STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

Größe: px
Ab Seite anzeigen:

Download "STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)"

Transkript

1 WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von Fragebögen (Befragung) oder Codebögen (Inhaltsanalyse) werden zunächst alle Antworten in Zahlen übersetzt. Diese Zahlen liegen auf einer Skala. Die Skala gibt alle möglichen Merkmalsausprägungen vor. Bsp.: Wie groß ist jemand? Das messe ich mit einem Maßband (=Skala). Auf dem Maßband sind bereits alle möglichen Antworten enthalten. d.h. Die Skala entsteht schon bei der Konstruktion der Erhebungsinstrumente, nicht erst bei der Auswertung der Daten. Eintragen der Zahlen in eine Tabelle ergibt die Datenmatrix. Habe ich das Messinstrument falsch konstruiert (Bsp.: Fragen unklar formuliert oder manche Antwortmöglichkeiten nicht beachtet) kommt es bei der Auswertung zu missing values. (Im Statistikprogramm SPSS werden missing values mit 999 codiert) nächster Schritt: Datenbereinigung. Aus meiner Bruttostichprobe wird eine Nettostichprobe. Ungenügend ausgefüllte Fragebögen oder Merkmale, für die ich blöder Weise keine Entsprechung auf der Skala eingeplant hatte, müssen eliminiert werden. Was bleibt von meiner Stichprobe über? Die gültigen Fälle! Wenn ich das Ergebnis meiner Untersuchung darstelle muss ich immer beides angeben: a) Stichprobengröße b) gültige Fälle (wurden in den Fragebogen Filterfragen eingebaut, so muss auch das beim Ergebnis angegeben werden) Man unterscheidet drei Arten von Statistik: 1. Deskription: Beschreibung einer Stichprobe / einer Gruppe / einer Grundgesamtheit mit einfachen Zahlen 2. Hypothesenprüfen / Inferenzstatistik: Zusammenhang (Korrelation) und Signifikanz wird überprüft 3. Multivariante Verfahren: Gibt es Variablen, die immer wieder gemeinsam auftreten? Wie verhält sich eine Vielzahl von Variablen? Je nachdem, welche Daten ich erhebe, arbeite ich mit unterschiedlichen Skalenniveaus. Je nach Skalenniveau sind verschiedene Rechenoperationen erlaubt. Qualitative Daten können nominal oder ordinal skaliert sein. Quantitative / metrische Daten können diskret oder stetig sein.

2 WS 07/08-2 Nominalskala: Jeder Antwort auf dem Fragebogen (=also jeder Merkmalsausprägung) wird eine Zahl zugeordnet. Prinzipiell ist es wurscht, welche Zahl. Die Reihenfolge spielt keine Rolle. Man kann also die Zahlen willkürlich zuordnen (aber empfohlen wird: die Zahlen in der Reihenfolge zuzuordnen, die den Antworten auf dem Fragebogen entspricht, sonst entsteht ein Gewurschtel beim Eingeben ins SPSS) Ein nominal skaliertes Merkmal kann dichotom sein (=es hat zwei Ausprägungen) oder polytom (=mehrere Ausprägungen)! dichotom = z.b. ja / nein polytom = z.b. ledig / verheiratet / geschieden / verwitwet Erlaubte Rechenoperationen der Nominalskala: Häufigkeiten in absoluten Zahlen Häufigkeiten in Prozenten (Achtung! Immer die Stichprobengröße und die gültigen Fälle beim Ergebnis angeben, sonst kann man sich unter den Prozentangaben nichts vorstellen. Außerdem sonst sehr unwissenschaftlich geschummelt.) Modus (wird auch Modalwert genannt) = Mo Was zum Kuckuck ist der Modus? Modus = der Wert der am häufigsten vorkommt. also: Frage: sind sie ledig (=1), verheiratet (=2), geschieden (=3)? Wenn die meisten angeben, dass sie ledig sind, dann: Modus = 1 Die Daten können in beliebiger Reihenfolge sortiert werden (z.b. nach Häufigkeit, damit man auf einen Blick gleich sieht, um was es geht) Histogramm oder Tortendiagramm (Tortendiagramm ist NUR bei nominalskalierten Daten möglich, weil die Reihenfolge da ja keine Rolle spielt) Ordinalskala: Den Merkmalen werden wieder Zahlen zugeordnet, aber die Reihenfolge spielt sehr wohl eine Rolle! (Eselsbrücke: Ordinal klingt wie geordnet ) Die Ordinalskala impliziert eine Größer-Kleiner-Reihenfolge der Merkmalsausprägungen. Die Position hat eine Aussage. (aber über die Intervalle zwischen den Positionen kann nichts ausgesagt werden, das kommt erst beim nächsten Skalenniveau!) typisches Beispiel: Höchste abgeschlossene Schulbildung 1. Volksschule / Pflichtschule 2. Lehrabschluss 3. Matura 4. Fachhochschule 5. Universitätsabschluss

3 WS 07/08-3 Erlaubte Rechenoperationen: alle, die s bei der Nominalskala gibt. und dazu noch: kumulierte Prozent (= aufgerechnete, zusammengezählte Prozent) Median Was ist der Median? Median = Wert, der die Verteilung in 50% über ihm und 50% unter ihm teilt Daten dürfen nicht sortiert werden, da ihre Position in der Reihenfolge eine Information beinhaltet Histogramm Kumulierte Prozent und Median können dargestellt werden Intervallskala = wichtigste Skala in den Sozialwissenschaften Hier haben die Zahlen selber bereits eine Aussagekraft und können interpretiert werden. Die Reihenfolge ist fix (wie bei Ordinalskala) Die Intervalle (Abstände) zwischen den Merkmalsausprägungen sind GLEICH GROSS. Bsp.: Ich kann nicht sagen: Von der Volksschule zum Lehrabschluss ist es genauso schwierig wie von der Matura zum Fachhochschulabschluss. Da lassen sich keine gleichen Intervalle finden. daher nur ordinalskaliert Aber: Ich kann sagen: zwei Stunden Fernsehen pro Tag ist doppelt so lange wie eine Stunde (bzw. vier Stunden doppelt so lange wie zwei Stunden). Die Intervalle zwischen den Merkmalsausprägungen sind gleich groß (nämlich immer eine Stunde) Erlaubte Rechenoperationen bei Intervallskalen: die selben wie bisher und zusätzlich: arithmetisches Mittel (=Mittelwert) Quatritt- und Perzentillabstände (wurde in der VO nicht erklärt) Range (Variationsbreite) Varianz Standardabweichung Was ist das alles? Mittelwert = Durchschnittswert aus der Stichprobe. Alle Ergebnisse werden addiert und durch die Stichprobengröße (n) dividiert. Range = Gültigkeitsbereich. Wenn eine Skala nach unten und oben offen ist, zeigt uns die Range, in welchem Rahmen wir uns bewegen, sprich: auf welchen Bereich sich die Ergebnisse beziehen. Bsp.: Skala zeigt die Geschichte der Menschheit, aber ich treffe nur Aussagen über 900 Jahre. Dann ist das meine Range oder Variationsbreite. Wie wird die Range berechnet? anhand ihrer Eckpunkte auf der Skala: größter Wert minus kleinster Wert.

4 WS 07/08-4 Varianz = zeigt mir an, ob der Mittelwert das Ergebnis gut repräsentiert oder nicht. Eine kleine Varianz bedeutet, dass der Mittelwert die Verteilung gut repräsentiert. Eine große Varianz bedeutet. dass der Mittelwert wenig aussagekräftig ist. Wie wird die Varianz (s 2 )berechnet? Zuerst nimmt man einen Wert der Verteilung, der vom Mittelwert abweicht. Den subtrahiert man vom Mittelwert. Das Ergebnis wird quadriert. Was passiert dadurch? Werte, die weit vom Mittelwert entfernt sind, werden durch das Quadrieren überrepräsentiert. Genau das will man erreichen, denn das sagt ja was darüber aus, ob der Mittelwert die Verteilung gut repräsentiert oder nicht. Die Rechnung geht aber noch weiter: Man macht das mit jedem einzelnen Wert, der vom Mittelwert abweicht. Die Ergebnisse werden alle addiert. Und dann dividiert man sie durch die Anzahl aller Messwerte. Das Ergebnis ist die Varianz (=V). Standardabweichung = erhält man, wenn man die Wurzel aus der Varianz zieht. Also: V = s 2 Histogramm und Liniendiagramm möglich (Mittelwert gut darstellbar) Relations - bzw. Rationalskala (Verhältnisskala) Die Rationalskala ist die aussagekräftigste Skalenform, aber in der PuKW eher selten. Besonderheit: Die Skala hat einen absoluten Nullpunkt. Bsp: Gewicht, Längenmaß, Anzahl der Fernsehgeräte in einem Haushalt etc. Merkmale einer Rationalskala können diskret oder stetig (=kontinuierlich) sein. diskret bedeutet: nur ganze Zahlen, fixe Ausprägungen (wie auf einem Maßband), es kann diskrete Merkmale entweder mit endlich vielen oder mit unendlichen Ausprägungen geben. stetig bedeutet: jeder Wert ist denkbar, nicht nur ganze Zahlen, die Intervalle können in unendlich viele Kommastellen unterteilt werden. Das ist aber nicht sehr praktisch: Maßeinheiten beruhen auf Vereinfachungen der Berechnung, man gibt sich mit dieser Messungenauigkeit zufrieden (z.b. beim Abfahrtslauf mit 100stel Sekunden obwohl man natürlich noch auf Millionstel-Sekunden messen könnte...) In den Sozialwissenschaften gibt es eine Abmachung (Achtung! gilt nicht für Naturwissenschaften!) Obwohl Fragen nach der Einstellung ordinalskaliert sind, ist es in den SoWis möglich, sie als Intervallskala darzustellen. Bedingungen dafür: Nur der erste und der letzte Wert dürfen begrifflich belegt sein Skala muss bipolar sein (=erster und letzter Wert sind sprachliche Gegensätze)

5 WS 07/08-5 Beispiel: So geht das nicht: Frage: Wie gefällt ihnen diese Sendung? Antwortmöglichkeiten: gefällt mir sehr gut, gefällt mir mittel, gefällt mir eher nicht, gefällt mir gar nicht dann kann ich keine Intervallskala daraus machen. Aber so geht das: Frage: Wie gefällt ihnen diese Sendung? Antwortmöglichkeiten: bitte Antworten Sie auf einer Skala von 1 bis 4, wobei 1 bedeutet gefällt mir sehr gut und 4 bedeutet gefällt mir gar nicht dann darf ich eine Intervallskala daraus machen Was sonst noch besprochen wurde: Beim grafischen Darstellen der Daten darf man nicht schummeln (Grafiken dürfen nicht verzerrt werden) Statistische Maßzahlen (Kennzahlen) nennt man Zahlen, mit denen man die Verteilung repräsentiert. Man unterscheidet zwischen Lagemaßen und Streuungsmaßen. Lagemaße sind Maße der zentralen Tendenz. Dazu zählen: Modus (Mo), Median (Md) und Arithmetisches Mittel. Streuungsmaße (Dispersionsmaße) geben darüber Auskunft, wie gut oder schlecht eine Verteilung durch ein Lagemaß (zentrales Tendenzmaß) repräsentiert werden kann. Dazu zählen: Range (Variationsbreite), Varianz (V bzw. s 2 ), Standardabweichung (s) Lagemaße müssen immer unter der Berücksichtigung von Streuungsmaßen interpretiert werden! Ein weiteres Streuungsmaß ist die sogenannte AD-Streuung (=Average Deviation). Die berücksichtigt aber Fälle, die weit weg vom Mittelwert liegen nicht. Deshalb lieber immer Standardabweichung und Varianz verwenden.

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Maße der zentralen Tendenz

Maße der zentralen Tendenz UStatistische Kennwerte Sagen uns tabellarische und graphische Darstellungen etwas über die Verteilung der einzelnen Werte einer Stichprobe, so handelt es sich bei statistischen Kennwerten um eine Kennzahl,

Mehr

Datenerhebung, Skalenniveaus und Systemdatei

Datenerhebung, Skalenniveaus und Systemdatei Datenerhebung, Skalenniveaus und Systemdatei Institut für Geographie 1 Beispiele für verschiedene Typen von Fragen in einer standardisierten Befragung (3 Grundtypen) Geschlossene Fragen Glauben Sie, dass

Mehr

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung 20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Univ.-Prof. Dr. Georg Wydra

Univ.-Prof. Dr. Georg Wydra Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4

Mehr

Deskriptive Statistik

Deskriptive Statistik Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,

Mehr

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Gundlagen empirischer Forschung & deskriptive Statistik Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Grundlagen Vorbereitung einer empirischen Studie Allgemeine Beschreibung

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (2)

Auswertung und Darstellung wissenschaftlicher Daten (2) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber SPSS-Andrea Payrhuber Ergebnisse dem Skalenniveau der einzelnen Daten entsprechend darstellen. nominalskalierte Daten. ordinalskalierte

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik Modul 04: Messbarkeit von Merkmalen, Skalen und 1 Modul 04: Informationsbedarf empirische (statistische) Untersuchung Bei einer empirischen Untersuchung messen wir Merkmale bei ausgewählten Untersuchungseinheiten

Mehr

Einführung in die Statistik mit R

Einführung in die Statistik mit R Einführung in die Statistik mit R Bernd Weiler syntegris information solutions GmbH Neu Isenburg Schlüsselworte Statistik, R Einleitung Es ist seit längerer Zeit möglich statistische Berechnungen mit der

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Deskriptive Statistik & grafische Darstellung

Deskriptive Statistik & grafische Darstellung Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen.

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen. Department of Sport Science and Kinesiology Block 1 Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Gerda Strutzenberger Block I Mittwoch 15.2.2012 13:00 bis 14:50 Grundlagen, Skalenniveau

Mehr

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein. 1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau

Mehr

Statistik I (17) 79. Untersuchen Sie die Daten aus Tabelle 1.

Statistik I (17) 79. Untersuchen Sie die Daten aus Tabelle 1. Schüler Nr. Statistik I (7) Schuljahr /7 Mathematik FOS (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben, wenden Sie sich bitte an die betreuenden Lehrkräfte!) Tabelle : Die Tabelle wurde im Rahmen

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Univariate Kennwerte mit SPSS

Univariate Kennwerte mit SPSS Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Statistik Grundbegriffe

Statistik Grundbegriffe Kapitel 2 Statistik Grundbegriffe 2.1 Überblick Im Abschnitt Statistik Grundbegriffe werden Sie die Bedeutung von statistischen Grundbegriffen wie Stichprobe oder Merkmal kennenlernen und verschiedene

Mehr

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Ziel: Charakterisierung der Verteilung einer Variablen. Je nach Variablentyp geschieht dies durch Häufigkeitsauszählung und Modus (Nominale

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1

Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1 Dr. Barbara Lindemann Fragebogen Kolloquium zur Externen Praxisphase Dr. Barbara Lindemann 1 Überblick 1. Gütekriterien quantitativer Forschungen 2. Fragebogenkonstruktion 3. Statistische Datenanalyse

Mehr

Deskriptive Statistik

Deskriptive Statistik Markus Wirtz, Christof Nachtigall Deskriptive Statistik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Statistische

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

Übung 1 im Fach "Biometrie / Q1"

Übung 1 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Grundbegriffe. Bibliografie

Grundbegriffe. Bibliografie Grundbegriffe Merkmale und Merkmalsausprägungen Skalen und Skalentransformation Einführung und Grundbegriffe II 1 Bibliografie Bleymüller / Gehlert / Gülicher Verlag Vahlen Statistik für Wirtschaftswissenschaftler

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 1 Übung Lösungsvorschlag Gruppenübung G 1 Auf einer Touristeninsel in der Karibik wurden in den letzten beiden Juliwochen morgens zur gleichen Zeit die folgenden

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 2. Beschreibende Statistik (descriptive Statistics) Literatur Kapitel 2 * Storrer: Kapitel 29-31 * Stahel: Kapitel 1-3 * Statistik in Cartoons:

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind

Mehr

Deskriptive Statistik Auswertung durch Informationsreduktion

Deskriptive Statistik Auswertung durch Informationsreduktion Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,

Mehr

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE 1.1 Füllen Sie bitte folgenden Lückentext aus. Daten, die in Untersuchungen erhoben werden, muss man grundsätzlich nach ihrem unterscheiden.

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Beschreibung univariater Verteilungen

Beschreibung univariater Verteilungen Inhaltsverzeichnis Beschreibung univariater Verteilungen... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-4)... 4 1. Verteilungsformen... 4 2. Masse der zentralen Tendenz (Mittelwerte)... 5 Einleitung...

Mehr

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Messtheoretische Vorüberlegungen

Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I. Messtheoretische Vorüberlegungen Leidlmair / Planung und statistische Auswertung psychologischer Untersuchungen I Messtheoretische Vorüberlegungen Am Anfang jeder statistischen Auswertung steht das 'Messen' bestimmter Phänomene bzw. Merkmale.

Mehr

Forschungsmethoden in der Sozialen Arbeit (XI)

Forschungsmethoden in der Sozialen Arbeit (XI) Forschungsmethoden in der Sozialen Arbeit (XI) Fachhochschule für Sozialarbeit und Sozialpädagogik Alice-Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Erhebungsinstrument Lehrveranstaltung an der Fachhochschule für Sozialarbeit und Sozialpädagogik "Alice Salomon" Hochschule für Soziale Arbeit, Gesundheit, Erziehung

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

2 Statistische Maßzahlen

2 Statistische Maßzahlen 2 Statistische Maßzahlen Übersicht 2.1 Quantile, speziellmedian, QuartileundPerzentile... 25 2.2 Modus, Median, arithmetischesmittel... 28 2.3 Arithmetisches,geometrisches,harmonischesMittel... 31 2.4

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Allgemeine Grundlagen Seite Termin: Eindimensionale Häufigkeitsverteilung

Allgemeine Grundlagen Seite Termin: Eindimensionale Häufigkeitsverteilung Statistik für alle Gliederung insgesamt Allgemeine Grundlagen Seite 1 1. Termin: Allgemeine Grundlagen 2. Termin: Eindimensionale Häufigkeitsverteilung 3. Termin: Lageparameter 4. Termin: Streuungsparameter

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung:

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: k ( np) np B( n, p; k) Poi( np, k) e k! falls gilt: p

Mehr

JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE. Empirische Methoden der Politikwissenschaft

JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE. Empirische Methoden der Politikwissenschaft JOACHIM BEHNKE / NINA BAUR / NATHALIE BEHNKE Empirische Methoden der Politikwissenschaft 1 Einleitung 13 2 Methoden im empirischen Forschungsprozess 17 2.1 Methoden und wissenschaftliche Theorie 17 2.2

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Kapitel III - Merkmalsarten

Kapitel III - Merkmalsarten Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Statistik 1 - Deskriptive Statistik Kapitel III - Merkmalsarten Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr