Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit"

Transkript

1 TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative Merkmale (nominal und ordinal) Quantitative Merkmale (diskret und stetig) Stichprobe und Grundgesamtheit Häufigkeitsverteilung Häufigkeitsverteilungen und Statistische Maßzahlen Häufigkeitsfunktion und Histogramm Summenhäufigkeitsfunktion Zusammenhang zweier Merkmale Zweidimensionale Häufigkeitsverteilung Streudiagramm Statistische Maßzahlen Lageparameter arithmetischer Mittelwert, geometrischer Mittelwert, Median, gestutzter Mittelwert, Modus Streuungsmaße Spannweite, Varianz und Standardabweichung, Variationskoeffizient, Standardfehler Quartilen Fraktilen, Quantilen, Perzentilen

2 Variablentypen Diskrete Merkmale Einteilung von Merkmalen qualitativ quantitativ kategorial, artmäßig metrisch, zahlenmäßig nominal ordinal diskret stetig Ausprägung Rangfolge ganzzahlig beliebig Religion Qualität Kinder Gewicht Geschlecht Schadstufe Pflanzen Größe Pflanzenart Bonitierung Tiere Zeit Marke (Noten) Schlepper Stoffgehalt Merkmalstypen Typ Merkmal Wert qualitativ nominal Unkraut Kamille Vogelmiere Klettenlabkraut ordinal Schädigung ohne schwach mittel stark tot quantitativ diskret Ferkel/Sau! Körner/Ähre! 8 (Kernzerfall) 4 Bq stetig Bleigehalt! 1. ppm Dieselverbrauch 1.4 l/sh Ertrag 4 dt/ha Urliste einer Stichprobe vom Umfang n = 1 über die Anzahl von Ferkeln aus einer Grundgesamtheit (Population) von Muttersauen Kreuztabelle des diskreten Merkmals Ferkelzahl

3 Häufigkeitsfunktion und Summenhäufigkeitsfunktion Häufigkeitsverteilung der Ferkelzahlen Diskrete Merkmale absolute Häufigkeit relative Häufigkeit Häufigkeitsfunktion Summenhäufigkeitsfunktion Stetige Merkmale Klassenbildung n i h = h(x ) = n / n i i i f(x)' h i für x'x i sonst F(x)' j >#x f(>) Ferkel pro absolute relative Summen- Wurf Häufigkeit Häufigkeit häufigkeit Summe 1 1. absolute und relative Klassenhäufigkeit HäufigkeitsverteilungHistogramm Summenhäufigkeitsfunktion Ordinale Merkmale Balkendiagramm Summenhäufigkeitsdiagramm Nominale Merkmale Balkendiagramm f ~ Ferkel

4 ~ f..18 Häufigkeits- und Summenhäufigkeitsfunktion der Ferkelzahlen Ferkel Stetige Merkmale Urliste einer Stichprobe vom Umfang n = 1 über die Milchleistung aus einer Grundgesamtheit (Population) von Milchkühen [kg/a] Klassenhäufigkeitsverteilung F ~ Ferkel relative Klassen- relative Summen- Klassen häufigkeit häufigkeit

5 Histogramm f ~.3..1 Häufigkeits- und Summenhäufigkeitsfunktion der Milchleistung Ordinale Merkmale relative Summenohne Schadstufe Bäume Häufigkeit häufigkeit schwach mittel stark tot kg/a Summenhäufigkeitsfunktion Nominale Merkmale F ~ kg/a Unkraut Anzahl Anteil [%] Gänsefuß Vogelmiere Ehrenpreis Ackerstiefmütterchen 9 6. Franzosenkraut 1.4 Hirtentäschel 8.8 Klettenlabkraut Kamille Kornblume 4.9 Klatschmohn

6 ohne schwach mittel Schadstufe stark tot ohne schwach mittel Schadstufe stark tot relative Häufigkeit relative Häufigkeit Balken- und Summenhäufigkeitsdiagramm der Baumschadklassen Gänsefuß Vogelmiere Ehrenpreis Ackerstiefmütterchen Franzosenkraut Hirtentäschel Klettenlabkraut Kamille Kornblume Klatschmohn Kamille Vogelmiere Ehrenpreis Klettenlabkraut Gänsefuß Ackerstiefmütterchen Hirtentäschel Kornblume Klatschmohn Franzosenkraut absolute Häufigkeit absolute Häufigkeit Balkendiagramm der Unkrautverteilung

7 Zusammenhang zweier Merkmale Zweidimensionale Häufigkeitsverteilung von Betriebsgröße und Schlepperleistung Schlepperleistung [kw] Größe [ha] < > 9 R.H. < > 7 7 R.H absolute Häufigkeit <3 kw 3- kw -7 kw 7-9 kw >9 kw 8 <3 ha ha 9-7 ha Betriebsgröße [ha] 1 >7 ha Schlepperleistung [kw] absolute Häufigkeit <3 4 6 >7 Betriebsgröße [ha] > <3 Schlepperleistung [kw] Streudiagramm von Betriebsgröße und Schlepperleistung Betriebsgröße [ha] 6 7 8

8 Milchleistung von Kühen Statistische Maßzahlen - Lageparameter ML_A [kg/a] E Stichprobenumfang n = ML_B [kg/a] E Stichprobenumfang n = Arithmetischer Mittelwert (arithmetisches Mittel, mean) x' x 1 %x %ÿ%x n ' 1 n n n j x i A' '1, B' Median (Zentralwert) '1 Links und rechts von x liegen gleich viele Beobachtungen Ã'4994, B'33 Modus (Modalwert, Dichtemittel, mode) x d = Stichprobenwert oder Klasse mit größter Häufigkeit unimodale, bimodale,..., multimodale Verteilungen Gestutzter Mittelwert (gestutztes Mittel, trimmed mean) % größte und % kleinste Werte werden verworfen arithmetisches Mittel aus restlichen 9% der Werte Geometrischer Mittelwert (geometrisches Mittel) x geom. ' n x n, log x geom. ' 1 x 1 %log x %ÿ%log x n ) 1. Jahr %,. Jahr 7%, 3. Jahr 1% Umsatzsteigerung (1%x) 3 Y 1%x' '1.796 x geom. '.796'7.96%

9 Statistische Maßzahlen - Streuungsmaße Statistische Maßzahlen - Streuungsmaße Spannweite (range) Mittlere absolute Abweichung (mean absolute deviation) R'x max &x min R A '38&4763'77, Varianz (variance) R B '846&47'176 D' 1 n n j x i &x D A '3., D B '43.4 Median-Abweichung (median absolute deviation) s ' 1 n&1 j n (x i &x) ' 1 n&1 n j x i & 1 n n j x i MAD'Median( x i & x ) MAD A '31, MAD B '436 A i &A (A i &A) B i &B (B i &B)! ! !14 1! ! ! !1 -!33 189! ! ! 36174! s A ' 1 s B ' 1 Standardabweichung (standard deviation) s' s, selbe Einheit wie Meßwerte und Mittelwert s A '3, s B '9 [kg/a] Interquartilsabstand Q! Q 3 1 Variationskoeffizient (coefficient of variation) VK' s x VK A ' 3 1 '.9'.9%, VK B ' 9 1 '.116'11.6% Standardfehler des arithmetischen Mittels (standard error mean) s x ' s n s A ' 3 '134, s B ' 9 '64

10 Quartilen Fraktilen, Quantilen, Perzentilen x min Q 1 Q Q 3 x max Die K%-Fraktile, K%-Quantile oder das K-te Perzentil x ist K% der x-wert, unterhalb dem K% der Werte liegen Q Q Q 1 3 % % % % % untere Quartile Median obere Quartile x % = x. = Q1 untere Quartile x % = x. = Q Median x 7% = x.7 = Q3 obere Quartile F ~ 1. Q! Q 3 1 Interquartilsabstand Boxplots (Schachtel Plots) Q 1 Q Q 3 x min % % % % x max kg/a x = x = 8 8%.8 8% aller Kühe haben eine Milchleistung unter 8 kg/a x

11 Statistische Maßzahlen Data Display Row ML_A ML_B Descriptive Statistics: ML_A; ML_B Variable N Mean Median TrMean StDev SE Mean ML_A ML_B Variable Minimum Maximum Q1 Q3 ML_A ML_B Statistische Maßzahlen Milchleistung: Descriptive Statistics Variable N Mean Median Tr Mean StDev SE Mean Milch Variable Min Max Q1 Q3 Milch Ferkelzahl: Descriptive Statistics Variable N Mean Median Tr Mean StDev SE Mean Ferkel Variable Min Max Q1 Q3 Ferkel

12 Boxplots Mittelwert und Varianz bei klassifizierten Stichproben Arithmetischer Mittelwert 1 x' 1 n j m (n i )' j m (h i ) Ferkel 1 Varianz s ' 1 n&1 m j n i & 1 n m j n i. j m h i & j m h i Milchleistung [kg/a] x i (Klassenmitte) hi h i xi h i xi x'19 s '7968&19 ' Y s'83

Regression mit Dummyvariablen. Regression mit Dummyvariablen. Variablentypen. Regressionsmodelle. Bezug auf einzelne Variablen.

Regression mit Dummyvariablen. Regression mit Dummyvariablen. Variablentypen. Regressionsmodelle. Bezug auf einzelne Variablen. TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Biometrische und Ökonometrische Methoden I WS 00/01 Variablentypen Qualitative und e Variablen

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Weitere Lagemaße: Quantile/Perzentile I

Weitere Lagemaße: Quantile/Perzentile I 3 Auswertung von eindimensionalen Daten Lagemaße 3.3 Weitere Lagemaße: Quantile/Perzentile I Für jeden Median x med gilt: Mindestens 50% der Merkmalswerte sind kleiner gleich x med und ebenso mindestens

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc SS 2017 Torsten Schreiber 222 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durch Summierung je Ausprägung

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Das arithmetische Mittel. x i = = 8. x = 1 4. und. y i = = 8

Das arithmetische Mittel. x i = = 8. x = 1 4. und. y i = = 8 .2 Einige statistische Maßzahlen.2. Die Schusser in zwei Familien Die vier Kinder der Familie Huber haben x = 5, x 2 = 7, x 3 = 9, x 4 = Schusser. Die vier Kinder der Familie Maier haben y = 7, y 2 = 7,

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6. Statistik-Tutorium. Lösungsskizzen Übung SS2005. Thilo Klein. Grundstudium Sommersemester 2008

Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6. Statistik-Tutorium. Lösungsskizzen Übung SS2005. Thilo Klein. Grundstudium Sommersemester 2008 Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6 Lösungsskizzen Übung SS2005 Grundstudium Sommersemester 2008 Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6 Inhalt Serie 1 Serie 2 Serie 3 Serie 4 Serie

Mehr

Statistische Kennzahlen für die Lage

Statistische Kennzahlen für die Lage Statistische Kennzahlen für die Lage technische universität ach der passenden grafischen Darstellung der Werte eines Merkmals auf der Gesamtheit der Beobachtungen interessieren jetzt geschickte algebraische

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik 1. Deskriptive Statistik 2. Induktive Statistik 1. Deskriptive Statistik 1.0 Grundbegriffe 1.1 Skalenniveaus 1.2 Empirische Verteilungen 1.3 Mittelwerte 1.4 Streuungsmaße 1.0

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen

Mehr

beruflicher Bildungsabschluss incl. Hochschulabschl. 4Kat.(m) Häufigkeit Prozent Gültig Lehre/Beruffachgesundh.Schule ,2 59,2 59,2

beruflicher Bildungsabschluss incl. Hochschulabschl. 4Kat.(m) Häufigkeit Prozent Gültig Lehre/Beruffachgesundh.Schule ,2 59,2 59,2 Häufigkeiten Deskriptive Statistiken Häufigkeiten Beruflicher Bildungsabschluss (Mbfbil4) Zielvariablenliste OK Er erscheint: Statistiken beruflicher Bildungsabschluss incl. N Gültig 3445 Fehlend 0 beruflicher

Mehr

Deskriptive Statistik

Deskriptive Statistik Helge Toutenburg Christian Heumann Deskriptive Statistik Eine Einführung in Methoden und Anwendungen mit R und SPSS Siebte, aktualisierte und erweiterte Auflage Mit Beiträgen von Michael Schomaker 4ü Springer

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15 Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2

Mehr

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7 Inhaltsverzeichnis Einführung 21 Über dieses Buch 21 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23 Teil I: Ein paar statistische Grundlagen 23 Teil II: Die beschreibende Statistik

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

1 GRUNDLAGEN Grundbegriffe Skalen...15

1 GRUNDLAGEN Grundbegriffe Skalen...15 Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK PROF. DR. CHRISTINA BIRKENHAKE Inhaltsverzeichnis 1. Merkmale 2 2. Urliste und Häufigkeitstabellen 9. Graphische Darstellung von Daten 10 4. Lageparameter 1

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Kapitel 3: Lagemaße Ziel Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Dr. Matthias Arnold 52 Definition 3.1 Seien x 1,...,x n Ausprägungen eines kardinal

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

Statistik. Einführung in die com putergestützte Daten an alyse. Oldenbourg Verlag München B , überarbeitete Auflage

Statistik. Einführung in die com putergestützte Daten an alyse. Oldenbourg Verlag München B , überarbeitete Auflage Statistik Einführung in die com putergestützte Daten an alyse von Prof. Dr. Karlheinz Zwerenz 4., überarbeitete Auflage B 366740 Oldenbourg Verlag München Inhalt Vorwort XI Hinweise zu EXCEL und SPSS XII

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 14. Oktober 2010 Übungen Aufgabenblatt 1 wird heute Nachmittag auf das Weblog gestellt. Geben Sie die Lösungen dieser

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung. Statistik und Wahrscheinlichkeitsrechnung

1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung. Statistik und Wahrscheinlichkeitsrechnung 1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 2 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung Stochastik Wahrscheinlichkeitsrechnung

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Der Mittelwert (arithmetisches Mittel)

Der Mittelwert (arithmetisches Mittel) Der Mittelwert (arithmetisches Mittel) x = 1 n n x i bekanntestes Lagemaß instabil gegen extreme Werte geeignet für intervallskalierte Daten Deskriptive Statistik WiSe 2015/2016 Helmut Küchenhoff (Institut

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung 20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen

Mehr

Basiswissen Medizinische Statistik

Basiswissen Medizinische Statistik Springer-Lehrbuch Basiswissen Medizinische Statistik Bearbeitet von Christel Weiß 6. Auflage 2013. Buch inkl. Online-Nutzung. XVII, 336 S. Softcover ISBN 978 3 642 34260 8 Format (B x L): 12,7 x 19 cm

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 03 Hochschule Augsburg : Gliederung Einführung Deskriptive Statistik 3 Wahrscheinlichkeitstheorie

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

STATISIK. LV Nr.: 0021 WS 2005/06 11.Oktober 2005

STATISIK. LV Nr.: 0021 WS 2005/06 11.Oktober 2005 STATISIK LV Nr.: 0021 WS 2005/06 11.Oktober 2005 1 Literatur Bleymüller, Gehlert, Gülicher: Statistik für Wirtschaftswissenschaftler, Verlag Vahlen Hartung: Statistik. Lehr- und Handbuch der angewandten

Mehr

Streuungsmaße. Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre Varianz (empirische) Varianz (Streuung) s 2 = 1 n

Streuungsmaße. Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre Varianz (empirische) Varianz (Streuung) s 2 = 1 n Streuungsmaße Diskrete Stetige Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre (empirische) (Streuung) s 2 = 1 n (X i X) 2 n 1 i=1 s 2 n var(x) Warum Division durch (n

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Statistik und Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Im ersten Schritt werden wir die Daten nur beschreiben:

Mehr

Der Modus ist. Der Median ist. 3. Übung. Aufgabe 1. a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen.

Der Modus ist. Der Median ist. 3. Übung. Aufgabe 1. a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen. 3. Übung Aufgabe 1 Der Modus ist a) der häufigste Wert. b) der Wert unter dem 50 % aller anderen Werte liegen. c) der Durchschnitt aller Werte. d) der Wert mit der größten Häufigkeitsdichte. e) der Schwerpunkt

Mehr

Frank Lammers. Statistik I: deskriptive und explorative Statistik. Lehr- und Übungsbuch

Frank Lammers. Statistik I: deskriptive und explorative Statistik. Lehr- und Übungsbuch Frank Lammers Statistik I: deskriptive und explorative Statistik Lehr- und Übungsbuch 2004 Verlag der Gesellschaft für Unternehmensrechnung und Controlling m.b.h. Vorwort I Vorwort zur zweiten Auflage

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Deskriptive Statistik Auswertung durch Informationsreduktion

Deskriptive Statistik Auswertung durch Informationsreduktion Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,

Mehr

Das harmonische Mittel

Das harmonische Mittel Das harmonische Mittel x H := 1 1 n n 1 x i Das harmonische Mittel entspricht dem Mittel durch Transformation t 1 t Beispiel: x 1,..., x n Geschwindigkeiten, mit denen konstante Wegstrecken l zurückgelegt

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19 Inhaltsverzeichnis Über den Autor 7 Über den Fachkorrektor 7 Einführung 19 Über dieses Buch 19 Törichte Annahmen über den Leser 20 Wie dieses Buch aufgebaut ist 20 Teil I: Ein paar statistische Grundlagen

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG Markus.Schumacher@physik.uni-freiburg.de

Mehr

I.V. Methoden 2: Deskriptive Statistik WiSe 02/03

I.V. Methoden 2: Deskriptive Statistik WiSe 02/03 I.V. Methoden 2: Deskriptive Statistik WiSe 02/03 Vorlesung am 04.11.2002 Figures won t lie, but liars will figure. General Charles H.Grosvenor Dr. Wolfgang Langer Institut für Soziologie Martin-Luther-Universität

Mehr

10. Medizinische Statistik

10. Medizinische Statistik 10. Medizinische Statistik Projektplanung Deskriptive Statistik Inferenz-Statistik Literatur: Hüsler, J. und Zimmermann, H.: Statistische Prinzipien für medizinische Projekte, Verlag Hans Huber, 1993.

Mehr

1 Einleitung und Grundlagen 1

1 Einleitung und Grundlagen 1 Inhaltsverzeichnis Vorwort vii 1 Einleitung und Grundlagen 1 1.1 Einführende Beispiele 1 1.2 Statistischer Prozess 2 1.3 Grundlagen 2 1.4 Unterscheidung von Merkmalen 3 1.4.1 Skalenniveaus 3 1.4.2 Stetige

Mehr

Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten!

Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten! Inhaltsverzeichnis Inhaltsverzeichnis VII 1 Erst mal locker bleiben: Es fängt ganz einfach an! 1 1.1 Subjektive Wahrscheinlichkeit - oder warum...?..... 4 1.2 Was Ethik mit Statistik zu tun hat - Pinocchio

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

1 Univariate Statistiken

1 Univariate Statistiken 1 Univariate Statistiken Im ersten Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Statistik für. von. Prof. Dr. Josef Bleymüller. und. Prof. Dr. Rafael Weißbach. sowie. Dr. Günther Gehlert. und. Prof. Dr.

Statistik für. von. Prof. Dr. Josef Bleymüller. und. Prof. Dr. Rafael Weißbach. sowie. Dr. Günther Gehlert. und. Prof. Dr. Statistik für Wirtschaftswissenschaftler von Prof. Dr. Josef Bleymüller und Prof. Dr. Rafael Weißbach sowie Dr. Günther Gehlert und Prof. Dr. Herbert Gülicher bei früheren Auflagen 17., überarbeitete Auflage

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Kreisdiagramm, Tortendiagramm

Kreisdiagramm, Tortendiagramm Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Höhere Mathematik 2 (Weihenstephan) 1. Die Gemeinde Fronhausen besteht aus drei Ortsteilen: Neudorf, Wulling und Marking.

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Statistik SS Deskriptive Statistik. Bernhard Spangl 1. Universität für Bodenkultur. March 1, 2012

Statistik SS Deskriptive Statistik. Bernhard Spangl 1. Universität für Bodenkultur. March 1, 2012 Statistik SS 2012 Deskriptive Statistik Bernhard Spangl 1 1 Institut für angewandte Statistik und EDV Universität für Bodenkultur March 1, 2012 B. Spangl (Universität für Bodenkultur) Statistik SS 2012

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 20. Oktober 2010 1 empirische Verteilung 2 Lageparameter Modalwert Arithmetisches Mittel Median 3 Streuungsparameter

Mehr

Beispiel 4 (Einige weitere Aufgaben)

Beispiel 4 (Einige weitere Aufgaben) 1 Beispiel 4 (Einige weitere Aufgaben) Aufgabe 1 Bestimmen Sie für die folgenden Zweierstichproben, d. h. Stichproben, die jeweils aus zwei Beobachtungen bestehen, a) den Durchschnitt x b) die mittlere

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

benötigt werden, wird es zu Exkursionen kommen. Falls ein Begriff neu oder fremd ist, bitte nachfragen.

benötigt werden, wird es zu Exkursionen kommen. Falls ein Begriff neu oder fremd ist, bitte nachfragen. Fehler- und Ausgleichsrechnung (basierend auf Abschnitt IV. von Papula; Bd.3 ) Da Begriffe und Formeln aus der Statistik Wahrscheinlichkeitslehre Kombinatorik Stochastik benötigt werden, wird es zu Exkursionen

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Beispiele aus dem täglichen Leben Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische

Mehr