Deskriptive Statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Deskriptive Statistik"

Transkript

1 Modul G.1 WS 07/08: Statistik Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken, Diagramme und/oder Tabellen. Ziel Die deskriptive Statistik beschreibt und analysiert Merkmalseigenschaften in einer bestimmten Stichprobe zum Erhebungszeitpunkt der Daten, so dass Aussagen über genau jene Objekte gemacht werden, welche tatsächlich untersucht wurden. Beispiel Wenn an einem Tag das Alter aller Patienten in einem Krankenhaus erhoben wurde, können mit Hilfe einer deskriptiven Statistik Aussagen über das Alter der Patienten an genau diesem Tag in genau diesem Krankenhaus gemacht werden. Klingt trivial wir alle haben uns an diese Art der Beschreibung der messbaren Wirklichkeit gewöhnt. (Arbeitslosenzahlen, Verkehrstote etc.) Schließende Statistik (Inferenzstatistik) schließt aus den Daten einer Stichprobe auf Werte in der Population. Z.B. Einschätzung der Altersstruktur in anderen Krankenhäusern. So eine Schätzung ist immer nur mit einer gewissen Fehlerwahrscheinlichkeit möglich. Wie kommen wir zu unseren Daten? Wir messen. Danach können wir analysieren und interpretieren, d.h. Schlüsse über die reale Welt ziehen. Um mit Hilfe von statistischen Methoden analysieren und interpretieren zu können müssen wir unsere Messungen in Merkmalsausprägungen und Variablen umwandeln. z.b. männlich = 1 und weiblich =0. Was sind Merkmale und Variablen? Ein Merkmal ist eine Eigenschaft, die zu einem Objekt oder einer Person gehört und eine bestimmte Anzahl von Merkmalsausprägungen hat. Es wird versucht diese Merkmale durch Messungen in Zahlen zu überführen. Merkmale, die in Zahlen überführt wurden, werden als Variablen bezeichnet. Es wird zwischen qualitativen und quantitativen Merkmalen unterschieden: Qualitative Merkmale Mit qualitativen Merkmalen wird die Zugehörigkeit zu einer Kategorie beschrieben. z.b. Geschlecht entweder/oder Quantitative Merkmale: Quantitative Merkmale beschreiben die Ausprägung eines Objekts oder einer Person in diesem Merkmal. Dies geschieht auf einem Kontinuum von Werten. Z.B. Körpergröße. Jede Person hat zum Messzeitpunkt einen bestimmten Wert. Hinweis: Skalen. Qualitative Merkmale > Nominalskala. Quantitative Merkmale: höhere Skalen. (Ordinal, Intervall und Verhältnis) Eine Variable ist ein in Zahlen überführtes Merkmal. Diese Überführung wird auch Operationalisierung genannt.

2 Modul G.1 WS 07/08: Statistik Es gibt zwei Arten von Variablen, die sich parallel zu qualitativen und quantitativen Merkmalen verhalten: Diskrete Variablen Merkmale bei denen nur endlich viele, bzw. abzählbar unendlich viele Ausprägungen möglich sind werden in diskrete Variablen überführt. Es gibt keine Zwischenstufen zwischen zwei Kategorien. Beispiele: Parteizugehörigkeit, Berufe, Pflanzenarten Kontinuierliche Variablen Kontinuierliche Variablen können (zumindest) theoretisch auf einem beliebig genauen Kontinuum beschrieben werden. Beispiel: Körpergröße, Reaktionszeiten, Lautdauern Wie kommen wir zu unseren Variablen? Durch Messen. Messen ist also eine Zuordnung von Objekten zu Zahlen. Die Relationen zwischen den gemessenen Zahlen reflektieren dann die analogen Relationen zwischen den Objekten. Maße der zentralen Tendenz und der Dispersion Maße der zentralen Tendenz und der Dispersion stellen Beschreibungen der Verteilung der Messwerte einer Variablen dar. Z.B die Mitte einer Menge von Werten oder die Streuung von Werten. D.h. letzlich wird die Verteilungsform dargestellt. Maße der zentralen Tendenz Modalwert oder Modus (engl. mode) Der Modalwert ist derjenige Wert einer Verteilung, welcher am häufigsten besetzt ist. Eigenschaften stabil gegenüber Extremwerten (erklären > Ausreißer) kann für alle Skalenniveaus verwendet werden Maximum einer Verteilung unimodale vs. bimodale vs. multimodale Verteilungen wird oft bei nominalskalierten Daten und bei Daten mit asymmetrischer Verteilung verwendet Bsp. gehörte Kategorie

3 Modul G.1 WS 07/08: Statistik Median Der Median ist derjenige Wert, der die geordnete Reihe der Messwerte in die oberen und unteren 50 Prozent aufteilt. Somit ist die Anzahl der Messwerte über und unter dem Median gleich. Beispiel Bei 17 Personen belegt die neunte (17+1/2) den Median. Bei 16 Personen wird der Median über den Mittelwert zwischen der achten und der neunten Person der Rangreihe berechnet. Eigenschaften Anzahl der Messwerte über und unter dem Median ist gleich (entspricht einem Prozentrang von 50) mindestens Ordinalskalenniveau stabil gegenüber Extremwerten Arithmetisches Mittel (mean, arithmetic average) Das arithmetische Mittel ist die Summe aller Messwerte, geteilt durch deren Anzahl N. Beim artihmetischen Mittel handelt es sich um den Durchschnitt aller Messwerte.

4 Modul G.1 WS 07/08: Statistik Das Rechnen mit dem Summenzeichen (Sigma). Das Summenzeichen ermöglicht eine kürzere Schreibweise für additive Verknüpfungen. Die sog. Zählervariable i gibt den Startwert einer Addition an, er ist hier 1. N ist die obere Grenze der Summe, sozusagen der Endwert. Hinter dem Summenzeichen wird der zu addierende Term angegeben. D.h. obige Formel würde in Langschreibweise folgendermaßen aussehen: x = x 1 + x 2 + x x n N Eigenschaften Summe der Zentralen Momente ergibt Null. Zentrales Moment= (xi x ) Formel: N i=1 xi x = 0 Bei kleinen Stichproben sehr abhängig von Extremwerten Die Daten müssen mindestens intervallskaliert sein. Gewichtete arithmetische Mittel Gewichtete artihmetische Mittel werden sinnvoll, wenn ein Gesamtmittelwert aus verschiedenen Stichproben unterschiedlicher Größe gebildet werden soll. : Beim Gewichteten arithmetischen Mittel (GAM) werden die einzelnen Gruppenmittelwerte an der jeweiligen Gruppengröße gewichtet. Vergleich Modus, Median und Mittelwert

5 Modul G.1 WS 07/08: Statistik Maße der Dispersion Mittelwerte sind Maße der Mitte von Verteilungen. Nun soll die Variabilität oder auch Streuung von Verteilungen definiert werden. Variationsbreite (range) Der Range, die Spannweite, beschreibt bei kontinuierlichen Daten Differenz zwischen Maximum und Minimum; bei nominalskalierten Daten die Anzahl der Kategorien Vorteile sehr einfach zu berechnen kann für alle Skalenniveaus verwendet werden Nachteile sehr abhängig von nur 2 Werten keine Aussage über die dazwischen liegenden Werte kann nicht für theoretische Verteilungen verwendet werden, da z.b. die Normalverteilung für einen Bereich von definiert ist. Quartile, Interquartilabstand (interquartile range) Als Quartile werden jene Punkte Q 1, Q 2 und Q 3 bezeichnet, welche eine Verteilung in vier gleich große Abschnitte aufteilen. Das mittlere Quartil Q 2 entspricht dem Median, das untere Quartil Q 1 einem Prozentrang von 25 und das obere Quartil Q 3 von 75. Die Differenz von Q 3 und Q 1 wird als Interquartilabstand (IQA) bezeichnet.

6 Frequency Modul G.1 WS 07/08: Statistik Vorteile Kann auch auf ordinalskalierte Daten angewendet werden. Der Interquartilabstand bezieht sich nur auf die mittleren 50 % der Daten, weshalb Ausreißer keine Rolle spielen. Nachteil Q1 Median Q3 Die Werte außerhalb 300 werden 350 nicht berücksichtigt Varianz (variance) formants$f1 Quadrieren, da einfache Summe null ergeben würde unterschiedliche Stichproben können verglichen werden Mittelwert aller Abweichungsquadrate Unterschied Population (griechische Buchstaben) und Stichprobe (lateinische Buchstaben) (Wir können oft nicht die gesamte Population untersuchen (z.b. alle Sprecher des Deutschen), so müssen wir von einer Stichprobe ausgehen und übertragen die Ergebnisse auf die Gesamtpopulation. > Wir machen Vorhersagen. Freiheitsgrade (degrees of freedom): beschreibt die Anzahl der frei wählbaren Werte. Durch die Berechnung eines Kennwerts aus N Messwerten wird ein Messwert unfrei. Beispiel Wenn vier Freunde um Geld gespielt haben: Der erste sagt er habe 20 Euro gewonnen, Der zweite sagt: 20 Euro verloren, der dritte: 10 Euro gewonnen, dann MUSS der vierte 10 Euro verloren haben. Der Messwert wird unfrei. Also: df=n-1 Im Prinzip führt das Rechnen mit N-1 zu einer größeren Varianz (vorsichtige oder auch konservative Schätzung). Die Varianz mit N-1 wird natürlich bei zunehmender Stichprobengröße N immer ähnlicher.

7 Modul G.1 WS 07/08: Statistik Standardabweichung(standard deviation) Durch das Quadrieren der Werte bei der Berechnung der Varianz ensteht ein schwierig zu interpretierender Kennwert. Deshalb wird die Wurzel aus der Varianz gezogen und so die Standardabweichung (Streuung des Mittelwerts) berechnet. Die Standardabweichnung hat so auch wieder die gleiche physikalische Einheit wie das arithmetische Mittel. Da die Abweichungen für die Varianz quadriert wurden, muss die Wurzel gezogen werden, um wieder die gleiche physikalische Einheit der Messwerte zu erhalten. Variabilitätskoeffizient Die Standardabweichung hängt von der Größe des Mittelswert ab, d.h. je größer der Mittelwert umso größer auch die Standardabweichung. Um feststellen zu können, ob zwei Stichproben mit sehr unterschiedlichen Mittelwerten unterschiedlich stark streuen, wird der Variabilitätskoeffizient berechnet. Der Variabilitätskoeffizient gibt an, wie viel Prozent des arithmetischen Mittels die Standardabweichung beträgt. sx 100 x Beispiel Zwei Psychologen testen soziale Kompetenz mit unterschiedlichen Fragebögen an der selben Gruppe. Beide Fragebögen ergeben einen verhältnisskalierten Messwert. Die Befragungen ergeben unterschiedliche Mittelwerte und Standardabweichungen. Der Variabilitätskoeffizient kann klären, welche Erhebung eine größere Streuung hat.

8 Modul G.1 WS 07/08: Statistik Ein Überblick zu den Maßen Die folgende Tabelle gibt einen Überblick zu den vorausgesetzten Skalenniveaus bei den verschiedenen Lage- und Streuungsmaßen Maß Nominal Ordinal Intervall Verhältnis Häufigkeit Modalwert Range Quartile Median Arithmetisches Mittel Varianz Standardabweichung Variabilitätskoeffizient

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Herzlich willkommen zum Thema SPSS

Herzlich willkommen zum Thema SPSS Herzlich willkommen zum Thema SPSS (SUPERIOR PERFORMING SOFTWARE SYSTEM) Qualitative und quantitative Forschungsmethoden Qualitative Methoden: Qualitative Verfahren werden oft benutzt, wenn der Forschungsgegenstand

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - -

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - - 2 Deskriptive Statistik 1 Kapitel 2: Deskriptive Statistik A: Beispiele Beispiel 1: Im Rahmen einer Totalerhebung der Familien eines Dorfes (N = 100) wurde u.a. das diskrete Merkmal Kinderanzahl (X) registriert.

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Deskriptive Statistik & grafische Darstellung

Deskriptive Statistik & grafische Darstellung Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Mittelwertvergleiche, Teil II: Varianzanalyse

Mittelwertvergleiche, Teil II: Varianzanalyse FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!)

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) - Arithmetisches Mittel o Das arithmetische Mittel (auch Durchschnitt) ist ein Mittelwert, der als Quotient

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Auswertung: Irina Zamfirescu Auftraggeber: Mag. Klaus Brehm Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Fragestellung: Wirkt sich

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind?

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind? Modul G 20.12.2007 Zur Hausaufgabe 3 Erkläre die folgenden Plots und Berechnungen zu Wahrscheinlichkeiten aus technischer und statistischer Sicht. a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen,

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN MODUL 7 PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK)

UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN MODUL 7 PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) GÜNTER HAIDER WS 1997/98 MODUL 7 UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 1 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den insendeaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Quantitative Methoden

Quantitative Methoden Quantitative Methoden Skalen der Messtheorie Deskriptive Statistik Andreas Opitz (Vertretung von Prof. Thomas Pechmann) Universität Leipzig Institut für Linguistik Ausfall der VL am 02. Juni 2015 (nächste

Mehr

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung)

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Epertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Im Folgenden wird mit Hilfe des Programms EXEL, Version 007, der Firma Microsoft gearbeitet. Die meisten

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

TEIL 13: DIE LINEARE REGRESSION

TEIL 13: DIE LINEARE REGRESSION TEIL 13: DIE LINEARE REGRESSION Dozent: Dawid Bekalarczyk GLIEDERUNG Dozent: Dawid Bekalarczyk Lineare Regression Grundlagen Prognosen / Schätzungen Verbindung zwischen Prognose und Zusammenhang zwischen

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2.

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2. Prototypische Schularbeit 2 Klasse 8 Autor: Mag. Paul Schranz Begleittext Die vorliegende Schularbeit behandelt größtenteils Grundkompetenzen der Inhaltsbereiche Analysis und Wahrscheinlichkeitsrechnung

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Validierung von Messmethoden. Validierung von Messmethoden

Validierung von Messmethoden. Validierung von Messmethoden Validierung von Messmethoden Was soll eine gute Messmethode erfüllen? 1. Richtigkeit (accucacy) 2. Genauigkeit (precision) PD Dr. Sven Reese, LMU München 1 Richtigkeit (accuracy) Gibt Auskunft darüber,

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Albert/Marx 04: Empirisches Arbeiten Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Kaum jemand führt heutzutage statistische Berechnungen noch von Hand durch, weil es sehr viele Computerprogramme

Mehr

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm Histogram / Histogramm / histogram Akademische Disziplin der Statistik/academic field of statistics/ la discipline statistique/estadística/disciplina academica della statistica deskriptive Statistik/descriptive

Mehr

Beschreibung univariater Verteilungen

Beschreibung univariater Verteilungen Inhaltsverzeichnis Beschreibung univariater Verteilungen... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-4)... 4 1. Verteilungsformen... 4 2. Masse der zentralen Tendenz (Mittelwerte)... 5 Einleitung...

Mehr

Die Standardabweichung

Die Standardabweichung Die Standardabweichung Ein anderes Maß, das wir im Zusammenhang mit den Messdaten und ihrem Durchschnittswert kennenlernen, ist die sogenannte Standardabweichung der Messdaten von ihrem arithmetischen

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs tatistik für Wirtschaftswissenschaften Lösungen UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Brückenkurs tatistik für Wirtschaftswissenschaften: Lösungen

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test In Kapitel 8.1 dient eine Klassenarbeit in einer Schule als Beispielanwendung für einen U-Test. Wir werden an dieser Stelle die Berechnung dieses

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

registrierte Fußballvereine Männer im besten Fußballalter (20 34 Jahre) Bruttoinlandsprodukt je Einwohner Farben der Nationalflagge

registrierte Fußballvereine Männer im besten Fußballalter (20 34 Jahre) Bruttoinlandsprodukt je Einwohner Farben der Nationalflagge Aufgabe 1: Anlässlich der Fußball-Europameisterschaft veröffentlichte das Statistische Bundesamt unter der Überschrift "EM 2012: Die Teilnehmer in Zahlen" statistische Merkmale der Teilnehmerstaaten. Die

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Bevölkerungs-Mittelwert 99 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Testklausur Finanzmathematik / Statistik

Testklausur Finanzmathematik / Statistik Testklausur Finanzmathematik / Statistik Aufgabe - Grundlagen 0 a) Nennen Sie die charakteristische Eigenschaft einer geometrischen Zahlenfolge. b) Für eine geometrische Zahlenfolge seien das Glied a 0

Mehr

Kai Schaal. Universität zu Köln

Kai Schaal. Universität zu Köln Deskriptive Statistik und Wirtschaftsstatistik Tutorium zur Anwendung von Statistik 1 in Excel Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen SPSSinteraktiv von Signifikanztests - 1 - Übersicht über verschiedene Signifikanztests und ihre Verfahren zur Überprüfung von Unterschieden in der zentralen Tendenz Unterschieden werden können Testsituationen

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Stetige Wahrscheinlichkeitsverteilung

Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Gaußsche Normalverteilung [7] S.77 [6] S.7 ORIGIN µ : Mittelwert σ : Streuung :, 9.. Zufallsvariable, Zufallsgröße oder stochastische

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen Augustin Kelava 22. Februar 2010 Inhaltsverzeichnis 1 Einleitung zum inhaltlichen Beispiel:

Mehr

DIAGRAMME. Kreisdiagramme. Wesentliche Diagrammformen sind:

DIAGRAMME. Kreisdiagramme. Wesentliche Diagrammformen sind: Wesentliche Diagrammformen sind: DIAGRAMME Balkendiagramme, inklusive gruppierten Diagrammen und Stapelbalkendiagrammen Liniendiagramme Flächendiagramme Kreisdiagramme Boxplots Streudiagramme Histogramme

Mehr

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 8. Mai 2009 8. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Hilfsbefehl und Datentransformationsbefehl (II) 1.a. execute 1.b. compute

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Im folgenden sollen Analyseverfahren dargestellt werden, die zwei oder mehr Gruppen hinsichtlich ihrer zentralen Tendenz in einer einzelnen Variablen

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr