Daten, Datentypen, Skalen

Größe: px
Ab Seite anzeigen:

Download "Daten, Datentypen, Skalen"

Transkript

1 Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben erfordert häufig die Planung und Durchführung entsprechender empirischer Untersuchungen. Zu klären ist z.b., welche theoretischen Konstrukte ( Leistungsmotivation, Ausländerfeindlichkeit, Sozialstatus,...) mit Hilfe welcher Indikatoren in welchen Populationen gemessen werden sollen. 1

2 Dabei sind u.a. Fragen der Operationalisierung von Begriffen, der Objektivität, Reliabilität und Validität von Messungen, der Messtheorie und angepasster Erhebungsformen und -umfänge (Versuchsplanung) zu klären ( Ringvorlesung bzw. Ende von Statistik II). 2

3 Grundlegende Begriffe: Grundgesamtheit (Population [population]): Menge aller Objekte/Personen [sampling unit], über die Aussagen gewonnen werden sollen. (z. B.: Gesamtheit aller in Deutschland wohnenden erwachsenen Personen.) Stichprobe [samle]: Tatsächlich untersuchte Teilmenge (z.b. von Probanden) aus der Grundgesamtheit. (z. B.: Im Allbus Programm befragte Personen.) 3

4 Merkmalsträger [sampling unit](fälle [cases]): Objekte/Personen der Grundgesamtheit als Träger von Eigenschaften. (z. B.: Erika Mustermann, Musterdorf, Musterstr. 1a) Merkmal [characteristic](variable [variable]): Interessierende Eigenschaft, die an den Merkmalsträgern beobachtet/gemessen/erfragt werden kann. (z. B.: Geschlecht, Alter, Konfession, Wahlabsicht) Merkmalsausprägung [outcome]: Mögliche Werte, die ein Merkmal annehmen kann. (z. B.: männl./weibl., 18,..., 120 Jahre, konf. los/kath./ev./ musl...., CDU/CSU/SPD/B90G/LINKE/FDP... ) Daten: (Sg. Datum, lat. datum = gegeben) In der Stichprobe z.b an Probanden beobachtete Merkmalsausprägungen. 4

5 Daten werden häufig als Datenmatrix [sample data set] organisiert (siehe unten bzw. Dateneditor in SPSS). Der Input einer Messung (z.b. Befragung) sind also Objekte (z.b. Probanden) mit ihren Eigenschaften (z.b. Merkmalsausprägungen) und die Beziehungen (Relationen) zwischen diesen. Als Output einer Messung treten häufig Zahlen auf, wobei die Zuordnung (Abbildung) der Objekte mit ihren Eigenschaften zu den Zahlen strukturerhaltend erfolgen sollte (Homomorphismus, Isomorphismus, Existenz, Eindeutigkeit,... Messtheorie). 5

6 In der Statistik/Datenanalyse unterscheiden wir in Abhängigkeit vom Informationsgehalt (Art der Relationen zwischen Merkmalsausprägungen) der Messungen und damit der vorliegenden Daten einerseits Skalen (-typen, -niveaus). Andererseits ist eine Klassifikation von Daten hinsichtlich der Zahl der möglichen Ausprägungen (z.b. dichotom/binär, diskret, stetig) und nach der Zahl der gleichzeitig an einem Objekt untersuchten Merkmale (univariat, bivariat, multivariat) üblich. Speziell für Sekundäranalysen sind diese Informationen für die verwendeten Daten unbedingt einzuholen. 6

7 Skalenniveaus, Datentypen Nominalskala [nominal/categorical data]: kategoriale Daten, qualitative Merkmale jede Beobachtung einer Merkmalsausprägung kann genau einer bestimmten Klasse (Kategorie) zugeordnet werden Klassen können nicht geordnet sondern nur unterschieden werden (Äquivalenzrelation), Klassen werden z.b. durch (natürliche) Zahlen charakterisiert Invarianz gegenüber eineindeutigen Transformationen Bsp.: Eigenschaften wie RaucherIn NichtraucherIn, krank gesund, Geschlecht (dichotom/binär), Farben, Berufsgruppe, ethnische Herkunft, Geburtsland 7

8 Ordinalskala [ordinal data]: sinnvolles Ordnen der Beobachtungen/Merkmalsausprägungen ist möglich (Rangordnung) Präferenzstruktur (Halbordnung, Ordnung) Unterschiede zwischen den Beobachtungen sind nicht vergleichbar (keine Abstände) wenn Rangordnung, dann üblicherweise durch natürliche Zahlen charakterisiert Invarianz gegenüber monoton wachsenden (isotonen) Transformationen Bsp.: Antwortvorgaben: stark ablehnend ablehnend unentschieden zustimmend stark zustimmend, Schulnoten, Platzierungen, Ratingskalen 8

9 Intervallskala [interval scale]: quantitative Merkmale, metrische Daten [numerical/measurement data] Abstände (Intervalle) zwischen den Werten der Skala besitzen eine Bedeutung; Berechnung von Differenzen sinnvoll (lineare Ordnung), kein absoluter Nullpunkt, deshalb z.b. Aussage 20 C sind doppelt so warm wie 10 C unsinnig, Invarianz gegenüber positiven linearen Transformationen y = ax + b, a > 0 Bsp.: Geburtsjahr, Wasserpegel, Temperatur in Grad Celsius und Grad Fahrenheit; Umrechnung von Fahrenheit in Celsius: T F = 1, 8 T C

10 Verhältnisskala: wie Intervallskala, aber mit absolutem (natürlichen) Nullpunkt Invarianz gegenüber positiven (proportionalen) Transformationen y = ax, a > 0 Aussage Mustermann verdient doppelt so viel wie Musterfrau nicht unsinnig, Bsp.: Einkommen, Alter, Temperatur in Kelvin; Umrechnen von EUR in DM: G DM = 1, G EUR Bei einer Absolutskala handelt es sich um eine Intervallskala, bei der die Skaleneinheit nicht mehr frei gewählt werden kann (z.b. Wahrscheinlichkeiten, Häufigkeiten, Anzahlen). 10

11 Hierarchie der Skalenniveaus Absolutskala Verhältnisskala Intervallskala Ordinalskala Nominalskala 11

12 Die Überführung von einem Datenniveau in ein anderes ist abwärts (mit Informationsverlust) stets möglich. Die Wahl der geeigneten statistischen Verfahren zur Auswertung von Daten richtet sich nach der Art der Fragestellung, dem vorliegenden Datentyp und der Anzahl der eingehenden Variablen und ggf. ihrer Rolle (Einflussgrößen, abhängige Größen, sogen. asymmetrische Abhängigkeiten ). Bsp.: Analyse von Abhängigkeiten in gemischtskalierten, multivariaten Datensätzen oder Analyse (der Abhängigkeit) zweier intervallskalierter Merkmale 12

13 Die Festlegung des Datentyps hängt stets von der Art der Messung (Erfassung) der Daten ab, nicht nur von den tatsächlichen Eigenschaften der Daten. Wird z. B. das Alter von Personen nur in Klassen (0 25, 25 65, 65+) erfasst, liegt diese Variable nur als ordinale Variable vor (eigentlich Absolutskala). 13

14 Art der Erfassung Skala Daten Klassifikation Nominalskala kategorial in k Klassen (dichotom für k = 2) Ordnen Ordinalskala ordinal Messen ohne Intervallskala metrisch absoluten Nullpunkt Messen mit Verhältnisskala metrisch absoluten Nullpunkt 14

15 Darstellung von Daten (Rohdaten) Stichprobe vom Umfang n (untersuchte Objekte, befragte Personen), p gemessene, festgestellte oder erfragte Merkmale; Datenmatrix X: x ij X = (x ij ) i=1,...,n j=1,...,p = x 11 x x 1p x 21 x x 2p.. x n1 x n2... x np... Merkmalsausprägung des Merkmalsträgers i bezüglich des Merkmals j (vgl. Dateneditor von SPSS). 15

16 Zeilen: p Merkmalsausprägungen des entsprechenden Falles (Merkmalsträger, Proband, Objekt) Spalten: n Merkmalsausprägungen des entsprechenden Merkmals (der Variablen) Kodierung erfolgt vorzugsweise durch Zahlen Hinweis: Nicht alle Daten liegen in dieser Form bzw. als Rohdaten vor! Eine Hauptursache für Fehler bei statistischen Analysen ist das Rechnen mit Zahlen(-Kodes)ohne Berücksichtigung des nach der Kodierung für die Daten vorliegenden Skalenniveaus! 16

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Grundbegriffe. Bibliografie

Grundbegriffe. Bibliografie Grundbegriffe Merkmale und Merkmalsausprägungen Skalen und Skalentransformation Einführung und Grundbegriffe II 1 Bibliografie Bleymüller / Gehlert / Gülicher Verlag Vahlen Statistik für Wirtschaftswissenschaftler

Mehr

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein. 1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)?

Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)? 3 Beschreibende Statistik 3.1. Daten, Datentypen, Skalen Daten Datum, Daten (data) das Gegebene Fragen über Daten Datenerhebung: Was wurde gemessen, erfragt? Warum? Wie wurden die Daten erhalten? Versuchsplanung:

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE. Empirische Methoden der Politikwissenschaft

JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE. Empirische Methoden der Politikwissenschaft JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE Empirische Methoden der Politikwissenschaft 1 Einleitung 13 2 Methoden im empirischen Forschungsprozess 17 2.1 Methoden und wissenschaftliche Theorie 17 2.2

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Einführung in die Statistik Einführung

Einführung in die Statistik Einführung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Einführung Professur E-Learning und Neue Medien www.tu-chemnitz.de/phil/imf/elearning

Mehr

Empirisches Relativ: Eine Menge von Objekten, über die eine Relation definiert wurde.

Empirisches Relativ: Eine Menge von Objekten, über die eine Relation definiert wurde. Das Messen Der Prozess der Datenerhebung kann auch als Messen bezeichnet werden, denn im Prozess der Datenerhebung messen wir Merkmalsausprägungen von Untersuchungseinheiten. Messen ist die Zuordnung von

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Kapitel 1: Gegenstand und Grundbegriffe der Statistik

Kapitel 1: Gegenstand und Grundbegriffe der Statistik Kapitel 1: Gegenstand und Grundbegriffe der Statistik 1. Gegenstand der Statistik... 1 2. Einheiten, Masse, Merkmal... 3 3. Messen, Skalen... 9 a) Messung... 9 b) Skalenarten... 11 1. Gegenstand der Statistik

Mehr

Vorlesung: Statistik für Kommunikationswissenschaftler

Vorlesung: Statistik für Kommunikationswissenschaftler Vorlesung: Statistik für Kommunikationswissenschaftler Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München WiSe 2009/2010 Übungen zur Veranstaltung Mittwoch: 14.15-15.45 HG DZ007 Cornelia Oberhauser

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind

Mehr

Messen und Statistik

Messen und Statistik Messen und Statistik Statistische Grundkonzepte: Reliabilität, Validität, Skalen Bachelor Seminar SoSe 2009 Institut für Statistik LMU Monika Brüderl 12.05.2009 Gliederung Philosophische Grundlagen - Einige

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Operationalisierung (nach Meyer 2007: 202f.)

Operationalisierung (nach Meyer 2007: 202f.) Operationalisierung (nach Meyer 2007: 202f.) Begriff: Operationalisierung logische Verknüpfung zwischen dem nichtmessbaren Tatbestand und dem zu messenden Indikator mittels einer Korrespondenzregel, die

Mehr

Fortgeschrittene Statistik SPSS Einführung

Fortgeschrittene Statistik SPSS Einführung Fortgeschrittene Statistik SPSS Einführung Q U A N T I T A T I V E M E R K M A L E, Q U A L I T A T I V E M E R K M A L E, A U S P R Ä G U N G E N, C O D I E R U N G E N, S K A L E N N I V E A U, D A T

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne

Mehr

Klausuraufgaben für Probeklausur. 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen.

Klausuraufgaben für Probeklausur. 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen. A. Geschlossene Fragen Klausuraufgaben für Probeklausur 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen. 2.Das Informationszentrum Sozialwissenschaften liefert die Rohdaten

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Campbell (1920): "... die Zuweisung von Zahlen, um Eigenschaften darzustellen."

Campbell (1920): ... die Zuweisung von Zahlen, um Eigenschaften darzustellen. 3. Grundlagen der Messung 1 3. Grundlagen der Messung 1 3.1. Definitionen der Messung... 1 3.2. Problembereiche des Messens... 4 3.2.1 Wechselwirkung beim Messvorgang... 4 3.2.2 Repräsentationsproblem...

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

5. MESSUNG & DATENERHEBUNG IN DEN SOWI

5. MESSUNG & DATENERHEBUNG IN DEN SOWI 5. MESSUNG & DATENERHEBUNG IN DEN SOWI Ziel: kontrollierte Gewinnung empirischer Informationen Bei den Entscheidungen über geeignete Erhebungsinstrumente, Messen, Auswahlverfahren und dem anzustrebenden

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

Messung. Mariem Ben Rehouma 14.04.2009

Messung. Mariem Ben Rehouma 14.04.2009 Messung Mariem Ben Rehouma Gliederung Motivation Definition von Messung Metriken Klassifikation von Metriken Beispiele Objektorientierte Metriken Charakteristiken von Messungen Skala-Arten Messungsarten

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik I Deskriptive und Explorative Datenanalyse 2010 Übungsaufgaben und Lösungen Erkenntn nisgewinnung und Datenerhebung in der Psychologie [Übungsaufgaben

Mehr

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II)

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II) Prinzipien der Fragebogenkonstruktion Seminar: Patricia Lugert, Marcel Götze 17.04.2012 Medien-Bildung-Räume Inhalt Fragebogenerstellung Grundlagen Arten von Fragen Grundlegende Begriffe: Merkmal, Variable,

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment

Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment Einführung In vielen Gebieten des öffentlichen Lebens, in der Wirtschaft, der Verwaltung, der Industrie, der Forschung, in der Medizin etc. werden Entscheidungen auf der Grundlage von bestimmten Daten

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Müssen Texte statistisch anders ausgewertet werden als Menschen?

Müssen Texte statistisch anders ausgewertet werden als Menschen? CROCO LINGUISTIC PROPERTIES OF TRANSLATIONS A CORPUS-BASED INVESTIGATION FOR THE LANGUAGE PAIR ENGLISH-GERMAN Müssen Texte statistisch anders ausgewertet werden als Menschen? Stella Neumann Grundüberlegung

Mehr

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 30. Juni 2007 Nachname: Vorname: Matrikelnummer: Studienkennzahl: Beispiel 1: (6 Punkte) Kreuze die richtige Antwort an: Das Verdoppeln der Merkmalswerte impliziert

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Die Statistik besitzt drei Grundaufgaben im Rahmen der Datenanalyse. Jeder entspricht ein Teilgebiet.

Die Statistik besitzt drei Grundaufgaben im Rahmen der Datenanalyse. Jeder entspricht ein Teilgebiet. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 1 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 1 Die Statistik besitzt drei Grundaufgaben im Rahmen der

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Constantin von Craushaar FH-Management & IT Statistik Angewandte Statistik (Übungen) Folie 1

Constantin von Craushaar FH-Management & IT Statistik Angewandte Statistik (Übungen) Folie 1 FHManagement & IT Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen Mehrfachantworten

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2014 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Karin Waldherr & Pantelis Christodoulides 4. November 2009 Karin Waldherr & Pantelis Christodoulides Psychologische Methodenlehre und Statistik I 1/56 Informationen,

Mehr

Der Forschungsprozess in der Quantitativen Sozialforschung. Crash-Kurs

Der Forschungsprozess in der Quantitativen Sozialforschung. Crash-Kurs Der Forschungsprozess in der Quantitativen Sozialforschung Eine jede empirische Studie ist ein PROZESS. Definition: Unter PROZESS ist der Ablauf von Strukturen zu verstehen. Definition: Unter STRUKTUR

Mehr

Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH

Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH Biostatistische Studienplanung Dr. Matthias Kohl SIRS-Lab GmbH Ausgangspunkt Fragestellung(en)/Hypothese(n): Hauptfragestellung: Grund für Durchführung der Studie Nebenfragestellung(en): Welche Fragestellungen

Mehr

Übung Statistik I Statistik mit Stata SS Zusammenhangsanalyse I

Übung Statistik I Statistik mit Stata SS Zusammenhangsanalyse I Übung Statistik I Statistik mit Stata SS07 18.06.2007 9. Zusammenhangsanalyse I Andrea Kummerer (M.A.) Oec R. I-53 Sprechstunde: n.v. Andrea.Kummerer@sowi.uni-goettingen.de Statistik mit Stata - 1 - Überblick

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

Phasen des Forschungsprozesses (hypothesenprüfende Studie)

Phasen des Forschungsprozesses (hypothesenprüfende Studie) Phasen des Forschungsprozesses (hypothesenprüfende Studie) Konzeptspezifikation/ Operationalisierung/Messung rot: Planungsphase Auswahl des Forschungsproblems Theoriebildung Auswahl der Untersuchungseinheiten

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Erhebungsinstrument Lehrveranstaltung an der Fachhochschule für Sozialarbeit und Sozialpädagogik "Alice Salomon" Hochschule für Soziale Arbeit, Gesundheit, Erziehung

Mehr

TEIL 4: FORSCHUNGSDESIGNS UND UNTERSUCHUNGSFORMEN

TEIL 4: FORSCHUNGSDESIGNS UND UNTERSUCHUNGSFORMEN TEIL 4: FORSCHUNGSDESIGNS UND UNTERSUCHUNGSFORMEN GLIEDERUNG Forschungsdesign Charakterisierung Grundbegriffe Verfahrensmöglichkeit Störfaktoren Graphische Darstellung Arten von Störfaktoren Techniken

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion

Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion 4. Messtheorie Messen in den Sozialwissenschaften, Operationalisierung und Indikatoren, Messniveaus,

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Datenanalyse. Dietmar Maringer WWZ, Universität Basel, HS 2010

Datenanalyse. Dietmar Maringer WWZ, Universität Basel, HS 2010 Kontingenzanalyse Datenanalyse Dietmar Maringer WWZ, Universität Basel, HS 2010 Grundlagen Zutaten kategoriale Merkmale Häufigkeiten für jede Kategorie typische Frage: hängen Merkmale zusammen oder sind

Mehr

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung Übung Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung BACHELOR FT 2013 (HSU) Übung Emp. WiFo FT 2013 1 / 1 Maßzahlen für den Zusammenhang zwischen Merkmalen Kontingenztabelle:

Mehr

Antwortkategorien und Skalen. Jasmin Hügi Herbstschule 2012

Antwortkategorien und Skalen. Jasmin Hügi Herbstschule 2012 Antwortkategorien und Skalen Jasmin Hügi Herbstschule 2012 Übersicht Zeit 09h00 09h10 09h10 09h40 09h40 10h30 10h30 11h00 11h00 11h20 11h20 12h15 12h15 13h30 13h30 14h00 14h00 15h00 15h00 15h30 15h30 15h50

Mehr

Deskriptive Statistik

Deskriptive Statistik Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,

Mehr

Kai Schaal. Universität zu Köln

Kai Schaal. Universität zu Köln Deskriptive Statistik und Wirtschaftsstatistik Tutorium zur Anwendung von Statistik 1 in Excel Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Empirische Wirtschaftsforschung und Ökonometrie III

Empirische Wirtschaftsforschung und Ökonometrie III Empirische Wirtschaftsforschung und Ökonometrie III Prof. Dr. Robert Jung Lehrstuhl für Ökonometrie Staatswissenschaftliche Fakultät Universität Erfurt http://www.uni-erfurt.de/oekonometrie SS 2009 BA

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Gängige Definition des Gegenstandes der Psychologie: Menschliches Erleben und Verhalten (Handeln)

Gängige Definition des Gegenstandes der Psychologie: Menschliches Erleben und Verhalten (Handeln) Zum Gegenstand der Psychologie Psychologie ist die Wissenschaft von den Inhalten und den Vorgängen des geistigen Lebens, oder, wie man auch sagt, die Wissenschaft von den Bewußtseinszuständen und Bewußtheitsvorgängen.

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen

Mehr