Musterlösung zur Klausur Digitale Signalverarbeitung

Größe: px
Ab Seite anzeigen:

Download "Musterlösung zur Klausur Digitale Signalverarbeitung"

Transkript

1 Musterlösung zur Klausur Digitale Signalverarbeitung Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum 9. August 008

2 Aufgabe : Transformationen 5 Pkt. v (k) = v (k) = v 3 (k) = ( ) k sin (Ω 0 k) ε (k) ( ) k sin (Ω 0 (k )) ɛ (k ) ( ) k sin (Ω 0 k) ɛ (k ) = v (k) δ (k ). k v (k) v (k) v 3 (k) v (k) v (k) v 3 (k) k. Die Signale v,,3 (k) sind (a) beschränkt: v,,3 (k) < k (b) kausal: v,,3 (k) = 0 k < 0 (c) und nicht zeitbegrenzt (von unendlicher Länge), wenngleich die Werte mit steigendem k sehr klein werden. 3. Bestimmen aller z-transformierten

3 Bestimmung der z-transformierten von v (k): V (z) = = ( ) k sin (Ω 0 k) ε (k) z k ( ) k sin (Ω 0 k) z k ( ) k (e jω0k e ) jω 0k z k = j [ = ( ) k e jω0k z k j [ ( ) ejω 0 k ( ) e jω 0 k ] ( ) ] k e jω0k z k = j z z = ( j ) ( ejω 0 ), e jω 0 z z = [ ] z z j z ejω 0 z e jω 0 e±jω 0 z < mit dem ROC e±jω 0 z < z > Bestimmung der z-transformierten von v (k): Anwendung des Verschiebungssatzes V (z) = V (z) z der ROC ist identisch: z > Bestimmung der z-transformierten von v 3 (k): Signifikanten Wert bei k = abziehen V 3 (z) = V (z) z der ROC ist identisch: z > 4. Der ROC aller Signale ist z >, damit liegt der Einheitskreis z = innerhalb des ROC und die zeitdiskrete Fourier-Transformierten (DTFT) existieren. Die DTFT 3

4 von v (k) ergibt sich aus der z-transformierten V (z): ( V ) e jω = V (z) z:=e jω = [ e jω e jω j e jω ejω 0 e jω e jω 0 Das DTFT-Spektrum ist kontinuierlich und π-periodisch, und aufgrund der Einhaltung der Konvergenzbedingung auch beschränkt. Es kann deshalb nicht diskret oder begrenzt sein. 5. Linearität der DFT nur unter der Einschränkung zu zeigen, dass die Länge N beider zu überlagernden Teilsignale v (k) und v (k) identisch ist: DFT {α v (k) + α v (k)} = 6. Spektralanalyse mittels DFT N N = α [α v (k) + α v (k)]w kn N, N v (k)wn kn + α ]. v (k)w kn N = α DFT {v (k)} + α DFT {v (k)} α, α C DFT-Spektrum frequenzdiskret impliziertes Zeitsignal periodisch Zeitsignal nicht periodisch oder andere Periodizität als impliziert verfälschtes DFT-Spektrum Durch Fensterung des Zeitsignals vor der Berechnung des DFT-Spektrums kann eine Verbesserung erzielt werden. Das Problem verschwindet dadurch jedoch nicht völlig, außerdem verschlechtert sich die Frequenzauflösung durch Verbreiterung der Keulen im Frequenzbereich. Die Verformung des Spektrums durch eine Fensterung muss generell beachtet werden. 7. Es sind aus der Vorlesung zwei Möglichkeiten bekannt: (a) IDFT {V (n)} = j N [DFT {jv (n)}] : i. Real- und Imaginärteil von V (n) vertauschen ii. FFT berechnen iii. Real- und Imaginärteil von v(k) vertauschen iv. mit N skalieren (b) IDFT {V (n)} = N [DFT {V (n)}] : i. Vorzeicheninversion aller Imaginärteile von V (n) 4

5 ii. FFT berechnen iii. Vorzeicheninversion aller Imaginärteile von v(n) iv. mit N skalieren 5

6 Aufgabe : Abtasttheoreme 5 Pkt.. Das Signal u (t) ist reell das Betragsspektrum U (jω) ist spiegelsymmetrisch zu ω = 0: U(j f) f/mhz. System (a), Abtasttheorem für reelle Tiefpass-Signale (a) Maximale Signalfrequenz: f g = 8MHz, wobei U (jπ 8MHz) = 0 Nyquist-Frequenz muss nicht dargestellt werden, angepasstes Abtasttheorem: f a,tp A,min = f g = 6MHz. (b) Das Signal va TP (k) ist reell und diskret: Das Betragsspektrum ( ) V TP a e jω ist π-periodisch und spiegelsymmetrisch zu Ω = νπ, ν Z: j V a, (e ) System (a), Abtasttheorem für reelle Bandpass-Signale (a) Modifiziertes Abtasttheorem für reelle Bandpass-Signale: f a,bp A 4fc b, 4m± m N 0 f c = 7MHz, b = MHz m ± f a,bp A /MHz f a,bp A b = 4MHz = = = = 9 3 notw. Bed. verletzt 9 6

7 (b) Gemäß der Tabelle wird f a,bp A,min = 4MHz gewählt. (c) Das Signal va BP (k) ist reell und diskret: Das Betragsspektrum V BP a π-periodisch und spiegelsymmetrisch zu Ω = νπ, ν Z: j V a,3 (e ) ( e jω ) ist - 0 (d) Das Signal y BP(k) ist komplex und diskret: Das Betragsspektrum ( ) a Y BP a e jω, welches eine mit Ω 0 = π modulierte Version von ( ) V BP a e jω ist, ist πperiodisch: j Y a,3 (e ) - Zusatzpunkt: Es ist außerdem symmetrisch zu ± (ν + ) π 0 4. System (b) (a) Es handelt sich dabei um einen Hilbert-Transformator, der ein komplexes System darstellt (Frequenzganz nicht symmetrisch zu ω = 0). Dieser erzeugt aus einem reellen Signal das zugehörige analytische. Das Signal v b (t) ist daher komplex (nach komplexem System) und analytisch. (b) Nach dem modifizierten Abtasttheorem für analytische komplexe Signale wird fa,min b = b = MHz zu Grunde gelegt. (c) Das Signal y b (k) ist komplex und diskret: Das Betragsspektrum Y b ( e jω ) ist π-periodisch und weist keine weiteren Symmetrien auf : 7

8 j V b (e ) - 0 (d) Ω b = π (e) Betragsspektrum Y b ( e jω ) : j Y b (e ) - 0 8

9 Aufgabe 3: Zustandsraumdarstellung Gegeben war die Struktur (SFG) eines digitalen Systems mit zwei Zustandsspeichern:. Zunächst führt man für beide Zustandsspeicher jeweils einen zusätzlichen Eingangsund Ausgangsknoten ein: SFG. Eliminiert man aus dem so geringfügig modifizierten SFG nach Entfernen der beiden Zustandsspeicher (die gestrichelten Verbindungen) mit Hilfe der SFG-Rechenregeln alle inneren Knoten, die weder Eingangsnoch Ausgangsknoten sind, so ergibt sich die Struktur SFG, was nachfolgend dargestellt ist: Hieraus sind die Elemente der Zustandsraumdarstellung unmittelbar ablesbar: [ ] [ ] [ ] 0 A =, b =, c =, d = Hiermit ergibt sich die Übertragungsfunktion (ÜF) des LTI Systems der Ordnung n = : H(z) = c T (zi A) b + d [ ] [ ] [ ] z H(z) = 0 z = [ 0 ][ ][ ] z z + z = [ 0 ] (z + ) z z + = [ 0 ] z + F(z) = z + z +, wobei F(z) den Vektor der ÜF vom Systemeingang zu den Ausgängen der Zustandsspeicher darstellt. 9

10 3. Das System der Ordnung n = besitzt eine Nullstelle bei z 0 = und ein konjugiert komplexes Polpaar bei z, = ±j, wie im Pol-/Nullstellen-Diagramm nachfolgend dargestellt: Da das System einfache Pole auf dem Einheitskreis der z-ebene besitzt (und keine außerhalb), ist es grenzstabil: Die Impulsantwort (IA) ist ein rechtsseitig (zeitlich) unbegrenztes und beschränktes Signal. 4. Die IA h(k) = c T A k b ε(k )+d δ(k) wird mit den oben berechneten Elementen der ZRD bestimmt. Für die Potenzen A l, l = 0,...,4,... der Systemmatrix gilt zunächst: A 0 = I, A = [ 0 0 ], A = I, A 3 = A, A 4 = A 0 = I. Damit und mit der ZRD folgt für die IA: h(k) = [ 0 ] [ 0 0 ] k [ ] ε(k ) für k = 0,...,8: k h(k) Die IA ist offenbar, wie aufgrund der Überlegungen zu Teilaufgabe 3. zu erwarten war, ein periodisches Signal mit der Grundfrequenz f 0 = f A /4 (vgl. PN/Diagramm), weshalb sich das Ausgangssignal des grenzstabilen Systems (des Oszillators) allgemein wie folgt darstellen lässt: h(k) = sin(πk f 0 π f A 4 ) = sin(k π π 4 ) = [ π ] sin 4 (k ) 0

11 5. Um ein System der Ordnung n = zu skalieren, ist dessen ZRD mit einer nichtsingulären n n = Diagonalmatrix zu transformieren: [ ] [ ] t 0 T = T /t 0 =. 0 t 0 /t In dem vorliegenden Fall sind beide Zustandsvariablen mit demselben Faktor t = t = t = zu skalieren, weshalb sich die Transformationsmatrix wie folgt vereinfacht: [ ] 0 T = t = t I = I T = I = 0, 5 I. 0 t Mit der so spezifizierten Transformationsmatrix T folgt für die ZRD des skalierten Systems {A s,b s,c s, d s }: A s = T AT = A, b s = T b = [ ] [ ], c s = T T c =, d 0 s = d = 0. Mit dieser Skalierung bleibt offenbar (entsprechend den Erfordernissen) die Systemstruktur unverändert, während sich die Aussteuerung der Zustandsspeicher wie gefordert halbiert: x s (k) = T x(k) = x(k), was nachzuweisen war. Der SFG des skalierten Systems ist nachfolgend dargestellt:

12 Aufgabe 4: Strukturen 5 Pkt. Vorgegeben war die Übertragungsfunktion (ÜF) des instabilen SISO-Systems der Ordnung n = : z + H I (z) = z 4 z + 8. () 5 5. Zur Ermittlung eines (kanonischen) Signalflussgraphen (SFG) wird die ÜF zunächst wie folgt umgeformt: H I (z) = Y (z) V (z) = z + z 4 5 z = + z 4 5 z z = H I(z ). Im nächsten Schritt werden die Nenner jeweils auf die andere Seite gebracht: Y (z)[ 4 5 z z ] = V (z) [ + z ] und die Gleichung wie folgt nach Y (z) aufgelöst: Y (z) = V (z) [ + z ] Y (z)[ 4 5 z z ] mit der zugehörigen Differenzengleichung (dgl): y(k) = v(k) y(k ) + v(k ) 8 y(k ), 5 wovon sich unmittelbar die. kanonische Form mit Verzögerungsgliedern als Realisierung ableiten lässt:. Die Nullstellen des Systems sind gegeben durch die Nullstellen des Zählerpolynoms von H I (z): z 0, = z 0, = ±j. Die Pole des Systems sind die Nullstellen des Nennerpolynoms von H I (z): z 4 5 z = 0 z, = ± = 7 5 ± 3 5,

13 womit sich die beiden reellen Pole ergeben: z = z = 4 5 = 0, 8. Die Ergebnisse sind im P/N-Diagramm nachfolgend visualisiert: Da einer der beiden Pole außerhalb des Einheitskreises der z-ebene liegt ( z > ), ist das System instabil, was zu zeigen war. (a) Für die Impulsantwort (IA) bedeutet dies, dass sie nicht beschränkt ist. Es gilt h(k) für k. Das System ist nicht BIBO-stabil (s.o.) (b) Formale Betrachtung: Für instabile Systeme existiert kein Frequenzgang, weil der Einheitskreis der z-ebene nicht im Konvergenzgebiet von H I (z) liegt. Alternative Betrachtung: Der Frequenzgang gibt Auskunft über die Systemantwort eines Systems im eingeschwungenen Zustand. Da ein instabiles System mit unbeschränkter IA aber niemals einen eingeschwungenen Zustand erreichen kann, hat der Frequenzgang H I (e jω ) (obwohl selbst beschränkt) keinerlei Aussagekraft bzw. Bedeutung. 3. Das instabile System H I (z) soll mit einer Allpass-Funktion (AP) H A (z) so kombiniert werden, dass das modifizierte System stabil ist. Bedingung (a): Der AP muss eine Nullstelle z 0A aufweisen, womit der Pol von H I (z) außerhalb des Einheitskreises der z-ebene eliminiert (kompensiert) werden kann: z 0A = z =. Der Kompensationsprozess wird ermöglicht durch die Kaskadierung des AP-Systems mit dem ursprünglichen instabilen System: Damit lautet die benötigte AP-Funktion. Ordnung: H(z) = H I (z)h A (z). () H A (z) = z z z z = z z z z z = z A z z 0A z z A, (3) deren Polstelle gegeben ist durch die Spiegelung der Nullstelle am Einheitskreis der z-ebene: z A = z 0A = z. Mit dem Ansatz (3) ist offenbar Bedingung (c) erfüllt: e H A (z) z = e jω = = jω z z e jω = (cos Ω z ) + sin Ω (z cos Ω ) + z sin Ω =. 3

14 Die Kaskadierung des ursprünglichen Systems () mit dem AP-System (3) entsprechend () ergibt mit z = : z + H(z) = (z z )(z z ) z z z z = z + (z z )(z z ) = z + z 3z Offenbar ist die Ordnung der stabilisierten ÜF wie vorgeschrieben weiterhin n =, weshalb auch Bedingung (b) erfüllt ist. Man beachte dabei, dass die Stabilisierung des Systems ausschließlich durch eine Veränderung des Phasenverlaufs von H I (z) entlang des Einheitskreises der z-ebene bewirkt wurde. 4. Aus Teilaufgabe 3 folgt für die Pole und Nullstellen des AP-Systems und für die des modifizierten Systems H(z): H A (z) H(z) Nullstellen z 0A = z = z 0, = z 0, = ±j Pole z A = z 0A = z = z A = Pole z = z = 4 = 0, 8 5 Die zugehörigen P/N-Diagramme sind nachfolgend angegeben: Nun liegen beide Pole des Systems H(z) innerhalb von z =, weshalb das System (strikt) stabil ist. (a) Für die IA bedeutet dies, dass sie beschränkt ist. Es gilt h(k) 0 für k. Das System ist BIBO-stabil (s.o.) (b) Für das stabile Systeme existiert der Frequenzgang: H(e jω ) = H(z) z=e jω = DTFT{h(k)}, da der Einheitskreis der z-ebene im Existenzgebiet von H(z) liegt. 5. Für das modifizierte System H(z) der Ordnung n = wird nachfolgend zunächst wiederum der SFG in der. kanonischen Form angegeben (wobei der Skalierungsfaktor / zusätzlich zu berücksichtigen ist), wovon die. kanonische Form, eine mögliche alternative Struktur, durch Transponierung abgeleitet ist: 4

15 Weder das ursprüngliche noch das modifizierte System sind mit einer nichtrekursiven Struktur realisierbar, da beide Systeme eine nicht (zeit-)begrenzte IA aufweisen bzw. da beide Systeme Pole besitzen, die nicht im Ursprung der z-ebene liegen. 5

Musterlösung zur Klausur Digitale Signalverarbeitung

Musterlösung zur Klausur Digitale Signalverarbeitung Musterlösung zur Klausur Digitale Signalverarbeitung Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum 1. Oktober 2007 Aufgabe 1: Transformationen 25 Pkt. Gegeben war das reellwertige kontinuierliche

Mehr

Musterlösung zur Klausur Signale und Systeme

Musterlösung zur Klausur Signale und Systeme Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Frühjahr 009 Diskrete und kontin. Signale 5 Pkt.. Summierer und Differenzierer (a) Falls beide

Mehr

y(k) = v(k) v(k 1) (a) Untersuchen Sie die Linearität beider Systeme (Bitte unbedingt den Rechenweg

y(k) = v(k) v(k 1) (a) Untersuchen Sie die Linearität beider Systeme (Bitte unbedingt den Rechenweg AG Digitale Signalverarbeitung - Klausur in Signale und Systeme Frühjahr 2010 Aufgabe 1: Diskrete und kontin. Signale 25 Pkt. Aufgabe 1: Diskrete und kontin. Signale 25 Pkt. 1.1 Gegeben sei das als Differenzierer

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Musterlösung zur Klausur Signale und Systeme

Musterlösung zur Klausur Signale und Systeme Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Herbst 005 Aufgabe : Kontinuierliche und diskrete Signale..a) y t ).b) y t ) -3T -T -T T T

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale ufgabe (5 Punkte) ufgabe : Kontinuierliche und diskrete Signale. Zeichnen Sie jeweils den geraden und den ungeraden nteil des Signals in bb..!. Sind Sie folgenden Signale periodisch? Falls ja, bestimmen

Mehr

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation 23. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 10.1 und 11, Kammeyer & Kroschel (7.1-7.3) eues Thema in

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur WS 017/018 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN ÜBUNG : Z-TRANSFORMATION, SYSTEMSTRUKTUREN 8. AUFGABE Bestimmen Sie die Systemfunktion H(z) aus den folgenden linearen Differenzengleichungen: a) b) y(n) = 3x(n) x(n ) + x(n 3) y(n ) + y(n 3) 3y(n ) y(n)

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Fouriertransformation, z-transformation, Differenzenglei- chung

Fouriertransformation, z-transformation, Differenzenglei- chung Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation 7. November 2016 1 Laplacetransformation 2 z-transformation Ziel: Reverse-Engineering für Digitale Filter Einführung der z-transformation

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und 29. Oktober 2018 1 / 45 1 Moodle-Test 2 Definition Konvergenz Anwendungen 3 Ziel: Reverse-Engineering für Digitale Filter Einführung der 4 2 / 45

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Aufgabe (5 Punke) Aufgabe : Koninuierliche und diskree Signale. a) Zeichnen Sie jeweils den geraden Aneil v g ( ) und den ungeraden Aneil v u ( ) des in Abb.. dargesellen Signals v (). b) Es gelen folgende

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation

Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation 30. Oktober 2017 1 Moodle-Test 2 Laplacetransformation 3 z-transformation Ziel: Reverse-Engineering für Digitale Filter Einführung

Mehr

ÜBUNG 4: ENTWURFSMETHODEN

ÜBUNG 4: ENTWURFSMETHODEN Dr. Emil Matus - Digitale Signalverarbeitungssysteme I/II - Übung ÜBUNG : ENTWURFSMETHODEN 5. AUFGABE: TIEFPASS-BANDPASS-TRANSFORMATION Entwerfen Sie ein nichtrekursives digitales Filter mit Bandpasscharakteristik!

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 2017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur WS 016/017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Übung 12: Bestimmung des Frequenzganges

Übung 12: Bestimmung des Frequenzganges Übung Signale und Systeme Sommersemester Übung :Frequenzgang 5. Juli Übung : Bestimmung des Frequenzganges. Gegeben sei die Übertragungsfunktion eines diskreten Systems: (z ρe jα )(z σe jβ ) (a) Legen

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:.................................... Teilprüfung 389.055 A Signale und Systeme Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:.................................... Teilprüfung 389.055 B Signale und Systeme Institute of Telecommunications

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Modulklausur WS 2015/2016 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

Aufgabe 1: Diskrete und kontin. Signale

Aufgabe 1: Diskrete und kontin. Signale AG Digitale Signalverarbeitung - Klausur in Signale und Systeme Frühjahr 2009 Aufgabe : Diskrete und kontin. Signale 25 Pkt. Aufgabe : Diskrete und kontin. Signale 25 Pkt.. Gegeben sei das als Summierer

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

Einführung in die Digitale Verarbeitung Prof. Dr. Stefan Weinzierl

Einführung in die Digitale Verarbeitung Prof. Dr. Stefan Weinzierl Einführung in die Digitale Verarbeitung Prof. Dr. Stefan Weinierl WS11/12 Musterlösung 6. Aufgabenblatt Analyse von LTI-Systemen. 1. Betrachten Sie ein stabiles lineares eitinvariantes System mit der Eingangsfolge

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 07 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2)

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2) Aufgabe 1: Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 1 s + (s +3) 3 (s +4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) =σ(t) W (s) = 1 s Die Übertragungsfunktion des

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation

Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation 30. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 11 und 12, Kammeyer & Kroschel (Absatz 8.4.1) Anwendungen

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Lösung zur Modulklausur SS 201 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:... VORNAME:... MAT. NR.:.... Teilprüfung 389.055 A Signale und Systeme Institute of Telecommunications TU-Wien.06.06 Bitte beachten Sie: Bitte legen Sie Ihren Studierendenausweis auf Ihrem Tisch

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen

Mehr

Grundlagen der Signalverarbeitung 1 (Integraltransformationen)

Grundlagen der Signalverarbeitung 1 (Integraltransformationen) Grundlagen der Signalverarbeitung 1 (Integraltransformationen) Prof. Dr.-Ing. Dr. h.c. Norbert Höptner Fakultät Technik Bereich Informationstechnik (IT) Hochschule Pforzheim Stand: 17.01.2017 v9 @ Prof.

Mehr

Diskontinuierliche Signale und Systeme

Diskontinuierliche Signale und Systeme Diskontinuierliche Signale und Systeme Fourier-Transformation für diskontinuierliche Funktionen Eigenschaften und Sätze, Fourier-Paare Diskrete Fourier-Transformation (DFT) Zeitdiskrete LTI-Systeme, Faltung

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Zusammenfassung der 2. Vorlesung

Zusammenfassung der 2. Vorlesung Zusammenfassung der 2. Vorlesung Fourier-Transformation versus Laplace-Transformation Spektrum kontinuierlicher Signale Das Spektrum gibt an, welche Frequenzen in einem Signal vorkommen und welches Gewicht

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.0 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf 5. Dezember 2016 Siehe begleitend: Kammeyer / Kroschel, Digitale Signalverarbeitung, 7. Auflage, Kapitel 4.2 1 Filterentwurfsstrategien 2 Diskretisierung

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

1. Aufgabenblatt: EDS Wiederholung und Filterung

1. Aufgabenblatt: EDS Wiederholung und Filterung Kommunikationstechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 19.10.2009 1. Aufgabenblatt: EDS Wiederholung und Filterung 1. Aufgabe a. Erstellen Sie ein Rechtecksignal mit der Frequenz f = 130 Hz

Mehr

Systemtheorie. Vorlesung 16: Interpretation der Übertragungsfunktion. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 16: Interpretation der Übertragungsfunktion. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 16: Interpretation der Übertragungsfunktion Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übertragungsfunktion Bedeutung der Nullstellen Bei der Interpretation

Mehr

Aufgabe 1: Transformationen 25 Pkt. 1.1 Berechnen und skizzieren Sie die Werte der drei Signale für k = 0,...,5 und

Aufgabe 1: Transformationen 25 Pkt. 1.1 Berechnen und skizzieren Sie die Werte der drei Signale für k = 0,...,5 und Aufgab 1: Transformationn Aufgab 1: Transformationn Ggbn sin di diskrtn Signal ) k 1 v 1 k) = sin Ω 0 k) ε k), 2 v 2 k) = v 1 k 2), ) k 1 v 3 k) = sin Ω 0 k) ε k 2), Ω 0 R. 2 1.1 Brchnn und skizzirn Si

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung

Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung Grundlagen der Nachrichtentechnik I. Kontinuierliche Signale u. Systeme. Fouriertransformation. Tiefpass-Darstellung v. Bandpass-Signalen 3. Eigenschaften v. Übertragungskanälen III. Diskretisierung v.

Mehr

Formelsammlung zum Skriptum

Formelsammlung zum Skriptum Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 6. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Letzte Woche: 1.) Erweiterung von Fourier- zu Laplace-Transformation

Mehr

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST HTW Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST Dauer : 100 Minuten Prof. Dr. B. Grabowski Name: Matr.Nr.: Erreichte Punktzahl: Hinweise zur Bearbeitung der Aufgaben:

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Digitale Signalverarbeitung Übungsaufgaben

Digitale Signalverarbeitung Übungsaufgaben Kapitel : Einleitung -: Analoger Tiefpass Dieser Tiefpass mit den Werten R = Ω, L =.5mH R L und C =.5µF ist wie folgt zu analysieren: U e C R. Es springe U e bei t =.5ms auf 5V und bei t = ms wieder auf.

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Einführung in die Systemtheorie Von Professor Dr.-Ing. Bernd Girod Priv.-Doz. Dr.-Ing. habil. Rudolf Rabenstein und Dipl.-Ing. Alexander Stenger Universität Erlangen-Nürnberg Mit 259 Bildern B.G. Teubner

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 2., korrigierte und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3)

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3) Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3) Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung

Mehr

Signale und Systeme. Christoph Becker

Signale und Systeme. Christoph Becker Signale und Systeme Christoph Becker 18102012 Signale Definition 1 Ein Signal ist eine Folge von Zahlen {xn)} welche die Bedingung xn) < erfüllt Definition 2 Der Frequenzgang / frequency domain representation

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr