Signale. und. Systeme. SoSe Übung 01. Charakterisierung. von Signalen

Größe: px
Ab Seite anzeigen:

Download "Signale. und. Systeme. SoSe Übung 01. Charakterisierung. von Signalen"

Transkript

1 Signale und Systeme SoSe 9 Übung Charakterisierung von Signalen

2 Aufgabe Zeichnen Siedie folgenden Signale und diskutieren Sie deren Eigenschaften: (a) Impulsfolgen: δ( k), δ( k 4) (b) Sprungfolgen: ε( k), ε( k) ; ε( k) (c) Rechteckimpuls: rectt ( t ) (d) Rampenfunktion: ρ ( t) (e) Dreieckimpuls: ρ( t + T) ρ( t) + ρ( t T) Handelt es sich bei diesen Signalen jeweils um ein (zeit )diskretes oder ein (zeit )kontinuierliches Signal? ein (zeit )begrenztes oder ein (zeit )unbegrenztes Signal und ggf. um einseitiges (links/rechts) oder zweiseitiges Signal? ein (wert )beschränktes oder (wert )unbeschränktes Signal? ein gerades oder ein ungerades Signal? Ein kausales oder antikausales Signal? ein Energie oder Leistungssignal und wenn ja, welche Energie bzw. Leistung besitzt es? Welche der oben Eigenschaften muss das Signal aufweisen?

3 Lösungen a/) Impulsfolgen: δ ( k) Der Einheitsimpuls (Impulsfolge) δ ( k) ist wie folgt definiert: δ ( k),5, k =, k =,5,5 5 5 k Das Signal ist Diskussion (zeit)diskret da, nur zur diskreten Zeitpunkten ein Wert zugewisen wird (zeit)kontinuierlich (zeit)begrenzt weil nur zu dem Zeitpunkt ein Wert zugewiesen wird ( ) (zeit)unbegrenzt linksseitg rechtsseitig zweiseitig weder noch! gerade Achsensymmetrisch ungerade (wert-)beschränkt Wert wird nicht überschritten (wert-)unbeschränkt kausal Weil die Werte auf der negativen Zeitachse sind ( τ ) a antikausal ein Energiesignal begrenzt + beschränkt Energiesignal ein Leistungssignal

4 a/) Impulsfolgen: δ ( k 4) ( k 4) δ ist ein um 4 Abtastintervalle nach rechts verschobener (verzögerte) Einheitsimpuls (Impulsfolge). δ ( k 4) ist wie folgt definiert: δ ( k 4),5, k 4 =, k = 4,5,5 5 5 k Das Signal ist Diskussion (zeit)diskret da, nur zur diskreten Zeitpunkten ein Wert zugewisen wird (zeit)kontinuierlich (zeit)begrenzt weil nur zu dem Zeitpunkt 4 ein Wert zugewiesen wird ( ) (zeit)unbegrenzt linksseitg rechtsseitig zweiseitig gerade ungerade weder noch! weder noch! (wert-)beschränkt Wert wird nicht überschritten (wert-)unbeschränkt kausal Weil die Werte auf der negativen Zeitachse sind ( τ ) a antikausal ein Energiesignal begrenzt + beschränkt Energiesignal ein Leistungssignal

5 b/) Sprungfolgen: ε ( k) Der Einheitssprung (Sprungfolge) ε ( k) ist wie folgt definiert: ε( k),5, k < =, k,5,5 5 5 k Das Signal ist Diskussion (zeit)diskret da, nur zur diskreten Zeitpunkten ein Wert zugewisen wird (zeit)kontinuierlich (zeit)begrenzt (zeit)unbegrenzt für k, ist immer mit ε ( k) linksseitg ε = rechtsseitig ( k), k,..., zweiseitig gerade ungerade (wert-)beschränkt Wert wird nicht überschritten (wert-)unbeschränkt = definiert kausal Weil die Werte auf der negativen Zeitachse sind ( τ ) a antikausal ein Energiesignal ein Leistungssignal keine begrenztheit kein Energiesignal

6 b/) Sprungfolgen: ε( k) Der Einheitssprung (Sprungfolge) ε( k) ist wie folgt definiert: ε( k), k =, k > Die Sprungfolge ε( k) ist an der Ordinatenachse gespiegelter Einheitssprung (Zeitinversion).,5,5,5 5 5 k Das Signal ist Diskussion (zeit)diskret da, nur zur diskreten Zeitpunkten ein Wert zugewisen wird (zeit)kontinuierlich (zeit)begrenzt (zeit)unbegrenzt für k, ist immer mit ε ( k) ε = linksseitg ( k), k,..., rechtsseitig zweiseitig = definiert gerade ungerade Weder noch! (wert-)beschränkt Wert wird nicht überschritten (wert-)unbeschränkt kausal antikausal Nicht kausal!!! ein Energiesignal ein Leistungssignal keine begrenztheit kein Energiesignal

7 b/3) Sprungfolgen: ε( k) Die Sprungfolge ε( k) ist wie folgt definiert: ε, k =, k > ( k),5,5,5 5 5 k Das Signal ist Diskussion (zeit)diskret da, nur zur diskreten Zeitpunkten ein Wert zugewisen wird (zeit)kontinuierlich (zeit)begrenzt (zeit)unbegrenzt für k, ist immer mit ε ( k) linksseitg ( k) = k rechtsseitig zweiseitig ε,,..., = definiert gerade ungerade Weder noch! (wert-)beschränkt Wert wird nicht überschritten (wert-)unbeschränkt kausal antikausal Nicht kausal!!! ein Energiesignal ein Leistungssignal keine begrenztheit kein Energiesignal

8 c) Rechteckimpuls: rect () t T Der Rechteckimpuls rect () t ist folgendermaßen definiert: rect T () t T, t < = T, t > T,5,5,5 5 5 T/ t T/ Das Signal ist Diskussion (zeit)diskret (zeit)kontinuierlich (zeit)begrenzt (zeit)unbegrenzt linksseitg rechtsseitig zweiseitig Weder noch! gerade Achsensymmetrisch ungerade (wert-)beschränkt Wert wird nicht überschritten (wert-)unbeschränkt kausal antikausal Nicht kausal!!! ein Energiesignal begrenzt + beschränkt Energiesignal ein Leistungssignal

9 d) Rampenfunktion: ρ ( t) Die Rampe (Rampenfunktion) wird auch als linear gewichtete Sprungfunktion ε ( t) bezeichnet. ρ( τ) = τ ( τ),5,5,5 5 5 t Das Signal ist Diskussion (zeit)diskret (zeit)kontinuierlich (zeit)begrenzt ρ > > (zeit)unbegrenzt () t, t linksseitg rechtsseitig zweiseitig gerade ungerade Weder noch! (wert-)beschränkt (wert-)unbeschränkt es gibt keine obere Schranke. kausal antikausal ein Energiesignal ein Leistungssignal keine Begrenzung + Beschränkung kein Energiesignal

10 e) Dreieckimpuls: ρ( t + T) ρ( t) + ρ( t T) Der Dreiecksimpulsist folgendermaßen definiert: t, t < T Λ T () t = T, t T,5,5,5 5 5 T t T Das Signal ist Diskussion (zeit)diskret (zeit)kontinuierlich (zeit)begrenzt t < T (zeit)unbegrenzt linksseitg rechtsseitig zweiseitig gerade Achsensymmetrisch ungerade (wert-)beschränkt wird nicht überschritten (wert-)unbeschränkt kausal antikausal Nicht kausal! ein Energiesignal begrenzt + beschränkt Energiesignal ein Leistungssignal

11 Der Dreieckimpuls läss sich als Summe von drei skalierten und zeitverschobenen Rampenfunktionen darstellen: ( t + T) ( t) + ( t T) ρ ρ ρ Teilfunktion : ρ ( t + T),5,5,5 5 5 T t T Teilfunktion : ρ( t),5,5,5 5 5 T t T

12 Zwischenergebnis: ρ( t + T) ρ( t),5,5,5 5 5 T t T,5,5,5 5 5 T t T Teilfunktion 3: ρ( t T),5,5,5 5 5 T t T

13 Dreiecksimpuls:,5,5,5 5 5 T t T

14 Aufgabe 3 Stellen Sie die folgenden Signale nur mit Hilfe von Sprung und Rampenfunktionen dar. Zerlegen Sie die Signale in ihren geraden und ungeraden Anteil. Skalieren Sie und Verschieben Sie anschließend diese Signale nach folgender Vorgabe: ( 4, ) 3 ( 4; ) ( 4) vt vt vt a) Resultierendes Signal,5,5,5,5 5 5

15 ( ) = ε( t + ) x( t) = ε( t) x t Skalierung um Verschiebung um nach links,5,5,5 Skalierung keine Verschiebung um nach rechts,5,5,5, () = ε( t ) x() t = ε( t 4) x t Skalierung um / Skalierung /4 Verschiebung um nach rechts Verschiebung um 4 nach rechts,5,5,5,5 5 5,5,5,5,5 5 5 x() t = ε( t + ) ε() t ε( t ) ε( t 4)

16 b) Resultierendes Signal,5,5, ( ) = ρ ( t) x( t) = ε( t) x t,5,5,5,5,5,5,5, ,5 x( t) = ρ( t) ε( t),5,5,5 5 5

17 ( ) = ρ( t ) x() t = ρ( t 4) x t,5,5,5, ,5,5,5, ,5,5,5, x() t = ρ() t ε() t ρ( t ) ρ( t 4),5 () = ρ ( t 6) x t,5,5, x() t = ρ() t ε() t ρ( t ) ρ( t 4) + ρ( t 6)

18 c) Skalieren Sie und Verschieben

Übung 1: Charakterisierung von Signalen

Übung 1: Charakterisierung von Signalen Übung Signale und Systeme Sommersemester Übung : Charakterisierung von Signalen 5.April Übung : Charakterisierung von Signalen. Zeichnen Sie die folgenden Signale und diskutieren Sie deren Eigenschaften:

Mehr

Übung 1: Charakterisierung von Signalen

Übung 1: Charakterisierung von Signalen AG Digitale Signalverarbeitung - Übung Signale und Systeme Sommersemester 9 Übung : Charakterisierung von Signalen.April 9 Übung : Charakterisierung von Signalen Aufgabe (a/):, k Der Einheitsimpuls (Impulsfolge)

Mehr

f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen

f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen = Xˆ sin( ω t) 1 f = T Einheiten: [ f ] = Hz ω = 2 π -1 [ ω] = s f mit Phasenverschiebung (hier: nacheilend) : = Xˆ sin( ω t - ϕ) φ ist negative für

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

2. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

2. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 2. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: EA-System Eingabe: Ausgabe: u y t E/A-System 2. Vorlesung Systemtheorie

Mehr

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale Zeitsignale Je nach Zeitbasis und Wertemenge des Signals unterscheidet man zeit- und wertkontinuierliche Signale (analoge Signale); zeitdiskrete, aber wertkontinuierliche Signale (zeitdiskrete Signale);

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 6: Impulsantwort und Faltung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Grundlegende Systemeigenschaften Beispiele führten zu linearen Differenzengleichungen

Mehr

Signalverarbeitung Charakterisierung der Signale

Signalverarbeitung Charakterisierung der Signale Signalverarbeitung Charakterisierung der Signale SE+ Med 4. Semester Werner Backfrieder Mathematisches Repetitorium Winkel- oder Kreisfunktionen α H AK GK sin( α) cos( α) Gegenkathete Hypothenuse Ankathete

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN BEDEUTUNG DER GEWICHTSFUNKTION UND

Mehr

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach Statistische Kennwerte und -funktionen Dr.-Ing. habil. H. Nobach 1. Einführung Statistische Kennwerte und -funktionen, wie Mittelwert Varianz Wahrscheinlichkeitsdichte Autokorrelation spektrale Leistungsdichte

Mehr

Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN

Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Übungsleiter: Dr.-Ing. Heinz-Dieter

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

3 Zeitdiskrete Signale

3 Zeitdiskrete Signale 3 Zeitdiskrete Signale Die Systemtheorie beschreibt Systeme unter anderem durch den Zusammenhang von Signalen am Systemeingang und -ausgang. Im Teil A dieser Skriptreihe sind Beispiele für unterschiedliche

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale ufgabe (5 Punkte) ufgabe : Kontinuierliche und diskrete Signale. Zeichnen Sie jeweils den geraden und den ungeraden nteil des Signals in bb..!. Sind Sie folgenden Signale periodisch? Falls ja, bestimmen

Mehr

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 3. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Systemeigenschaften, Superpositionsprinzip Systemklassen: DESS, DEVS,

Mehr

Wichtige zeitdiskrete Folgen

Wichtige zeitdiskrete Folgen Wichtige zeitdiskrete Folgen.8 Einheitsimpuls.6 δ(n) = {, n, n = δ(n).4.2 - -5 5 n Wichtige zeitdiskrete Folgen Einheitssprung u(n) = u(n) = = {, n

Mehr

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner Änderungsindex Version Datum Verfasser Änderungen 5.3.4 9..3 8 8.3.3 7 3.. M. Strohrmann, U. Brunner M.

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Einführung in die Systemtheorie Von Professor Dr.-Ing. Bernd Girod Priv.-Doz. Dr.-Ing. habil. Rudolf Rabenstein und Dipl.-Ing. Alexander Stenger Universität Erlangen-Nürnberg Mit 259 Bildern B.G. Teubner

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 2., korrigierte und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Struktur eines Regelkreises mit Mikroprozessor als Regler:

Struktur eines Regelkreises mit Mikroprozessor als Regler: Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Struktur eines Regelkreises mit Mikroprozessor als Regler: Unterlagen zur Vorlesung Regelungstechnik 2 Kapitel 4

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner Änderungsindex Version Datum Verfasser Änderungen.3.6 5.3.5 5.3.4 9..3 8 8.3.3 7 3.. M. Strohrmann, U.

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 6Si 6. Signal-und Bildfilterung sowie Korrelation H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I Bildfilterung und Korrelation Die lineare Bildfilterung wird zur Rauschunterdrückung

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Einführung in die digitale Signalverarbeitung Prof. Dr. Stefan Weinzierl 1. Aufgabenblatt 1. Eigenschaften diskreter Systeme a. Erläutern Sie die Begriffe Linearität Zeitinvarianz Speicherfreiheit Kausalität

Mehr

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x)

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x) Vertikale Verschiebung a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g() = f() b) Zeichne den Graphen der Funktion h mit h() = f() ein. Oben oder unten? f() +

Mehr

Beschränkte Funktionen

Beschränkte Funktionen http://www.youtube.com/watch?v=vorskyophym Beschränkte Funktionen 1 1 Ma 1 Lubov Vassilevskaya Eine beschränkte Funktion: Beispiel 1 a = 1 Abb. 1 1: Eine von unten beschränkte Funktion y = 0.5 x² Die Funktion

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Formelsammlung Signal- und Systemtheorie I von Stephan Senn, D-ITET

Formelsammlung Signal- und Systemtheorie I von Stephan Senn, D-ITET Formelsammlung Signal- und Systemtheorie I von Stephan Senn, D-ITET Inhaltsverzeichnis Einteilung der Transformationen... 3 Zeitkontinuierliche Transformationen... 3 Zeitdiskrete Transformationen... 3

Mehr

Laplace Transformation

Laplace Transformation Laplace Transformation A Die Laplace Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Formal kann die Laplace Transformation

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen

Mehr

Informationstechnik N. Fliege Systemtheorie

Informationstechnik N. Fliege Systemtheorie Informationstechnik N. Fliege Systemtheorie Informationstechnik Herausgegeben von Prof. Dr.-Ing. Norbert Fliege, Hamburg-Harburg In der Informationstechnik wurden in den letzten Jahrzehnten klassische

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11 Vorwort V I Einführung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4 Struktur des Buches 9 2 Mathematische Grundlagen 11 2.1 Räume 11 2.1.1 Metrischer Raum 12 2.1.2 Linearer

Mehr

Signale und Systeme Signale

Signale und Systeme Signale Signale und Systeme Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung und Systemtheorie Inhalt der Vorlesung

Mehr

Universität Koblenz Institut für integrierte Naturwissenschaften Abteilung Physik. Signale. Seminar Digitale Signalverarbeitung Dr.

Universität Koblenz Institut für integrierte Naturwissenschaften Abteilung Physik. Signale. Seminar Digitale Signalverarbeitung Dr. Universität Koblenz Institut für integrierte Naturwissenschaften Abteilung Physik Signale Seminar Digitale Signalverarbeitung Dr. Merten Joost von Ralf Töppner Matrikelnr.: 201210387 Koblenz, den 10. Juni

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften und Gewichtsfunktion/folge

Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften und Gewichtsfunktion/folge Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Aufgabe 5. Beweisen Sie: Ein kompakter Hausdorffraum, welcher dem ersten Abzählbarkeitsaxiom genügt, ist folgenkompakt. Lösung. Es sei X ein kompakter

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

2. Eigenschaften von Zahlenfolgen

2. Eigenschaften von Zahlenfolgen . Eigenschaften von Zahlenfolgen.. Monotone Folgen ) Definition Eine Folge heisst streng monoton wachsend, wenn für alle n gilt: an+ > an. (D.h. jedes Folgenglied ist grösser als sein Vorgänger. Man sagt

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Download. Klassenarbeiten Mathematik 5. Spiegeln und verschieben. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Spiegeln und verschieben. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Klassenarbeiten Mathematik 5 Spiegeln und verschieben Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 5 Spiegeln und verschieben Dieser Download ist

Mehr

Faltung, Bildbereich und Stabilität

Faltung, Bildbereich und Stabilität Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Faltung, Bildbereich und Stabilität Dresden, den 03.08.2011 Gliederung Vorbemerkungen Faltung Bildbereich

Mehr

Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs)

Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs) Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs) Elgersburg, 13. Februar 2006 Gliederung 1 Differential-algebraische Gleichungen 2 Distributionen 3 Anfangswertprobleme 4 Zusammenfassung

Mehr

Regelungs- und Systemtechnik 1 Sommer 10

Regelungs- und Systemtechnik 1 Sommer 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 Sommer 1 Wiederholung zur Laplacetransformation 1 1 Definitionen Definition 1 (Integraltransformation)

Mehr

Musterlösung zur Klausur Digitale Signalverarbeitung

Musterlösung zur Klausur Digitale Signalverarbeitung Musterlösung zur Klausur Digitale Signalverarbeitung Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum 9. August 008 Aufgabe : Transformationen 5 Pkt. v (k) = v (k) = v 3 (k) = ( ) k sin

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 31. Oktober 2016 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Definition Anwendungen. z-transformation. Fakultät Grundlagen. Juli 2010

Definition Anwendungen. z-transformation. Fakultät Grundlagen. Juli 2010 z-transformation Fakultät Grundlagen Juli 2010 Fakultät Grundlagen z-transformation Übersicht 1 2 Fakultät Grundlagen z-transformation Folie: 2 Abtastung Abtastung: Umwandlung einer stetigen (zeitkontinuierlichen)

Mehr

z k Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1)! z k+1 k! = z k (k + 1)! = z k + 1

z k Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1)! z k+1 k! = z k (k + 1)! = z k + 1 Beispiel: Wir untersuchen die Konvergenz der Reihe k=1 z k k! (z C) Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1)! z k z k+1 k! = z k (k + 1)! = z k + 1 k! Damit konvergiert die Reihe (absolut)

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden.

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden. Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Elementare Funktionen. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f( definiert werden. { { 2

Mehr

Bildsignaltechnik. Name:... Matrikelnummer:...

Bildsignaltechnik. Name:... Matrikelnummer:... Fachbereich lektrotechnik Fachgebiet Kounikationstechnik Schriftliche Prüfung Bildsignaltechnik.9. Nae:... Matrikelnuer:... zugelassene Hilfsittel : Vorlesungshilfsblätter ohne zusätzliche Blätter, keine

Mehr

ANALYSIS 1 Kapitel 6: Stetige Funktionen

ANALYSIS 1 Kapitel 6: Stetige Funktionen ANALYSIS 1 Kapitel 6: Stetige Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 6.1 Grundbegrie

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Informationstechnik N. Fliege Systemtheorie

Informationstechnik N. Fliege Systemtheorie Informationstechnik N. Fliege Systemtheorie Informationstechnik Herausgegeben von Prof. Dr.-Ing. Norbert Fliege, Hamburg-Harburg In der Informationstechnik wurden in den letzten Jahrzehnten klassische

Mehr

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]}

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]} . Umkehrfunktion 77 B e w e i s : Sei o.b.d.a. fa) > und fb) für alle [a, y] M a M), M beschränkt y b) Aiom V ξ [a, b] : ξ sup M fa) f) n.z.z. : i) fξ) ii) ξ a, b) zu i):

Mehr

Praktikum, NT 1: Spektrumsschätzung

Praktikum, NT 1: Spektrumsschätzung Praktikum, NT 1: Spektrumsschätzung Versuchsentwurf: M.Sc., Dipl. Ing. (FH) Marko Hennhöfer, FG Nachrichtentechnik Version vom 4. Dezember 2007 1 1 Einführung und Motivation 1.1 Anwendung In der Praxis

Mehr

Relevante Frequenztransformationen

Relevante Frequenztransformationen Relevante Frequenztransformationen Medientechnologie IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Sommersemester 206 Andreas Unterweger (FH Salzburg) Relevante Frequenztransformationen

Mehr

R. Oldenbourg Verlag München Wien 1997

R. Oldenbourg Verlag München Wien 1997 Systemtheorie 1 Allgemeine Grundlagen, Signale und lineare Systeme im Zeit- und Frequenzbereich von Professor Dr.-Ing. Rolf Unbehauen 7., überarbeitete und erweiterte Auflage Mit 260 Abbildungen und 148

Mehr

Musterlösung zur Klausur Signale und Systeme

Musterlösung zur Klausur Signale und Systeme Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Herbst 005 Aufgabe : Kontinuierliche und diskrete Signale..a) y t ).b) y t ) -3T -T -T T T

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Thomas Frey. Martin Bossert. Signal- und Systemtheorie

Thomas Frey. Martin Bossert. Signal- und Systemtheorie Thomas Frey. Martin Bossert Signal- und Systemtheorie Informationstechnik herausgegeben von Prof. Dr.-Ing. Dr.-Ing. E.h. Norbert Fliege, Mannheim und Prof. Dr.-Ing. Martin Bossert, Ulm Digitale Netze von

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. ISBN (Buch): Leseprobe Michael Knorrenschild Vorkurs Mathematik Ein Übungsbuch für Fachhochschulen ISBN (Buch): 978-3-446-43798-2 ISBN (E-Book): 978-3-446-43628-2 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43798-2

Mehr

Beispiele zur Konvergenzuntersuchung bei Reihen.

Beispiele zur Konvergenzuntersuchung bei Reihen. Beispiele zur Konvergenzuntersuchung bei Reihen Beispiel: Wir untersuchen die Konvergenz der Exponentialreihe z k k! für z C Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1! z k = z k+1 k! z k (k

Mehr

Prof. Dr. Tatjana Lange

Prof. Dr. Tatjana Lange Prof. Dr. Tatjana Lange Lehrgebiet: Regelungstechnik Laborübung 1: Thema: Einführrung in die digitale Regelung Übungsziele Veranschaulichung der Abtastung von bandbegrenzten Signalen und der Reproduktion

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr