Kapitel 4: Flusschiffren

Größe: px
Ab Seite anzeigen:

Download "Kapitel 4: Flusschiffren"

Transkript

1 Stefan Lucks 4: Flusschiffren 52 orlesung Kryptographie (SS06) Kapitel 4: Flusschiffren Als Basis-Baustein zur Verschlüsselung von Daten dienen Fluss- und Blockchiffren. Der Unterschied: Flusschiffren dienen dazu, beliebig lange Klartexte zu verund entschlüsseln. Während der Verschlüsselungsoperation werden sie durch einen internen Zustand charakterisiert. Blockchiffren dagegen sind auf Blocks fester Größe definiert. Sie sind daher zustandslos.

2 Stefan Lucks 4: Flusschiffren 53 orlesung Kryptographie (SS06) Synchrone Flusschiffre Schlüssel f Zustand g Klartext Chiffretext

3 Stefan Lucks 4: Flusschiffren 54 orlesung Kryptographie (SS06) Synchrone Flusschiffre (2) Synchronisation zwischen Sender und Empfänger muss gewährleistet sein. ( ggf. zusätzl. Maßnahmen) Änderung eines Chiffretext-Blocks Änderung eines Klartext-Blocks. ( kein Schutz der Authentitzität) Katastrophaler Fehler: Mehrfache Verwendung eines Startzustandes. Diesen Fehler trifft man in der Praxis erstaunlich oft an!!!

4 Stefan Lucks 4: Flusschiffren 55 orlesung Kryptographie (SS06) Synchrone Flusschiffre (3) Häufigster Spezialfall: Binäre additive Flußchiffre. Pseudozufälliger Bitstrom, erzeugt mit Hilfe eines Pseudozufallsbitgenerators (PZBG): Schlüssel PZBG Klartext Chiffretext Der mit dem PZBG erzeugte Schlüsselstrom wird zum Verschlüsseln bit-weise zum Klartext addiert, zum Entschlüsseln bit-weise vom Chiffretext subtrahiert. (In beiden Fällen die gleiche Operation: XOR.)

5 Stefan Lucks 4: Flusschiffren 56 orlesung Kryptographie (SS06) Selbstsynchronisierende Flußchiffe Schlüssel Zustand f Klartext Chiffretext Der Sender verliert nur einen begrenzten Ausschnitt des Klartextes beim Auftreten eines Synchronisationsfehlers. Modifikation eines Blocks im Chiffretext Modifikation einiger weniger Klartext-Blocks. Fehler: Chiffrieren verschiedener Klartexte unter dem gleichen Schlüssel und Startzustand (ist aber ggf. nicht ganz so schlimm wie bei synchronen Flusschiffren).

6 Stefan Lucks 4: Flusschiffren 57 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs Abschnitt 4.1: Abstrakte PZBGs Schlüssel Klartext PZG Schlüsselstrom Chiffretext Ein PZBG ist kryptographisch sicher, wenn man den Schlüsselstrom ohne Kenntnis des Schlüssels nicht von einem zufälligen Bit-Strom ( Würfe mit einer fairen Münze ) unterscheiden kann.

7 Stefan Lucks 4: Flusschiffren 58 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs Die Sicherheit eines PZBGs als Flusschiffre Theorem 6 PZBG kryptographisch sicher Binäre additive Flusschiffre sicher. Beweis-Idee: Wenn die Schlüsselstrom-Bits echt zufällig sind, ist die Chiffre sicher ( Vernam-Chiffre). Kann man die Chiffre knacken, dann hat man auch ein Kriterium, den Schlüsselstrom von einem Strom echt zufälliger Bits zu unterscheiden. Risiken und Nebenwirkungen: ( Tafel)

8 Stefan Lucks 4: Flusschiffren 59 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs Was heisst hier sicher? Ein Kryptosystem gilt als sicher gegen eine bestimmte Klasse von Angriffen, wenn es keine effizienten Algorithmen gibt, die bei einem derartigen Angriff mit signifikanter Wahrscheinlichkeit erfolgreich sind. Die Begriffe effizient und signifikante Wahrscheinlichkeit lassen sich grundsätzlich mit konkreten Vorstellungen identifizieren ( MIPS-Jahre, Wahrscheinlichkeit kleiner als ). Die Begriffe haben aber auch eine streng formale Definition in der Komplexitätstheorie ( Tafel).

9 Stefan Lucks 4: Flusschiffren 60 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs PZBG (Definition) Ein Pseudozufallsbitgenerator (PZBG) ist eine Familie von effizient berechenbaren Funktionen mit l(k) k. f k : {0, 1} k {0, 1} l(k) Intention: Nimm einen kurzen k-bit Schlüssel als Input für f, um einen langen l(k)-bit Schlüsselstrom zu erzeugen. In der Regel ist l(k) k.

10 Stefan Lucks 4: Flusschiffren 61 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs PZBG (Angreifer) Ein Angreifer auf einen PZBG ist ein effizienter Algorithmus, der einen l(k)-bit Schlüsselstrom als Eingabe hat und ein Bit ausgibt. Sei x 0 {0, 1} l(k) ein mit dem PZBG unter einem zufälligen Schlüssel erzeugter Schlüsselstrom, x 1 {0, 1} l(k) sei das Ergebnis von l(k) unabhängigen Würfen mit einer fairen Münze. Der Vorteil eines Angreifers (auf einen PZBG) ist Pr[A gibt 0 aus x 0] Pr[A gibt 0 aus x 1 ].

11 Stefan Lucks 4: Flusschiffren 62 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs PZBG (Definition der Sicherheit) Ein PZBG ist sicher, wenn es keinen effizienten Angreifer gibt, der einen signifikanten Vorteil erreicht. Intention: Der Vorteil gibt an, ob man zwischen einem pseudozufälligen und einem zufälligen Schlüsselstrom unterscheiden kann. Bei einem sicheren PZBG soll dies eben praktisch unmöglich sein.

12 Stefan Lucks 4: Flusschiffren 63 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs PZBGs aus PZBGs Sei λ 0. Wir definieren eine Familie {fk λ} k IN von Funktionen fk λ : {0, 1} k {0, 1} k+λ, mit Hilfe einer Familie {f k } k IN von Funktionen f k : {0, 1} k {0, 1} k+1.

13 Stefan Lucks 4: Flusschiffren 64 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs PZBGs aus PZBGs (2) Algorithmus zur Berechnung von f λ k : Eingabe: (x 1,..., x k ) {0, 1} k und λ 0. Ausgabe: (z 1,..., z k+λ ) {0, 1} k. Für i := 1 bis λ: Berechne (z i, x 1,..., x k ) := f k (x 1,..., x k ). Setze (z λ+1,..., z λ+k ) := (x 1,..., x k ).

14 Stefan Lucks 4: Flusschiffren 65 orlesung Kryptographie (SS06) 4.1: Abstrakte PZBGs Das Ein-Bit-ist-genug Theorem Theorem 7 (Ein-Bit-ist-genug) Sei λ = λ(k) 0 durch ein Polynom in k beschränkt. Dann gilt: a) Wenn {f k } k IN effizient berechenbar ist, dann ist auch {fk λ} k IN effizient berechenbar. b) Wenn {f k } k IN sicher ist, dann ist auch {f λ k } k IN sicher. Beweis: ( Tafel)

15 Stefan Lucks 4: Flusschiffren 66 orlesung Kryptographie (SS06) 4.2: Schieberegister Abschnitt 4.2: Schieberegister Einfaches SR: Funktion SR mit Rückkopplung:

16 Stefan Lucks 4: Flusschiffren 67 orlesung Kryptographie (SS06) 4.2: Schieberegister LFSR Ist die Rückkopplungsfunktion linear, dann sprechen wir von einem linearen rückgekoppelten Schieberegister oder einem linearen Feedback-Shiftregister (LFSR). Beispiel:

17 Stefan Lucks 4: Flusschiffren 68 orlesung Kryptographie (SS06) 4.2: Schieberegister Eigenschaften von LFSR: Lokale Zufälligkeit Effizient, insbesondere in Hardware Große Periode (n-bit Register: maximal 2 n 1) (Warum nicht größer?) Lösbar durch lineare Gleichungen

18 Stefan Lucks 4: Flusschiffren 69 orlesung Kryptographie (SS06) 4.2: Schieberegister Allgemeine LFSR x3 x2 x 1 x 0 a3 a2 a1 a0

19 Stefan Lucks 4: Flusschiffren 70 orlesung Kryptographie (SS06) 4.2: Schieberegister Allgemeine LFSR (2) PZBG g : {0, 1} n {0, 1} n+1, definiert durch g(x n 1,..., x 0 ) = (x 0, f an 1,...a 0 (x n 1,..., x 0 ), x n 1,..., x 1 ) mit der Feedback-Funktion f an 1,...a 0 (x n 1,..., x 0 ) = a i x i 0 i<n

20 Stefan Lucks 4: Flusschiffren 71 orlesung Kryptographie (SS06) 4.2: Schieberegister Allgemeine LFSR (3) Die Theorie der LFSR ist mathematisch gut verstanden. Es ist nicht schwierig, das Feedback-Polynom so zu wählen, daß ein maximales LFSR vorliegt. Umgekehrt sind known plaintext Angriffe auf LFSR sogar dann einfach, wenn das Feedback-Polynom unbekannt, also Teil des Schlüssels, ist (was i.d.r. nicht der Fall ist). Beispiel: n = 4, Bitfolge LFSR sind... linear. ( Welche Überraschung! )

21 Stefan Lucks 4: Flusschiffren 72 orlesung Kryptographie (SS06) 4.2: Schieberegister Lineare Komplexität Lineare Komplexität LK (b) der Bitfolge b = (b m 1,..., b 1, b 0 ) {0, 1} m der Länge m: Größe des kleinsten LFSR, das diese Folge erzeugt. Es ist LK(b) m. (Warum?) In PZBG ist höchstens dann sicher, wenn lange Folgen von Schlüsselstrombits mit großer Wahrscheinlichkeit eine große lineare Komplexität haben. (Warum) Ein LFSR bildet einen sehr schlechten PZBG! Aber: LFSR werden gerne als Bausteine für PZBGs genutzt, in Verbindung mit nichtlinearen Bausteinen.

22 Stefan Lucks 4: Flusschiffren 73 orlesung Kryptographie (SS06) 4.3: Der Geffe-Generator Abschnitt 4.3: Der Geffe-Generator LFSR 1 LFSR 2 LFSR 3 f { z1 falls z f (z 1, z 2, z 3 ) = 2 = 1 sonst Sinnvoll: Drei maximale LFSR, teilerfremde Perioden. Dann: Lange Periode, linear komplexe PZBG. z 3

23 Stefan Lucks 4: Flusschiffren 74 orlesung Kryptographie (SS06) 4.3: Der Geffe-Generator Kryptanalyse des Geffe-Generators ( Tafel)

24 Stefan Lucks 4: Flusschiffren 75 orlesung Kryptographie (SS06) 4.3: Der Geffe-Generator Kryptanalyse des Geffe-Generators (2) Effizienz des Angriffs: Eine naive Implementation des Angriffs: maximal 2 l 1 Schritte, im Durchschnitt 2 l 1 /2. Dies lässt sich noch verbessern: Bearbeite die möglichen Schlüssel in der Reihenfolge ihrer Wahrscheinlichkeit! Die ersten l 1 bit von S liefern den wahrscheinlichsten Kandidaten K für K. Dann teste alle Schlüssel mit der Hamming-Distanz 1 von K, mit der Hamming-Distanz 2,... Im Durchschnitt hat der gesuchte Schlüssel K die Hamming-Distanz l/4 von K. Die Anzahl der Schritte ist damit etwa ( l l 1 ).

25 Stefan Lucks 4: Flusschiffren 76 orlesung Kryptographie (SS06) 4.3: Der Geffe-Generator Kryptanalyse des Geffe-Generators (3) Konkretes Beispiel: Ist l 1 l 2 l 3 40, dann ist der geheime Schlüssel insgesamt 120 bit groß. Die naive Implementation des Angriffs erfordert das Testen von etwa 2 39 Schlüsseln, die verbesserte das von ( ) = 40! 30! 10! Schlüsseln.

26 Stefan Lucks 4: Flusschiffren 77 orlesung Kryptographie (SS06) 4.4: A5 Abschnitt 4.4: Der A5-PZBG im GSM Mobilfunknetz Gänzlich andere Technik, um Nichtlinearität zu erzwingen: Ansteuern auch des Takts der LFSR. Nicht jedes LFSR wird für jedes Output-Bit getaktet aber mindestens eines.

27 Stefan Lucks 4: Flusschiffren 78 orlesung Kryptographie (SS06) 4.4: A5 Das GSM Sicherheitsprotokoll Ki Nutzerkennung Zufallszahl RAND SRES := A3(Ki,RAND) SRES =? A3(Ki,RAND) Ki Kc := A8(Ki,RAND) Kc := A8(Ki,RAND) Verschlüsselte Sprachdaten A5(Kc)

28 Stefan Lucks 4: Flusschiffren 79 orlesung Kryptographie (SS06) 4.4: A5 Der A5-PZBG Takt kontrolle LFSR1 LFSR2 LFSR3 Takt LSFR1: 19 bit, LFSR2: 22 bit, LFSR3: 23 bit, gesamt: 64 bit

29 Stefan Lucks 4: Flusschiffren 80 orlesung Kryptographie (SS06) 4.4: A5 Der A5-PZBG (2) Die Feedback-Polynome der drei LFSR sind bekannt. Die mittleren Bits m 1, m 2 und m 3 der LFSR dienen als Input für die Taktkontrollfunktion t : {0, 1} 3 {0, 1} 3. Deren Verhalten hängt von der Summe s = m 1 + m 2 + m 3 (nicht mod 2) ab: { (m1, m t(m 1, m 2, m 3 ) = 2, m 3 ) falls s 2 (m 1, m 2, m 3 ) sonst. Also werden immer mindestens 2, manchmal alle drei LFSR getaktet im Durchschnitt werden 2 1 Register getaktet. 4

30 Stefan Lucks 4: Flusschiffren 81 orlesung Kryptographie (SS06) 4.4: A5 Der A5 PZBG (Beobachtungen) Jedes Register wird im Durchschnitt etwa 3/4-mal pro Ausgabebit getaktet. Es gibt schwache Schlüssel, bei denen mindestens eines der LFSR konstant Null ist. Der Anteil der schwachen Schlüssel ist > Die Zykluslänge ist unbekannt. Experimente deuten darauf hin, dass sie im Durchschnitt etwa 2 23 beträgt.

31 Stefan Lucks 4: Flusschiffren 82 orlesung Kryptographie (SS06) 4.4: A5 Der A5 PZBG (Arbeitsweise) Einsatz des A5 zur Verschlüsselung digitalisierter (Sprach-)Daten. GSM sendet in kurzen Abständen Datenblöcke ( Frames ). Ein Frame enthält bis zu 228 Datenbits (114 für jede Kommunikationsrichtung bei full duplex Arbeitsweise). Zu jedem Frame gehört eine (öffentlich bekannte) Frame-Nummer (22 bit).

32 Stefan Lucks 4: Flusschiffren 83 orlesung Kryptographie (SS06) 4.4: A5 Der A5 PZBG (Arbeitsweise 2) Resynchronisation vor jedem Frame: Setze A5 auf Initialzustand (=Schlüssel) Generiere aus Initialzustand und Frame-Nummer den Startzustand für den Frame. Vermutlich Schlüsselwechsel bevor Frame-Nummern sich wiederholen. (Darauf wird in der mir bekannten Literatur nicht eingegangen. Es dauert einige Stunden, bis nach 2 22 Frames ein Schlüsselwechsel nötig wird.)

33 Stefan Lucks 4: Flusschiffren 84 orlesung Kryptographie (SS06) 4.4: A5 Ein Angriff auf den A5 PZBG Known Plaintext Angriff: Gegeben: 64 bit b 0, b 1,..., b 63 des Schlüsselstroms. Gesucht: Startzustand der LFSRs: x 18,... x 0 (LFSR1), y 21,... u 0 (LFSR2) z 22,... z 0 (LFSR3). ( Tafel)

34 Stefan Lucks 4: Flusschiffren 85 orlesung Kryptographie (SS06) 4.4: A5 Folgerungen für die Sicherheit des A5 PZBG Von einer guten Chiffre mit einem 64 bit Schlüssel würde man erwarten, daß ein Angriff im Durchschnitt etwa 2 63 Schritte erfordert, wie bei einem Brute-Force Angriff. Der A5 Schlüsselstromgenerator ist in diesem Sinne kein guter Algorithmus. Das Abhören der (mit dem A5 Algorithmus verschlüsselten) Luftschnittstelle im GSM Mobilfunknetz ist mit dem in dieser Vorlesung geschilderten Angriff zwar nicht trivial, aber möglich. Weitere verbesserte Angriffe machen das Abhören der Luftschnittstelle sogar sehr einfach.

35 Stefan Lucks 4: Flusschiffren 86 orlesung Kryptographie (SS06) 4.5: Linare Kongr.-gen. Abschnitt 4.5: Lineare Kongruenzgeneratoren Seien m IN, a, b, x 0 ZZ m. Berechne x t+1 := ax t + b mod m. Typischerweise m = 2 w. Software-freundlich, im Gegensatz zu LFSRs. Beliebt für nicht-kryptographische Aufgaben, ( Standard-Bibliotheken von C, C++, JAVA,... ). Lineare Kongruenzgeneratoren sind kryptographisch ebenso schwach wie LFSR. (Warum?)

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

Betriebsarten für Blockchiffren

Betriebsarten für Blockchiffren Betriebsarten für Blockchiffren Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Betriebsarten für Blockchiffren Was ist eine Betriebsart (engl. Mode of Operation )? Blockchiffre wird genutzt, um

Mehr

8. Von den Grundbausteinen zu sicheren Systemen

8. Von den Grundbausteinen zu sicheren Systemen Stefan Lucks 8. Grundb. sich. Syst. 211 orlesung Kryptographie (SS06) 8. Von den Grundbausteinen zu sicheren Systemen Vorlesung bisher: Bausteine für Kryptosysteme. Dieses Kapitel: Naiver Einsatz der Bausteine

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 5: Blockchiffren. 5: Blockchiffren. (n bit) (n bit) VERschlüsseln ENTschlüsseln

Stefan Lucks Krypto und Mediensicherheit (2009) 5: Blockchiffren. 5: Blockchiffren. (n bit) (n bit) VERschlüsseln ENTschlüsseln 5: Blockchiffren Klartexte 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 Chiffretexte (n bit) (n bit) VERschlüsseln ENTschlüsseln 74 5.1: Abstrakte Blockchiffren Familie

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 2.3 One-Time Pads und Perfekte Sicherheit 1. Perfekte Geheimhaltung 2. One-Time Pads 3. Strombasierte Verschlüsselung Wie sicher kann ein Verfahren werden? Ziel ist

Mehr

Name:... Vorname:... Matrikel-Nr.:... Studienfach:...

Name:... Vorname:... Matrikel-Nr.:... Studienfach:... Stefan Lucks Medien Bauhaus-Univ. Weimar Probeklausur Name:.............................. Vorname:........................... Matrikel-Nr.:....................... Studienfach:........................ Wichtige

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

In beiden Fällen auf Datenauthentizität und -integrität extra achten.

In beiden Fällen auf Datenauthentizität und -integrität extra achten. Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Betriebsarten von Blockchiffren. ECB Electronic Code Book Mode. Padding. ECB Electronic Code Book Mode

Betriebsarten von Blockchiffren. ECB Electronic Code Book Mode. Padding. ECB Electronic Code Book Mode Betriebsarten von Blockchiffren Blocklänge ist fest und klein. Wie große Mengen an Daten verschlüsseln? Blockchiffre geeignet verwenden: ECB Mode (Electronic Code Book) CBC Mode (Cipher Block Chaining)

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Kryptographie und Fehlertoleranz für Digitale Magazine

Kryptographie und Fehlertoleranz für Digitale Magazine Stefan Lucks Kryptographie und Fehlertoleranz für digitale Magazine 1 Kryptographie und Fehlertoleranz für Digitale Magazine Stefan Lucks Professur für Mediensicherheit 13. März 2013 Stefan Lucks Kryptographie

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Kryptographie Motivation Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Geheimzahlen (Geldkarten, Mobiltelefon) Zugriffsdaten (Login-Daten, Passwörter)

Mehr

Sicherheit von hybrider Verschlüsselung

Sicherheit von hybrider Verschlüsselung Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 12

Mehr

Kryptographie I Symmetrische Kryptographie

Kryptographie I Symmetrische Kryptographie Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2010/11 Krypto I - Vorlesung 01-11.10.2010 Verschlüsselung, Kerckhoffs, Angreifer,

Mehr

Einfache kryptographische Verfahren

Einfache kryptographische Verfahren Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

Der Advanced Encryption Standard (AES)

Der Advanced Encryption Standard (AES) Der Advanced Encryption Standard (AES) Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Geschichte des AES Die Struktur des AES Angriffe auf den AES Aktuelle Ergebnisse DerAdvanced Encryption Standard

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

Seminar Kryptographie und Datensicherheit

Seminar Kryptographie und Datensicherheit Seminar Kryptographie und Datensicherheit Einfache Kryptosysteme und ihre Analyse Christoph Kreitz 1. Grundlagen von Kryptosystemen 2. Buchstabenorientierte Systeme 3. Blockbasierte Verschlüsselung 4.

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Kryptographie in Mobilfunknetzen

Kryptographie in Mobilfunknetzen Seminar Angewandte Systemtheorie Kryptographie in Mobilfunknetzen, 9656212 WS 2004/2005 Wozu Kryptographie in Mobilfunknetzen? Analoger Funk (B, C, D-Netz (Austria)) kann mitgehört werden GSM sollte gleiche

Mehr

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen Stefan Lucks 8: Zufallsorakel 139 Kryptogr. Hashfunkt. (WS 08/09) 8: Zufallsorakel Unser Problem: Exakte Eigenschaften von effizienten Hashfunktionen nur schwer erfassbar (z.b. MD5, Tiger, RipeMD, SHA-1,...)

Mehr

Sicherheit von PDF-Dateien

Sicherheit von PDF-Dateien Sicherheit von PDF-Dateien 1 Berechtigungen/Nutzungsbeschränkungen zum Drucken Kopieren und Ändern von Inhalt bzw. des Dokumentes Auswählen von Text/Grafik Hinzufügen/Ändern von Anmerkungen und Formularfeldern

Mehr

Methoden der Kryptographie

Methoden der Kryptographie Methoden der Kryptographie!!Geheime Schlüssel sind die sgrundlage Folien und Inhalte aus II - Der Algorithmus ist bekannt 6. Die - Computer Networking: A Top außer bei security by obscurity Down Approach

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 6 Kryptographie und Sicherheit 1. Kryptographische Hashfunktionen 2. Passwörter und Identifikation 3. Digitale Signaturen 4. Secret Sharing 5. Anwendungen und Ausblick

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

Klassische Verschlüsselungsverfahren

Klassische Verschlüsselungsverfahren Klassische Verschlüsselungsverfahren Matthias Rainer 20.11.2007 Inhaltsverzeichnis 1 Grundlagen 2 2 Substitutionschiffren 2 2.1 Monoalphabetische Substitutionen....................... 3 2.1.1 Verschiebechiffren............................

Mehr

Exkurs Kryptographie

Exkurs Kryptographie Exkurs Kryptographie Am Anfang Konventionelle Krytographie Julius Cäsar mißtraute seinen Boten Ersetzen der Buchstaben einer Nachricht durch den dritten folgenden im Alphabet z. B. ABCDEFGHIJKLMNOPQRSTUVWXYZ

Mehr

Kryptographische Zufallszahlen. Schieberegister, Output-Feedback

Kryptographische Zufallszahlen. Schieberegister, Output-Feedback Kryptographische Zufallszahlen Schieberegister, Output-Feedback Stromchiffren Bei Stromchiffren wird die Eingabe zeichenweise bzw. blockweise mit einer parallel dazu erzeugten Schlüsselfolge meist mit

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Klassische Kryptographie

Klassische Kryptographie Sommersemester 2008 Geschichte Seit der Antike: Verbreiteter, aber unsystematischer Einsatz kryptographischer Methoden (z.b. durch Caesar). Ende 19. Jhdt.: Systematisierung und Formalisierung. 2. Weltkrieg:

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Krypto-Begriffe U23 Krypto-Mission

Krypto-Begriffe U23 Krypto-Mission Krypto-Begriffe -Mission florob Simon e.v. http://koeln.ccc.de 4. Oktober 2015 Was ist Kryptographie? Griechisch: κρυπτος (verborgen) + γραϕειν (schreiben) Mittel und Wege: Verschlüsseln einer Nachricht

Mehr

Symmetrische Verschlüsselung. Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren

Symmetrische Verschlüsselung. Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren Symmetrische Verschlüsselung Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren Symmetrische Verfahren Sender und Empfänger haben sich auf einen gemeinsamen Schlüssel geeinigt (geheim!!). Sender

Mehr

SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY. Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr.

SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY. Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr. SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY 1 Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr. Bernd Borchert GLIEDERUNG 1. Motivation Gründe für die Entwicklung Ideen für

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

9.5 Blockverschlüsselung

9.5 Blockverschlüsselung 9.5 Blockverschlüsselung Verschlüsselung im Rechner: Stromverschlüsselung (stream cipher): kleine Klartexteinheiten (Bytes, Bits) werden polyalphabetisch verschlüsselt Blockverschlüsselung (block cipher):

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

Handshake von SIM und GSM Basisstation

Handshake von SIM und GSM Basisstation Handshake von SIM und GSM Basisstation Prüfungsvorleistung im Rahmen der Vorlesung Chipkarten SS 05 Inhalt GSM und Sicherheit Sicherheitsdienste GSM Algo Authentifizierung PDU (herausgenommen) GSM und

Mehr

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009 19. Mai 2009 Einleitung Problemstellung Beispiel: RSA Teiler von Zahlen und Periode von Funktionen Klassischer Teil Quantenmechanischer Teil Quantenfouriertransformation Algorithmus zur Suche nach Perioden

Mehr

WEP and WPA: Lessons learned in WLAN-Security Vortrag im Rahmen des Seminars Kryptographie und Sicherheit am 31. Mai 2006 Von Tina Scherer Gliederung WEP WPA Aufbau Schwächen Cracking WEP Angriffe Behobene

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION. Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht

FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION. Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht INHALTSÜBERSICHT Risiken für die Sicherheit von Kommunikation und die Freiheit

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (2)

Grundlagen der Verschlüsselung und Authentifizierung (2) Grundlagen der Verschlüsselung und Authentifizierung (2) Benjamin Klink Friedrich-Alexander Universität Erlangen-Nürnberg Benjamin.Klink@informatik.stud.uni-erlangen.de Proseminar Konzepte von Betriebssystem-Komponenten

Mehr

Prinzipien der modernen Kryptographie Sicherheit

Prinzipien der modernen Kryptographie Sicherheit Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsmodell Das Sicherheitsmodell (Berechnungsmodell, Angriffstypen, Sicherheitsziele) muss präzise definiert werden. Berechnungsmodell:

Mehr

Pseudozufallsgeneratoren

Pseudozufallsgeneratoren Pseudozufallsgeneratoren In welchen kryptographischen Verfahren werden keine Zufallszahlen benötigt? Wie generiert man Zufallszahlen in einer deterministischen Maschine wie dem Computer? Wenn man eine

Mehr

Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Public-Key Verschlüsselung

Public-Key Verschlüsselung Public-Key Verschlüsselung Björn Thomsen 17. April 2006 Inhaltsverzeichnis 1 Einleitung 2 2 Wie funktioniert es 2 3 Vergleich mit symmetrischen Verfahren 3 4 Beispiel: RSA 4 4.1 Schlüsselerzeugung...............................

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

3 Betriebsarten bei Blockverschlüsselung

3 Betriebsarten bei Blockverschlüsselung 3 Betriebsarten bei Blockverschlüsselung Die Anwendung einer Blockverschlüsselungsfunktion f : F n 2 Fn 2 auf längere (oder kürzere) Bitfolgen erfordert zwei Maßnahmen: 1 die Folge in n-bit-blöcke aufspalten,

Mehr

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

IT-Sicherheit - Sicherheit vernetzter Systeme -

IT-Sicherheit - Sicherheit vernetzter Systeme - IT-Sicherheit - Sicherheit vernetzter Systeme - Kapitel 4: Grundlagen der Kryptologie Helmut Reiser, LRZ, WS 09/10 IT-Sicherheit 1 Inhalt 1. Kryptologie: Begriffe, Klassifikation 2. Steganographie 3. Kryptographie,

Mehr

Workshop Experimente zur Kryptographie

Workshop Experimente zur Kryptographie Fakultät Informatik, Institut Systemarchitektur, Professur Datenschutz und Datensicherheit Workshop Experimente zur Kryptographie Sebastian Clauß Dresden, 23.03.2011 Alltägliche Anwendungen von Kryptographie

Mehr

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Agenda 1. Kerckhoff sches Prinzip 2. Kommunikationsszenario 3. Wichtige Begriffe 4. Sicherheitsmechanismen 1. Symmetrische Verschlüsselung

Mehr

Was heißt Kryptographie I? Understanding Cryptography Christof Paar und Jan Pelzl

Was heißt Kryptographie I? Understanding Cryptography Christof Paar und Jan Pelzl Was heißt Kryptographie I? Understanding Cryptography Christof Paar und Jan Pelzl Die Autoren Dr.-Ing. Jan Pelzl Prof. Dr.-Ing. Christof Paar Gliederung Historischer Überblick Begrifflichkeiten Symmetrische

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Verschlüsselung. Chiffrat. Eve

Verschlüsselung. Chiffrat. Eve Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung

Mehr

Zufallszahlen in AntBrain

Zufallszahlen in AntBrain Zufallszahlen SEP 291 Zufallszahlen in AntBrain Spezifikation, Teil II: Zum Beispiel könnte ein Objekt vom Typ Match die Spielfelder nach jeweils 1000 Spielrunden speichern; bei einer Anfrage nach den

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Public-Key-Kryptographie

Public-Key-Kryptographie Kapitel 2 Public-Key-Kryptographie In diesem Kapitel soll eine kurze Einführung in die Kryptographie des 20. Jahrhunderts und die damit verbundene Entstehung von Public-Key Verfahren gegeben werden. Es

Mehr

Ein Scan basierter Seitenangriff auf DES

Ein Scan basierter Seitenangriff auf DES Ein Scan basierter Seitenangriff auf DES Seminar Codes & Kryptographie SS04 Tobias Witteler 29.06.2004 Struktur des Vortrags 1. Einführung / Motivation 2. Struktur von DES 3. Die Attacke Begriffsklärung:

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Security and Cryptography

Security and Cryptography Security and Cryptography Wunschthema: RSA Was ist asymmetrische Kryptographie? Funktionsweise RSA; zeigen, dass es funktioniert (mˆ{c*d}=m) Was, wenn geheimer Schlüssel nicht mod((n)), sondern mod(kgv((p-1),(q-1)))?

Mehr

CPA-Sicherheit ist ungenügend

CPA-Sicherheit ist ungenügend CPA-Sicherheit ist ungenügend Definition CCA CCA (=Chosen Ciphertext Attack) ist ein Angriff, bei dem der Angreifer sich Chiffretext seiner Wahl entschlüsseln lassen kann. Beispiele in denen CPA nicht

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008 RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile

Mehr

Eine Praxis-orientierte Einführung in die Kryptographie

Eine Praxis-orientierte Einführung in die Kryptographie Eine Praxis-orientierte Einführung in die Kryptographie Mag. Lukas Feiler, SSCP lukas.feiler@lukasfeiler.com http://www.lukasfeiler.com/lectures_brg9 Verschlüsselung & Entschlüsselung Kryptographie & Informationssicherheit

Mehr

Grundbegriffe der Kryptographie

Grundbegriffe der Kryptographie Grundbegriffe der Kryptographie Vorlesungsskript von Eike Best April-Juli 2004 Oldenburg, April 2004 E. Best Das Skript wird ständig gepflegt. Wenn Ihnen beim Lesen Fehler auffallen, schicken Sie bitte

Mehr

Kryptographische Verfahren und ihre Anwendung 3. Teil: Symmetrische Verfahren II

Kryptographische Verfahren und ihre Anwendung 3. Teil: Symmetrische Verfahren II Proseminar im WS98/99 Kryptographische Verfahren und ihre Anwendung 3. Teil: Symmetrische Verfahren II Richard Atterer 26. November 1998 Inhaltsverzeichnis 1 Einleitung 1 2 Symmetrische Verschlüsselungssysteme

Mehr

Wireless Security. IT Security Workshop 2006. Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin.

Wireless Security. IT Security Workshop 2006. Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin. Wireless Security IT Security Workshop 2006 Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin.de HU-Berlin - Institut für Informatik 29.09.2006 (HU-Berlin - Institut

Mehr

Elliptische Kurven in der Kryptographie

Elliptische Kurven in der Kryptographie Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven

Mehr

Skript zur Stammvorlesung. Sicherheit. Karlsruher Institut für Technologie. Fakultät für Informatik

Skript zur Stammvorlesung. Sicherheit. Karlsruher Institut für Technologie. Fakultät für Informatik Skript zur Stammvorlesung Sicherheit Karlsruher Institut für Technologie Fakultät für Informatik Institut für Theoretische Informatik Arbeitsgruppe für Kryptographie und Sicherheit Die aktuelle Version

Mehr