Forschungsstatistik I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Forschungsstatistik I"

Transkript

1 Prof. Dr. G. Meinhardt 6. Stock, TB II R (Persike) R (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike WS 2009/2010 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz

2 Wir haben bereits eine Unterscheidung von Typen von Variablen anhand der Art der Daten kennen gelernt. Eine diskrete Variable besitzt zumeist endlich viele und feste Ausprägungen, die man über Ganzzahlen beschreiben kann Eine kontinuierliche (stetige) Variable kann (unendlich viele) beliebige Ausprägungen annehmen, die man über reelle Zahlen beschreibt Eine andere Unterscheidung anhand der Art der Daten unterteilte Variablen in qualitative und quantitative Variablen.

3 Eine statistisch sinnvolle Art der Klassifikation von Variablen ist die Einteilung in. Verhältnisskala (Ratioskala) Absolutskala Der Informationsgehalt nimmt von der zur Absolutskala hin zu Bei Messungen psychischer Merkmale kommen die Verhältnis- und die Absolutskala so gut wie nie vor

4 Definition Bei einer werden den Realisationen einer Variablen Zahlen mit dem Ziel zugeordnet, Kategorien zu unterscheiden Die Zahlen selbst sind nicht interpretierbar Die Anwendung der üblichen Rechenoperationen auf die Werte einer nominalskalierten Variablen ist im Allgemeinen nicht sinnvoll

5 Beispiele Konstitutionstypen a) Leptosomer Typ b) Athletischer Typ c) Pyknischer Typ Temperamentstypen

6 Zulässige Transformationen Zulässige Transformationen sind eineindeutige Abbildungen, so dass die Unterscheidbarkeit der Werte erhalten bleibt.

7 Definition Bei einer können die Realisationen einer Variablen geordnet werden Die Zuordnung der Zahlen zu den Ausprägungen spiegelt die Ordnung wieder Abstände zwischen den Zahlen können nicht interpretiert werden Die Anwendung von Rechenoperationen auf die Werte einer ordinalskalierten Variablen ist unter bestimmten Voraussetzungen erlaubt, aber im Allgemeinen eher wenig sinnvoll

8 Beispiel Social Penetration Theory von Altman und Taylor (1958) (I) (II) (III) (IV) (V) Orientierungsstadium: Sozial erwünschte Normen und Verhaltensschemata werden ausgetauscht (z.b. Smalltalk) Exploratorisch-affektives Stadium: Partielle Öffnung der eigenen Einstellungs- und Wahrnehmungswelt gegenüber dem Anderen im Hinblick auf private, vor allem aber berufliche und weltanschauliche Inhalte. Weiterhin vorsichtige Prüfung der Interaktionsformen ( Bekanntschaftsphase ). Affektives Stadium: Intensiver und möglicherweise kritischer Austausch über private und persönliche Themen. Körperliche Zuwendung wie Berühren und Küssen. Stabiles Stadium: Die Beziehung erreicht ein Plateau, persönliche Inhalte sind geteilt, Verhalten und Emotionen des Anderen vorhersagbar. Depenetration: Zusammenbruch und mögliches Ende der Beziehung, Überwiegen von Kosten gegenüber dem Nutzen.

9 Zulässige Transformationen Zulässig sind alle streng monotonen Transformationen, so dass die Rangordnung der Werte erhalten bleibt.

10 Definition Es wird eine Einheit definiert Es existiert kein natürlicher Nullpunkt Verhältnisse zwischen Differenzen können verglichen werden Wird am häufigsten in empirischen psychologischen Untersuchungen angenommen

11 Beispiel Attitudes Toward Housecleaning Scale von Ogletree, Worthen, Turner & Vickers (2006). Ihre Aufgabe ist es, ihre Gefühle gegenüber jeder Aussage dahingehend zu kennzeichnen, ob sie (1) stark zustimmen, (2) etwas zustimmen, (3) weder zustimmen noch ablehnen, (4) etwas ablehnen oder (5) stark ablehnen. Bitte verdeutlichen Sie Ihre Meinung dadurch, dass sie entweder 1, 2, 3, 4 oder 5 auf dem Antwortblatt schwärzen. Einen Stapel dreckigen Geschirrs über Nacht im Spülbecken liegen zu lassen finde ich ekelhaft. Ich finde Staubwischen entspannend. Den Müll rauszubringen macht mir Spaß Frauen sollten die primäre Verantwortung für die Hausarbeit übernehmen. Eine unordentliche Wohnung zu haben macht mir nichts

12 Zulässige Transformationen Zulässig sind alle linearen Transformationen, so dass die Verhältnisse zwischen Differenzen erhalten bleiben.

13 Zulässige Transformationen

14 Kritische Betrachtung Die bekanntesten und am meisten verbreiteten statistischen Verfahren setzen eine voraus Der Umgang mit niedrigeren ist mathematisch oftmals weitaus komplexer Die ungeprüfte Annahme der in psychologischen Untersuchungen ist oft problematisch Beispiele: IQ-Skala, 7-Punkte Likert Skala, Prüfungsnoten, Becks Depressionsskala (BDI) 0 13: Keine bis minimale Depression 14 19: Milde Depression 20 28: Moderate Depression 29 63: Schwere Depression

15 Verhältnisskala Definition Bei der Verhältnisskala wird eine Einheit definiert Es existiert ein natürlicher Nullpunkt Verhältnisse zwischen Werten können verglichen werden Wird kaum in empirischen psychologischen Untersuchungen angenommen

16 Verhältnisskala Zulässige Transformationen Zulässig sind alle Ähnlichkeitstransformationen, so dass die Verhältnisse zwischen Werten erhalten bleiben.

17 Absolutskala Definition Bei der Absolutskala ist die Einheit natürlich vorgegeben Es existiert ein natürlicher Nullpunkt Werte können direkt interpretiert werden Wird kaum in empirischen psychologischen Untersuchungen angenommen Es existieren keine erlaubten Transformationen

18 Zusammenfassung

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt & Statistik Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike

Mehr

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik Modul 04: Messbarkeit von Merkmalen, Skalen und 1 Modul 04: Informationsbedarf empirische (statistische) Untersuchung Bei einer empirischen Untersuchung messen wir Merkmale bei ausgewählten Untersuchungseinheiten

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

Kapitel III - Merkmalsarten

Kapitel III - Merkmalsarten Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Statistik 1 - Deskriptive Statistik Kapitel III - Merkmalsarten Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Grundbegriffe. Bibliografie

Grundbegriffe. Bibliografie Grundbegriffe Merkmale und Merkmalsausprägungen Skalen und Skalentransformation Einführung und Grundbegriffe II 1 Bibliografie Bleymüller / Gehlert / Gülicher Verlag Vahlen Statistik für Wirtschaftswissenschaftler

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein. 1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau

Mehr

Primer: Deskriptive Statistik 1.0

Primer: Deskriptive Statistik 1.0 Primer: Deskriptive Statistik 1.0 Dr. Malte Persike persike@uni-mainz.de methodenlehre.com twitter.com/methodenlehre methodenlehre.com/g+ Folie 1 Variablen & Skalen Nominaldaten Variablen Deskriptive Statistik

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Datenerhebung, Skalenniveaus und Systemdatei

Datenerhebung, Skalenniveaus und Systemdatei Datenerhebung, Skalenniveaus und Systemdatei Institut für Geographie 1 Beispiele für verschiedene Typen von Fragen in einer standardisierten Befragung (3 Grundtypen) Geschlossene Fragen Glauben Sie, dass

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung Was heißt messen? Ganz allgemein: Eine Eigenschaft eines Objektes wird ermittelt, z.b. die Wahlabsicht eines Bürgers, das Bruttosozialprodukt eines Landes, die Häufigkeit von Konflikten im internationalen

Mehr

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN

DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN Was ist Messen? Messen - im weitesten Sinne - ist die Zuordnung von Zahlen zu Objekten und Ereignissen entsprechend einer Regel (Def. nach Stevensen

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Messtherorie Definitionen

Messtherorie Definitionen Messtherorie Definitionen Begriff Definition Beispiel Relationen Empirisches Relativ eine Menge von Objekten und ein oder mehreren beobachtbaren Relationen zwischen dieses Objekten Menge der Objekte =

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Grafische Darstellung von Häufigkeitsverteilungen (1)

Grafische Darstellung von Häufigkeitsverteilungen (1) Grafische Darstellung von Häufigkeitsverteilungen () Grafische Darstellungen dienen... - Einführung - der Unterstützung des Lesens und Interpretierens von Daten. der Veranschaulichung mathematischer Begriffe

Mehr

Phasen des Forschungsprozesses (hypothesenprüfende Studie)

Phasen des Forschungsprozesses (hypothesenprüfende Studie) Phasen des Forschungsprozesses (hypothesenprüfende Studie) Konzeptspezifikation/ Operationalisierung/Messung rot: Planungsphase Auswahl des Forschungsproblems Theoriebildung Auswahl der Untersuchungseinheiten

Mehr

Was ist ein Test? Grundlagen psychologisch- diagnostischer Verfahren. Rorschach-Test

Was ist ein Test? Grundlagen psychologisch- diagnostischer Verfahren. Rorschach-Test Was ist ein Test? Ein Test ist ein wissenschaftliches Routineverfahren zur Untersuchung eines oder mehrerer empirisch abgrenzbarer Persönlichkeitsmerkmale mit dem Ziel einer möglichst quantitativen Aussage

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

1. Einstellungen. Meinung - Vorurteil - Werthaltung - Einstellung - Wissen

1. Einstellungen. Meinung - Vorurteil - Werthaltung - Einstellung - Wissen 1. Einstellungen Meinung - Vorurteil - Werthaltung - Einstellung - Wissen Einstellungen-attitude-Attitüde Konstrukt aus der Alltagspsychologie - als relativ überdauernde Wahrnehmungsorientierung funktional

Mehr

Kapitel 1: Gegenstand und Grundbegriffe der Statistik

Kapitel 1: Gegenstand und Grundbegriffe der Statistik Kapitel 1: Gegenstand und Grundbegriffe der Statistik 1. Gegenstand der Statistik... 1 2. Einheiten, Masse, Merkmal... 3 3. Messen, Skalen... 9 a) Messung... 9 b) Skalenarten... 11 1. Gegenstand der Statistik

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Messtheoretische Vorüberlegungen

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Messtheoretische Vorüberlegungen Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I Messtheoretische Vorüberlegungen Am Anfang jeder statistischen Auswertung steht das 'Messen' bestimmter Phänomene bzw. Merkmale.

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 1. Grundbegriffe der beschreibenden Statistik Statistische Einheiten, Grundgesamtheit

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

1. Wissenschaftstheoretische Grundlagen Soziologische Theorie als erfahrungswissenschaftliche

1. Wissenschaftstheoretische Grundlagen Soziologische Theorie als erfahrungswissenschaftliche 1. Wissenschaftstheoretische Grundlagen 1.1. Soziologische Theorie als erfahrungswissenschaftliche Theorie 1.1.1. Was sind keine erfahrungswissenschaftlichen Theorien? Aussagen der Logik und der Mathematik

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Statistik für das Psychologiestudium

Statistik für das Psychologiestudium Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung

Mehr

Empirische Sozialforschung

Empirische Sozialforschung Helmut Kromrey Empirische Sozialforschung Modelle und Methoden der standardisierten Datenerhebung und Datenauswertung 11., überarbeitete Auflage Lucius & Lucius Stuttgart Inhalt Vorbemerkung: Wozu Methoden

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I 1. Mengen und Abbildungen In der Mathematik beschäftigt man sich immer -direkt oder indirekt- mit Mengen. Wir benötigen den Mengenbegriff

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE. Empirische Methoden der Politikwissenschaft

JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE. Empirische Methoden der Politikwissenschaft JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE Empirische Methoden der Politikwissenschaft 1 Einleitung 13 2 Methoden im empirischen Forschungsprozess 17 2.1 Methoden und wissenschaftliche Theorie 17 2.2

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind

Mehr

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Vorkurs Mathematik Vorlesung 5 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

2 - Konvergenz und Limes

2 - Konvergenz und Limes Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Ringvorlesung zur Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung zur Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung zur Einführung in die Methoden der empirischen Sozialforschung II Messverfahren, Skalierung, Indexbildung 1 Messverfahren Problem: Messungen bei nicht direkt beobachtbaren Sachverhalten Vorbild:

Mehr

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Meßtheoretische Vorüberlegungen

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Meßtheoretische Vorüberlegungen Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I Meßtheoretische Vorüberlegungen Am Anfang jeder statistischen Auswertung steht das 'Messen' bestimmter Phänomene bzw. Merkmale.

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Konstruierte Skalen in den Sozialwissenschaften

GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Konstruierte Skalen in den Sozialwissenschaften TEIL 3: MESSEN UND SKALIEREN GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Objektivität Reliabilität Validität Konstruierte Skalen in den Sozialwissenschaften

Mehr

Einführung in die Statistik Einführung

Einführung in die Statistik Einführung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Einführung Professur E-Learning und Neue Medien www.tu-chemnitz.de/phil/imf/elearning

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr