Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)"

Transkript

1 Vorlesungsübersicht Wintersemester 2015/16 Di Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier oder Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere V1 Geometrie in der Grundschule V2 Räumliches Vorstellungsvermögen V3 Entwicklung geometrischen Denkens V4 Ebene Figuren - Vierecke V5 Ebene Figuren - Dreiecke V6 Ebene Figuren Kreise und Vielecke V7 Körper - Überblick V8 Körper Flächen, Netze, Bauen V9 Symmetrie; Parkettieren V10 Zeichnen und Konstruieren V11 Zusammenfassung Klausur (08-10 Uhr Audimax, HS 1) 1

2 V 9 Symmetrie; Parkettieren symmetria (gr.) das Ebenmaß 2

3 Programm 1 Symmetrieverständnis von Schulanfängern 2 Lehrpläne, Bildungsstandards 3 Fachliche Voraussetzungen 4 Heranführen im Geometrieunterricht 5 Parkettieren 3

4 Symmetrie fundamentale Idee des Geometrieunterrichts von großer Bedeutung für unser Auffassungs- und Gliederungsvermögen (Symmetrische Figuren werden vom Gehirn schneller analysiert und gespeichert als asymmetrische.) symmetrisches Empfinden schon bei Schulanfängern ausgeprägt 4

5 1 Symmetrieverständnis von Schulanfängern Gräser/Mede (1997) Architektur einer Doppelgarage besprechen und skizzieren linksseitig vorgegebene Figur vervollständigen Erkenntnis: symmetrische Eigenschaften können erfasst und dargestellt werden 5

6 Doppelgarage zeichnen Figuren vervollständigen 6

7 Höglinger/Senftleben 1997 Malermeister Klecks soll 4 Bilder zeichnen... Herz, Dreieck, Leiter, Stern Kannst du mir die Bilder fertig zeichnen? 7

8 Ergebnisse: Herz, Dreieck: 70% erfolgreich Leiter, Stern: 25% erfolgreich 8

9 Kurina/Ticha/Hospesova 1997 Zeichne das folgende Bild fertig. Ergebnisse: 88% zeichneten symmetrisch oder fast symmetrisch. 9

10 Zusammenfassung viele Vorerfahrungen, wenn die Symmetrieachse vertikal ist (Alltagserfahrung) Liegt die Achse horizontal oder schräg zur Blattkante, haben auch ältere Schüler noch Probleme. 10

11 2 Lehrpläne und Bildungsstandards

12 Rahmenplan Rheinland-Pfalz 2014

13 Kernlehrplan Saarland 2009 Kl. 1/2 Einfache geometrische Abbildungen untersuchen einfache symmetrische Muster erkennen und fortsetzen achsensymmetrische Figuren herstellen, untersuchen 13

14 Kl. 3 Einfache geometrische Abbildungen erkennen, benennen und darstellen Kl. 4 Symmetrische Muster (spiegeln, legen, ergänzen) Figuren und Achsensymmetrie Rechtecke und Quadrate diagonal teilen, Flächen anders zusammensetzen Einfache geometrische Abbildungen erkennen, benennen und darstellen Ebene Figuren identisch abbilden, vergrößern und verkleinern Symmetrische Muster erkennen, fortsetzen, selbst entwickeln 14

15 Bildungsstandards Einfache geometrische Abbildungen erkennen, benennen und darstellen Eigenschaften der Achsensymmetrie erkennen beschreiben und nutzen Symmetrische Muster fortsetzen und selbst entwickeln 15

16 3 Fachliche Voraussetzungen Eine Figur heißt symmetrisch genau dann, wenn sie bei einer von der identischen Abbildung verschiedenen Bewegung auf sich selbst abgebildet werden kann. 16

17 Folgende Kriterien und zugehörige Sprechweisen sind zu unterscheiden: Symmetrie als Eigenschaft einer Figur Symmetrie als Beziehung zwischen Figuren 17

18 Symmetrie als Eigenschaft von Figuren Der Schmetterling ist achsensymmetrisch. Der Propeller ist drehsymmetrisch. 18

19 Symmetrie als Beziehung zwischen Figuren Zwei Figuren sind zueinander symmetrisch. 19

20 punktsymmetrische Figuren Die Buchstaben N, S und Z sind punktsymmetrische Figuren. eine richtige und eine falsche Spielkarte 20

21 drehsymmetrische Figuren Schon Grundschulkindern kann bewusst werden, dass es verschiedene Grade von Drehungen gibt (durch die die Figuren mit sich selbst zur Deckung kommen). 21

22 Symmetrien in geometrischen Figuren Parallelogramm: punktsymmetrisch. Rechteck: punktsymmetrisch, achsensymmetrisch gleichseitiges Dreieck: achsensymmetrisch, drehsymmetrisch regelmäßiges Fünfeck: achsensymmetrisch, drehsymmetrisch allgemeines Trapez: nicht symmetrisch 22

23 Symmetrien im Haus der Vierecke 23

24 Symmetrien regelmäßiger Vielecke Jedes regelmäßige Vieleck enthält so viele Drehungen wie das Vieleck Ecken hat und ebenso viele Spiegelungen. 24

25 4 Heranführen im Geometrieunterricht Einstiegsidee 1: Bild Schmetterling. Wie sieht die andere Hälfte des Schmetterlings aus? Woher weißt du das so genau? 25

26 Begriffe und Zusammenhänge sprachlich benennen! 26

27 Was habt ihr heute in Mathe gemacht? Wir haben mit dem Spiegel gearbeitet? Und was hast du gelernt?? Figuren mit gleichen Hälften sind symmetrisch. Kennst du andere Figuren (Gegenstände), die symmetrisch sind? Die Faltlinie heißt Symmetrieachse. Wenn man zwei Hälften einer Figur über eine Faltlinie genau aufeinanderlegen kann, sind sie symmetrisch. Die beiden Hälften sind deckungsgleich (kongruent). Ob eine Figur symmetrisch ist, kann man auch mit dem Spiegel zeigen: Man stellt einen Spiegel auf die Faltlinie und sieht das deckungsgleiche Stück im Spiegel. Die Faltlinie kann man deshalb auch Spiegelachse nennen. 27

28 Einstiegsidee 2 Mit beiden Händen gemalt 28 Quelle: Matheprofis 2

29 Einstiegsidee 3 Suche die Fehler, die der Zeichner beim Spiegelbild des Sees gemacht hat. 29

30 Einstiegsidee 4 Entdecken von Symmetrien in der Umwelt 30

31 Aktivitäten: (1) Symmetrische Figuren erzeugen (2) Symmetrien in Figuren erkennen; Symmetrieachsen einzeichnen Falten Symmetrieachse durch Falten erzeugen, mit dem Spiegel überprüfen Faltschnittfiguren werden aus einem einmal gefalteten Papier vom Kniff her geschnitten (einfache Figuren, Masken, Tischdecken ) Klecksbilder Falten und Pressen von Farbklecksen 31

32 Symmetrische Figuren schneiden 32

33 gestaltet aus einem Klecksbild 33

34 Kl. 3 Examensarbeit Till Grohe Tinte auftragen 1 Falten des leeren Blattes 3 Fertiges Klecksbild Clownsgesicht 34

35 Martins Trinkende Hähne Christians Kopfloses Monster Paddys Gesichter über dem Abgrund Viktorias Mensch mit Maske 35

36 Spiel: Stelle sieben Klecksbilder her. Schneide jedes Klecksbild an der Symmetrieachse auseinander. Mische die Teile und lasse sie von einem anderen Kind wieder zusammensetzen. Reißbilder entstehen, wenn man aus einem gerade berandeten Blatt Papier ein Stück ausreißt, umwendet und passend neben dem Ausriss aufklebt. 36

37 Reißbilder 37

38 Symmetrische Figuren legen 38

39 Bauen mit Legosteinen Examensarbeit Till Grohe 2006 Viktoria und Michelle vergleichen ihre Figuren Nach dem Bauen waren die Symmetrieachsen zu finden. Spiegel als Hilfe 39

40 Symmetrische Figuren zeichnen 40

41 Bandornamente einen möglichst langen Papierstreifen durch fortgesetztes Halbieren zur Ziehharmonika falten; Muster einschneiden Aktivitäten mit dem Spiegel * Taschenspiegel * Miraspiegel s. Radatz/Rickmeyer, S. 90 ff. und neuere grüne Handbücher 41

42 Bandornamente 42

43 Spiegelspiel: Die Schüler verteilen sich im Klassenzimmer und stellen sich ihrem Partner gegenüber. Ein Kind ist das Original und das andere das Spiegelbild. Examensarbeit Till Grohe 2006 Das Original fängt an, langsame Bewegungen zu machen, die das Spiegelbild so exakt wie möglich nachmacht. 43

44 Miraspiegel auf die Symmetrieachse stellen, Figur achsensymmetrisch ergänzen bzw. symmetrische Figur zeichnen 44

45 Buchstabensymmetrie Finde symmetrische Buchstaben des Alphabets. Symmetrie am Geobrett Symmetrieachse spannen u. zueinander symmetrische Figuren erzeugen weitere Literatur: H. Spiegel: Spiegeln mit dem Spiegelbuch. Carniel, Knapstein, Spiegel: Räumliches Denken fördern. Auer-Verlag. 45

46 Symmetrie am Geobrett Spanne mit zwei Gummis symmetrische Figuren. Zeichne die Beispiele ab und trage die Symmetrieachsen ein. 46

47 Fehler Male selbst ein Spiegelbild. Examensarbeit Till Grohe

48 Übungen zur Drehsymmetrie aus Matheprofis (Oldenbourg) Klasse 4 48

49 Zweierlei Symmetrien? Matheprofi Kl. 4 Schaut euch die Buchstaben in den Bildern an. Wie stehen sie zueinander? Für eine Anordnung kennt ihr bereits einen Namen, die andere müsst ihr mit eigenen Worten beschreiben. Wähle in jedem Bild zwei Buchstaben aus und überlege, wie du einen bewegen musst, damit er auf dem anderen zu liegen kommt. 49

50 Schau genau hin, vermute und überprüfe mit einem Spiegel. Welches Muster ist achsensymmetrisch, drehsymmetrisch, achsen- und drehsymmetrisch, nicht symmetrisch? 50

51 51

52 5 Parkettieren

53 Begriff Parkett Auslegen der Ebene mit kongruenten Ausgangsfiguren, ohne dass Lücken oder Überlappungen entstehen. oder Ein Parkett ist eine vollständige, überlappungsfreie Überdeckung der Ebene durch Vielecke. 53

54 Welche Figuren kann man immer wieder aneinanderlegen, ohne dass Lücken entstehen? kongruente Dreiecke, kongruente Vierecke, regelmäßige Sechsecke Alle anderen einfachen Parkette mit einer n-eckigen Figur (Polygon) beruhen auf Zusammensetzungen oder Zerlegungen aus diesen geometrischen Figuren (Es gibt allerdings Ausnahmen). 54

55 Quelle: Lorenz/Grundschulunterricht 55

56 Warum lassen sich bestimmte Figuren parkettieren, andere nicht? Entscheidend ist die Größe der Innenwinkel. Dort, wo sich die Winkel im Parkett (lückenlos) begegnen, müssen 360 Winkelsumme entstehen. Bei regelmäßigen Figuren, deren Innenwinkelgröße Teiler von 360 ist, ist das lückenlose Auslegen der Ebene immer möglich. Beispiel: regelmäßiges Sechseck (jeder Innenwinkel 120 ); Mit dem regelmäßigen Fünfeck (jeder Innenwinkel 108 ) lässt sich die Ebene nicht lückenlos auslegen. 56

57 Innenwinkel regelmäßiger Vielecke Innenwinkel Achteck

58 Quelle: Lorenz/Grundschulunterricht 58

59 Aus gleichseitigen Dreiecken entstehen wiederum Figuren zum Parkettieren. 59

60 Aus diesen speziellen Rauten aus gleichseitigen Dreiecken (Innenwinkel 60 und 120 ) entstehen Parkette mit räumlichen Dimensionen. 60

61 Parkette in der Umwelt Fliesen Pflasterungen Schachbrett Bienenwabenmuster Mauern Parkette in der Kunst z.b. Parkette des Islam, Escher-Parkette 61

62 Die Kunst des Maurits Cornelis Escher ( ) Um aus einfachen Parketten neue, interessantere zu machen, gibt es grundsätzlich zwei Wege: 1. Die Bausteine der Parkette werden verziert. 2. Die Form der Bausteine wird verändert. Der holländische Künstler M. C. Escher hat es wie kein anderer verstanden, diese beiden Wege zu verbinden. 62

63 Regelmäßige Flächenaufteilung mit menschlichen Figuren

64 Regelmäßige Flächenaufteilung für Engel und Teufel

65 Parkett mit einem Chinesen (Escher Figur) Kl. 4 65

66 Techniken für kunstvolle Parkette Knabbertechnik Verschiebung eignet sich für Figuren, deren gegenüberliegende Seiten gleichlang und parallel sind (Rechteck, Quadrat, Raute, Parallelogramm) Ein Flächenstück wird ausgeschnitten und zur gegenüberliegenden Seite verschoben. 66

67 Knabbertechnik mittels Drehung eignet sich für Figuren, die gleichlange benachbarte Seiten haben (Quadrat, Raute, Drachen, regelmäßiges Sechseck, gleichseitiges, gleichschenkliges Dreieck, ) Ein Flächenstück wird abgeschnitten, um einen Eckpunkt gedreht und wieder angeklebt. 67

68 68

69 Fazit

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Muster, Bandornamente und Parkette (1)

Muster, Bandornamente und Parkette (1) Muster, Bandornamente und Parkette (1) In Mustern, Bandornamenten und Parketten (im Folgenden: Figuren) wird ein Grundelement nach einer gewissen Regel mehrfach arrangiert. Die Regelmäßigkeiten lassen

Mehr

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen RabenWerkstatt Effektsystem Geometrie in Fläche und Raum erarbeitet von Peter Herbert Maier Lösungen Muster legen Figuren legen Lege die Muster nach. Setze sie fort. Entwirf ein eigenes Muster. 2 Figuren

Mehr

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner.

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner. Marco Bettner Erik Dinges Mathe an Stationen 3 Achsensymmetrie Handlungsorientierte Materialien für Klasse 3 Downloadauszug aus dem Originaltitel: Grundschule u Marco Bettner Erik Dinges Mathe an Stationen

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe Schwerpunkt: Ebene Figuren Ebene Figuren - untersuchen weitere ebene Figuren, - benennen sie und verwenden Fachbegriffe zu deren Beschreibung - setzen Muster fort (z.b. Bandornamente, Parkettierungen),

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013 SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 1 14./15. 11. 2013 Programm Entwicklung des Geometrieunterricht bis zu Bildungsstandards und Rahmenplänen Ein

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Inhaltsverzeichnis. Einleitung 1. 1 Geometrie in der Grundschule 5. 2 Entwicklung räumlicher Fähigkeiten 27

Inhaltsverzeichnis. Einleitung 1. 1 Geometrie in der Grundschule 5. 2 Entwicklung räumlicher Fähigkeiten 27 Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 5 1.1 Entwicklung des Geometrieunterrichts 6 1.2 Überlegungen für ein neues Geometriecurriculum 11 1.3 Zur Gestaltung des Geometrieunterrichts

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Marianne Franke Didaktik der Geometrie Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 7 1.1 Entwicklung des Geometrieunterrichts 8 1.2 Überlegungen

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Symmetrie als fundamentale Idee

Symmetrie als fundamentale Idee Symmetrie als fundamentale Idee "Ideen, die starke Bezüge zur Wirklichkeit haben, verschiedene Aspekte und Zugänge aufweisen, sich durch hohen inneren Beziehungsreichtum auszeichnen und in den folgenden

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Achsensymmetrie / Spiegelung. Achsensymmetrie. Leerseite. Spiegelung

Achsensymmetrie / Spiegelung. Achsensymmetrie. Leerseite. Spiegelung Achsensymmetrie Leerseite Spiegelung 1B Aufgabe 1 Falte ein Blatt Papier so, daß beide Teile übereinander liegen. Schneide mit der Schere eine beliebige Figur aus! Wie ist der Tannenbaum entstanden? Erkläre!

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Maurits Cornelis Escher ( ) Unmögliche Figuren. Parkettierungen. Kurzbiographie. Lehrerfortbildung: Geschichte(n) der Mathematik

Maurits Cornelis Escher ( ) Unmögliche Figuren. Parkettierungen. Kurzbiographie. Lehrerfortbildung: Geschichte(n) der Mathematik Maurits Cornelis Escher (1898-1972) Kurzbiographie Schon früh an Kunst interessiert Studium der dekorativen Künste Lebensmittelpunkt im Süden Europa Lehrerfortbildung: Geschichte(n) der Mathematik Inspiration

Mehr

Pädagogische Hochschule Ludwigsburg Institut für Mathematik und Informatik Geometrie (Mohr) Symmetrie ebener Figuren

Pädagogische Hochschule Ludwigsburg Institut für Mathematik und Informatik Geometrie (Mohr) Symmetrie ebener Figuren Symmetrie im geometrischen Kontext Definition: 1. Eine ebene geometrische Figur ist symmetrisch, wenn es mindestens eine nichttriviale Deckabbildung gibt. 2. Eine Deckabbildung (oder Symmetrie) ist eine

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 6 09.10.2014 09:00-17:00 Uhr 1 (1) Vorbereitung Abschlussdokumentation (2) Modul 10 (3) Modul 11 (4) Modul 12

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Station Tatort Tankstelle Teil 3. Arbeitsheft. Tischnummer. Teilnehmercode

Station Tatort Tankstelle Teil 3. Arbeitsheft. Tischnummer. Teilnehmercode Station Tatort Tankstelle Teil 3 Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Tatort Tankstelle Liebe Schülerinnen und Schüler! In den ersten beiden Teilen der Station Tatort Tankstelle

Mehr

Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen

Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen Module für den Geometrieunterricht Geometrie lehren Geometrie lernen 1 Ein Kind muss genügend Erfahrungen zu geometrischen Ideen erwerben können (classroom or otherwise), um ein höheres Entwicklungsstadium

Mehr

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule 4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule Lagebeziehungen Eigenschaften von Gegenständen Geometrische Figuren und Körper Muster, Ornamente, Symmetrien Größe und Umfang von

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - 1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal;

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Hausaufgabe Didaktik der Geometrie Übung von Cathrin Burchardt

Hausaufgabe Didaktik der Geometrie Übung von Cathrin Burchardt Hausaufgabe Didaktik der Geometrie Übung von Cathrin Burchardt Klassenstufe: Klassenstufe 1 Inhalte dieser Klassenstufe: In der Klassenstufe 1 werden die Schüler zunächst an Bewegungen und Orientierungen

Mehr

Bereich: Raum und Form Schwerpunkt: Ebene Figuren. Klasse 1. Beobachtungshinweise. Kompetenzerwartungen

Bereich: Raum und Form Schwerpunkt: Ebene Figuren. Klasse 1. Beobachtungshinweise. Kompetenzerwartungen AB 5: Schuleigener Arbeitsplan Mathematik Kontinuität von Klasse 1-4 aufgezeigt an einer ausgewählten Kompetenzerwartung aus dem Bereich Raum und Form Schwerpunkt Ebenen Figuren Bereich: Raum und Form

Mehr

DOWNLOAD. Achsensymmetrie. Grundwissen Mathematik. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Geometrische Abbildungen

DOWNLOAD. Achsensymmetrie. Grundwissen Mathematik. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Geometrische Abbildungen DOWNLOAD Michael Körner Achsensymmetrie Grundwissen Mathematik Michael Körner Grundwissen Geometrische Abbildungen 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel: Das Werk

Mehr

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? Dreiecke Viereck d) Quadrat b) Kreis Quadrate Dreiecke Rechteck c) Rechtecke f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. Nimm vier gleich lange Stäbe.

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Parkettierungen herstellen und erforschen

Parkettierungen herstellen und erforschen Parkettierungen herstellen und erforschen Mögliche Zugänge zum Thema Bezüge zum Lehrplan Eigene Erkundungen zum Thema Pause Austausch über die Erkundungen Einbettung der Vorschläge in den Unterricht Begriffsbestimmung

Mehr

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Grundformen und -konstruktionen

Grundformen und -konstruktionen 1. Die gehfaulen Ameisen Grundformen und -konstruktionen Die gemütliche Anatevka and die dicke Berta stehen 50 mm voneinander entfernt. Sie wollen sich zwar treffen, aber keine will weiter als 28 mm laufen.

Mehr

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene Kapitel 3: Deckabbildungen von Figuren - Symmetrie 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene K ist die Menge aller Kongruenzabbildungen E E; o ist die Hintereinanderausführung von Abbildungen

Mehr

Geometrische Sachverhalte spielerisch entdecken

Geometrische Sachverhalte spielerisch entdecken Wozu Geometrie? Dr. Daniela Götze Geometrische Sachverhalte spielerisch entdecken Geometrisches und arithmetisches Denken stehen in einem engen wechselseitigen Zusammenhang. Daraus erklären sich u.a. manche

Mehr

Die Punktespiegelung 1

Die Punktespiegelung 1 Die Punktespiegelung 1 1. Was geschieht, wenn du das Zentrum Z verschiebst? Formuliere deine Beobachtungen: a) Wenn das Zentrum auf eine Ecke der Originalfigur zu liegen kommt, dann b) Wenn das Zentrum

Mehr

Die 11 Eigenschaften der Standardvierecke

Die 11 Eigenschaften der Standardvierecke Die 11 Eigenschaften der Standardvierecke Die 11 Eigenschaften der 6 Familien der Standardvierecke 3 Aussagen 1. Die Diagonalen sind gleich lang. 2. Die Diagonalen halbieren sich. 3. Die Diagonalen sind

Mehr

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen! 2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen

Mehr

2.4 Achsensymmetrie. Achsensymmetrie entdecken. Name:

2.4 Achsensymmetrie. Achsensymmetrie entdecken. Name: Name: Klasse: Datum: Achsensymmetrie entdecken Öffne die Datei 2_4_Spielkarte.ggb. 1 Bewege den blauen Punkt nach Lust und Laune. Beschreibe deine Beobachtungen. Beschreibe, wie sich der grüne Punkt bewegt,

Mehr

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel: Download Sandra Sommer/Markus Sommer Selbstkontrollaufgaben Mathematik für die 3.-4. Klasse Geometrie Selbstkontrollaufgaben Mathe 3. /4. Klasse Grundschule Sandra Sommer Markus Sommer 65 lehrplanrelevante

Mehr

Geometrie in der Grundschule. Ein erster Überblick

Geometrie in der Grundschule. Ein erster Überblick Geometrie in der Grundschule Ein erster Überblick Elemente der Schulgeometrie - Organisatorisches Die Veranstaltung findet immer mittwochs 8-9.30 Uhr statt und (ca.) 14-täglich am Do 8-9.30 Uhr statt.

Mehr

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie Symmetrien Ist ein Gesicht symmetrisch? Welches ist das von Ferdinand Hodler gezeichnete Originalbild seiner Frau erthe? Weshalb? Verschiedene rten von Symmetrie Sind Schmetterling und Propeller gleich

Mehr

Kongruenz und Symmetrie

Kongruenz und Symmetrie Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche

Mehr

Inhaltsverzeichnis. Leseprobe Mathetiger 1 - Schülerbuch Bestell-Nr Mildenberger Verlag

Inhaltsverzeichnis. Leseprobe Mathetiger 1 - Schülerbuch Bestell-Nr Mildenberger Verlag Inhaltsverzeichnis Erstes Zählen, Strichlisten, Zahlen darstellen, Formen und Figuren 4 In der Schule Zahlen entdecken 4 Zahlen erkennen 5 Menge, Zahl und Würfelbild 6 Sortieren und Strichlisten erstellen

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Falttechniken zum Einsatz im Mathematikunterricht mit sehgeschädigten Kindern Emmy Csocsán / Christina Blackert

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen können.

Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen können. Aufgabe 2.3 Idee und Aufgabenentwurf Rainer Meiers, Nicolaus-Voltz-Grundschule, Losheim am See, Klassenstufe 2 (Januar 2013) Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen

Mehr

Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen, Entfernungen und Koordinaten

Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen, Entfernungen und Koordinaten Hausaufgabe: Didaktik der Geometrie 1. Klassenstufe: 1 Klasse Inhalte dieser Klassenstufe: Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen,

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007

beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007 Der Autor: Matthias Nowak - geboren 1978 - arbeitet seit 2002 als Nachhilfelehrer beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007 arbeitet er zusätzlich freiberuflich als Autor

Mehr

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4 Download Carolin Donat Mathe an Stationen SPEZIAL Geometrie 3-4 Ebene Figuren - geometrische Formen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Amt für Volksschule März 2011

Amt für Volksschule März 2011 Amt für Volksschule März 2011 Lehrplan Grobziele im Überblick (LP Seiten 78 + 79) Grobziele /Symbole Möglichkeiten und Hinweise Eas Schwerpunkt Kl. 4 5 6 1 Die Schüler und Schüle- eben, waagrecht, horizontal,

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Ergänze folgende Figuren so, dass sie achsensymmetrisch sind und zeichne die Symmetrieachse(n) ein. Versuche jeweils mehrere Möglichkeiten zu finden!

Ergänze folgende Figuren so, dass sie achsensymmetrisch sind und zeichne die Symmetrieachse(n) ein. Versuche jeweils mehrere Möglichkeiten zu finden! Aufgabe 1: Symmetrische Figuren Ergänze folgende Figuren so, dass sie achsensymmetrisch sind und zeichne die Symmetrieachse(n) ein. Versuche jeweils mehrere Möglichkeiten zu finden! Hier gibt es viele

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Dreiecke. Worum geht es? Das Material

Dreiecke. Worum geht es? Das Material Dreiecke Worum geht es? Das Es handelt sich um gleichseitige Dreiecke aus Holz mit einer Kantenlänge von 5 cm in drei verschiedenen Farben: orange, rot und grün. Die Dreiecke regen zum Legen von flächigen

Mehr

Daten erfassen und darstellen

Daten erfassen und darstellen MAT 05-01 Leitidee: Daten und Zufall Daten erfassen und darstellen Thema im Buch: Meine Klasse und ich - Zahlenangaben sammeln und vergleichen Daten in Ur-, Strichlisten und Häufigkeitstabellen zusammenfassen.

Mehr

Andi parkettiert T-Shirts

Andi parkettiert T-Shirts Andi parkettiert T-Shirts Der letzte große Teil des Kurses Mathe Macht Mode beschäftigte sich damit, ein TShirt zu bedrucken. Als mathematischen Hintergrund wählten wir das Thema Parkettierung. Unser Ziel

Mehr

Die Proportionen der regelmässigen Vielecke und die

Die Proportionen der regelmässigen Vielecke und die geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale

Mehr

Bildungsstandards und sicheres geometrisches Können

Bildungsstandards und sicheres geometrisches Können Prof. Dr. Hans-Dieter Sill Universität Rostock DUDEN PAETEC Schulbuchverlag 1. Aktuelle Entwicklungen Bildungsstandards und sicheres geometrisches Können Bildungsstandards im Fach Mathematik: Bildungsstandards

Mehr

Kopfgeometrie. Von der Handlung in den Kopf. Monika Trill-Zimmermann Sinus Set

Kopfgeometrie. Von der Handlung in den Kopf. Monika Trill-Zimmermann Sinus Set Kopfgeometrie Von der Handlung in den Kopf 13.08.14 Sinus Set 4 1 Wer die Geometrie begreift, vermag in dieser Welt alles zu verstehen. Galileo Galilei 2 Agenda 1 2 3 Geometrie in der Grundschule (allg.)

Mehr

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ Vertiefen Spiegelsymmetrische Bilder erkennen und zeichnen zu Aufgabe Schulbuch, Seite 0 Spiegelsymmetrie Übertrage die Figuren in dein Heft und trage alle Spiegelachsen ein. 2 4 5 7 8 zu Aufgabe 2 Schulbuch,

Mehr