der Waals-Gleichung, Phasenuwandlung 1 Grundlagen 11 Van der Waals-Gleichung Die allgeeine Gasgleichung für ideale Gase lautet: pv RT it p: Druck (1) V : Molvoluen des Gases

Mehr

5.2 Thermische Ausdehnung (thermische Zustandsgleichung)

5.2 Thermische Ausdehnung (thermische Zustandsgleichung) 5.2 herische Ausdehnung (therische Zustandsgleichung) Praktisch alle festen, gasförigen und flüssigen Stoffe dehnen sich bei Erwärung bei konstante Druck aus, vergrößern also ihr Voluen. Alle Stoffe lassen

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Protokoll Grundpraktikum I: M5 - Oberflächenspannung

Protokoll Grundpraktikum I: M5 - Oberflächenspannung Protokoll Grundpraktiku I: M5 - Oberflächenspannung Sebastian Pfitzner 28. April 2013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (550727) Arbeitsplatz:!!Platz!! Betreuer: Stefan Weideann Versuchsdatu:

Mehr

Entmischungsgleichgewichte

Entmischungsgleichgewichte ntischungsgleichgewichte Ideale binäre Mischungen Bei der Behandlung von Mischungserscheinungen in binären ysteen geht an von den beiden betreffenden reinen Koponenten aus. Für den jeweiligen toffengenanteil

Mehr

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob Bestiun der Molaren Masse nach Duas (MO Gruppe 8 Sione initz, Sebastian Jakob 1. Grundlaen In diese ersuch wird nach de erfahren von Duas die Molare Masse von hlorofor bestit. Dazu wird anenoen, daß hlorofor

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Physikalisch-Chemisches Grundpraktikum

Physikalisch-Chemisches Grundpraktikum Physikalisch-Cheisches Grundpraktiku Versuch Nuer G3: Bestiung der Oberflächen- spannung it der Blasenethode Gliederung: I. Aufgabenbeschreibung II. Theoretischer Hintergrund III. Versuchsanordnung IV.

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Zur Theorie - die Dampfdruckkurve

Zur Theorie - die Dampfdruckkurve Labor Therodynaik Zur Theorie - die I Zweihasengebiet liegt siedende Flüssigkeit zusaen it ihre gesättigten Daf vor. Der Druck eines solchen Systes ist auf einer Isothere konstant. Man kann also i Zweihasengebiet

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Physikalisch-chemisches Praktikum

Physikalisch-chemisches Praktikum Physikalisch-cheisches Praktiku Versuch: Oberflächenspannung (Tensioetrie) Datu: 28.03.2008 Gruppe: B23 ars Thiele, Matthias Wolz, Andreas van Kapen 1 Einleitung In diese Versuch wird die Oberflächenspannung

Mehr

Versuch 5: Adsorption von Essigsäure an Aktivkohle

Versuch 5: Adsorption von Essigsäure an Aktivkohle Versuch 5: Adsorption von Essigsäure an Aktivkohle Aufgabenstellung Es ist die Adsorption von Essigsäure an Aktivkohle quantitativ zu untersuchen und 1) der Verlauf der Adsorptionsisotheren nach Freundlich

Mehr

2.1 Bestimmung einiger Isothermen von Schwefelhexafluorid SF 6

2.1 Bestimmung einiger Isothermen von Schwefelhexafluorid SF 6 Atom- und Kernphysi-Versuch 31 AKP-31-1 Zustandsgrößen realer Gase 1 Vorbereitung Koexistenz von Flüssigeiten und Dampf, Dampfdruc, Verdampfungswärme, Koexistenz von Festörper und Flüssigeit, Koexistenz

Mehr

Spezifische Erstarrungs- und Verdampfungsenthalpie des Wassers (Latente Wärme)

Spezifische Erstarrungs- und Verdampfungsenthalpie des Wassers (Latente Wärme) Spezifische Erstarrungs- und Verdapfungsenthalpie des Wassers (Latente Wäre) Stichworte: Erster Hauptsatz der Therodynaik, Kalorieter, Phasenuwandlung, Latente Wäre 1 Grundlagen Solange ein cheisch einheitlicher

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Mathematisches Pendel und Federpendel

Mathematisches Pendel und Federpendel INSIU FÜR ANGEWANE PHYSIK Physikaisches Praktiku für Studierende der Ingenieurswissenschaften Universität Haburg, Jungiusstraße 11 Matheatisches Pende und Federpende 1 Zie In zwei Versuchsteien soen die

Mehr

8. Reale Gase D1-1. Bereiten Sie folgende Themengebiete vor

8. Reale Gase D1-1. Bereiten Sie folgende Themengebiete vor D1-1 8. Reale Gase Bereiten Sie folgende Themengebiete vor Modell des idealen Gases, ideales Gasgesetz reales Gas, van der Waals-Gleichung, Virialgleichungen pv- und pt-diagramme, kritische Isotherme kinetische

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/7 11. Phasendiagramme. Phasendiagramme

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/7 11. Phasendiagramme. Phasendiagramme Physikalische Cheie Physikalische Cheie I SoSe 29 Prof. Dr. Norbert Ha /7. Phasendiagrae Phasendiagrae In Phasendiagraen wird die eeratur- und Druckabhngigkeit der Aggregatzustnde von Stoffen bzw. Stoffischungen

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

2. GV: Ideale Gasgesetze

2. GV: Ideale Gasgesetze Physik Praktiku I: WS 2005/06 Protokoll zu Praktiku 2. GV: Ideale Gasgesetze Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Holger Versuchstag Dienstag, 06.12.2005 Einleitung Der Zustand eines

Mehr

Offset, Buffer, Nullpunkt, DpH, Asymmetrie oder ph = 7.

Offset, Buffer, Nullpunkt, DpH, Asymmetrie oder ph = 7. Arbeitskreis Allgemeine Anleitung zur Kalibrierung F 01 Kappenberg und Messung von ph -Werten ph- Wert Vorinformation Die ph- Elektrode ist Umwelt- und Alterungsprozessen unterworfen. Aus diesem Grunde

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Aufgabe 1: IS-Kurve Leiten Sie graphisch mit Hilfe

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Mischungslücke in der flüssigen Phase

Mischungslücke in der flüssigen Phase Übungen in physikalischer Chemie für B. Sc.-Studierende Versuch Nr.: S05 Version 2015 Kurzbezeichnung: Mischungslücke Mischungslücke in der flüssigen Phase Aufgabenstellung Die Entmischungskurven von Phenol/Wasser

Mehr

Das Wachstum der deutschen Volkswirtschaft

Das Wachstum der deutschen Volkswirtschaft Institut für Wachstumsstudien www.wachstumsstudien.de IWS-Papier Nr. 1 Das Wachstum der deutschen Volkswirtschaft der Bundesrepublik Deutschland 1950 2002.............Seite 2 Relatives Wachstum in der

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Werkstatt Euler und die Lösung der quadratischen Gleichung

Werkstatt Euler und die Lösung der quadratischen Gleichung Werkstatt Leonhard Euler und die Lösung der quadratischen Gleichungen Im Jahr 1767 hat der Mathematiker Leonhard Euler (1707 1783) das Buch Vollständige Anleitung zu Algebra im russischen Original veröffentlicht,

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

MOL - Bestimmung der Molaren Masse nach Dumas

MOL - Bestimmung der Molaren Masse nach Dumas MOL - Bestimmung der Molaren Masse nach Dumas Anfängerpraktikum 2, 2006 Janina Fiehl Daniel Flassig Gruppe 129 Einleitung Das Mol ist, vor allem in der Chemie, als Einheit für die Basisgröße der Stoffmenge

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

Die Maxwell-Boltzmann-Verteilung

Die Maxwell-Boltzmann-Verteilung Die Maxwell-Boltzann-Verteilung Sebastian Meiss 5. Oktober 8 Mit der Maxwell-Boltzann-Verteilung kann an Aussagen über die Energie- bzw. Geschwindigkeitsverteilung von Teilchen in eine Syste beschreiben.

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

V8 - Auf- und Entladung von Kondensatoren

V8 - Auf- und Entladung von Kondensatoren V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz 07.2.2005 Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren.......

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha)

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) - dies ist i.w. die Übersetzung eines Artikels, der im November 2010 im Newsletter der Chue Foundation erschienen ist - Korrektheit

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: Marcel.Engelhardt@mytum.de

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Strom-Spannungs-Kennlinie und Leistung eines Windrades

Strom-Spannungs-Kennlinie und Leistung eines Windrades Strom-Spannungs-Kennlinie und ENT Schlüsselworte Windenergie, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie eines Windgenerators

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

VeloSolex - Hilfestellung bei Problemen mit der Zündung

VeloSolex - Hilfestellung bei Problemen mit der Zündung http:// VeloSolex - Hilfestellung bei Problemen mit der Zündung Die Velosolex hat eine klassische Magnetzündung mit Zündspule, Unterbrecherkontakt (U) und Kondensator (K). Die Zündspule hat eine Primärwicklung

Mehr

Reales Gas und kritischer Punkt Seite 1

Reales Gas und kritischer Punkt Seite 1 Reales Gas und ritischer Punt Seite 1 1. Aufgabenstellung 1.1. Die Isothermen des realen Gases Schwefelhexafluorid ( SF 6 ) sind verschiedene Temperaturen aufzunehmen und gemeinsam in einem p() -Diagramm

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

FAQ Spielvorbereitung Startspieler: Wer ist Startspieler?

FAQ Spielvorbereitung Startspieler: Wer ist Startspieler? FAQ Spielvorbereitung Startspieler: Wer ist Startspieler? In der gedruckten Version der Spielregeln steht: der Startspieler ist der Spieler, dessen Arena unmittelbar links neben dem Kaiser steht [im Uhrzeigersinn].

Mehr

Microsoft Excel 2010 Mehrfachoperation

Microsoft Excel 2010 Mehrfachoperation Hochschulrechenzentrum Justus-Liebig-Universität Gießen Microsoft Excel 2010 Mehrfachoperation Mehrfachoperationen in Excel 2010 Seite 1 von 6 Inhaltsverzeichnis Einleitung... 2 Mehrfachoperation mit

Mehr

Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen

Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen Ausarbeitung zum Versuch Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen Versuch 24 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6

Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6 Praktikum Physikalische Chemie I ersuch 4 p,, T - erhalten realer Gase am Beispiel von SF 6 1. Grundlagen Komprimiert man ein Gas isotherm, so steigt dessen Druck näherungsweise gemäß dem idealen Gasgesetz

Mehr

III. Asynchrone und synchrone Schaltwerke

III. Asynchrone und synchrone Schaltwerke Ein asynchrones Schaltwerk entsteht dadurch, daß an bei eine Schaltnetz SN1 indestens eine Ausgang auf die Eingänge rückkoppelt. Das Verhalten des Schaltwerks ist dait nicht nur von den Eingangsgrößen

Mehr

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü Anleitung zum Programm CASSY Lab für den Versuch E12 Starten Sie das Programm CASSY Lab durch Doppelklick auf das Icon auf dem Windows- Desktop. Es erscheint ein Fenster mit Lizensierungsinformationen,

Mehr

Physik 2 (B.Sc. EIT) 7. Übungsblatt

Physik 2 (B.Sc. EIT) 7. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof. Dr. H. Baugärtner Übungen: Dr.-Ing. Tanja Stipel-Lindner,

Mehr

Versuch W7 für Nebenfächler Wärmeausdehnung

Versuch W7 für Nebenfächler Wärmeausdehnung Versuch W7 für Nebenfächler Wärmeausdehnung I. Physikalisches Institut, Raum 106 Stand: 7. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Grundlagen der DURCHFLUSSMESSUNG mittels Heißfilmanemometer

Grundlagen der DURCHFLUSSMESSUNG mittels Heißfilmanemometer Grundlagen der DURCHFLUSSMESSUNG ittels Heißfilaneoeter 1/9 Inhaltsverzeichnis: 1. Definitionen 1.1. Luftgeschwindigkeit 1.2. Gasenge 1.. Durchfluss 1..1. Massendurchfluss (Massenstro) 1..2. Voluendurchfluss

Mehr

Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden.

Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5. Diagramme mit MATHCAD Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5.. Erstellen eines Diagramms Das Erstellen eines Diagramms verläuft in mehreren

Mehr

Musterlösung zu Serie 14

Musterlösung zu Serie 14 Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Klassische Finanzmathematik (Abschnitt KF.1 )

Klassische Finanzmathematik (Abschnitt KF.1 ) Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,

Mehr

Empfehlung für die Durchführung von Leistungsnachweisen in der Sprechfunkausbildung

Empfehlung für die Durchführung von Leistungsnachweisen in der Sprechfunkausbildung N:\Web\Sprechfunkausbildung\Teil2\Sprechfunkausbildung_Teil2.pdf Empfehlung für die Durchführung von Leistungsnachweisen in der Sprechfunkausbildung Teil II Anleitung zur Tabelle für die Lehrgangsbewertung

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr