f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen

Größe: px
Ab Seite anzeigen:

Download "f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen"

Transkript

1 2 Signale im Zeitbereich 2.1 Harmonische Funktionen = Xˆ sin( ω t) 1 f = T Einheiten: [ f ] = Hz ω = 2 π -1 [ ω] = s f mit Phasenverschiebung (hier: nacheilend) : = Xˆ sin( ω t - ϕ) φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen Sinusfunktion 90 (π/2) voreilend, oder Kosinusfunktion : = Xˆ sin( ω t + = Xˆ cos( ω t) π ) 2 1

2 2.2 Exponentialfunktionen Exponentielles Wachstum: Exponentielle Abnahme: 1 - exponentielle Abnahme: 2

3 2.3 Die Sprungfunktion Die Einheitssprungfunktion: Bezeichnung: ε (t) (griech. Epsilon) - ε (t) kann nur zwei Werte annehmen: 0 oder 1 - ε (t) ändert Wert bei t = 0 - ε (t) ist dimensionslos - ε (t) beschreibt Einschaltvorgänge (beschreibt den Zeitpunkt eines Einschaltvorgangs) Die Antwort eines Systems auf einen Einheitssprung als x e nennt man Übergangsfunktion: h (t) Die skalierte Sprungfunktion: - Skalierungsfaktor c beschreibt auf welchen Wert gesprungen wird - Skalierungsfaktor c gibt der Sprungfunktion eine Einheit - ε (t) beschreibt den Zeitpunkt, zu dem gesprungen wird 3

4 2.4 Die Impulsfunktion (auch: DIRAC Impuls, Delta Impuls, Nadel Impuls) Bezeichnung: δ (t) (griech. Delta) Ideal: Real: In Praxis: - Amplitude des δ (t) so hoch wie möglich - Dauer des δ (t) so kurz wie möglich - dabei: Fläche des Impulses = 1 einhalten! Die Antwort eines Systems auf einen DIRAC-Impuls als x e nennt man Gewichtsfunktion: g (t) 4

5 2.5 Die Anstiegsfunktion (auch: Rampenfunktion) Die Einheitsanstiegsfunktion: Bezeichnung: ρ (t) (griech. Rho) Die skalierte Anstiegsfunktion: - k : Anstieg der Rampe - k gibt der Rampenfunktion eine Einheit 5

6 2.6 Zeitverschiebungen z.b. nacheilende Sprünge: z.b.: t s = 5 s t (in s) t - t s ε (t - t s ) , , , z.b. voreilende Sprünge: 6

7 2.7 Signalkombinationen Ein- und Ausschalten von Sprüngen, Rechteckfunktionen Rechteckfunktionen erzeugt man durch das zeitversetzte Ein- & Ausschalten von Sprungfunktionen. 7

8 2.7.2 Ein- und Ausschalten von Rampen, Dreieckfunktionen Dreieckfunktionen erzeugt man durch das zeitversetzte Ein- & Ausschalten von Rampenfunktionen. 8

9 2.7.3 Ein- und Ausschalten beliebiger Funktionen Beliebige Funktionen schaltet man Ein bzw. Aus durch die Multiplikation mit Einheitssprüngen. 9

10 2.7.4 Erzeugen beliebiger Funktionen Beliebige Funktionen können durch die Multiplikation von Grundfunktionen erzeugt werden. 10

11 2.8 Weitere Einteilungen Kontinuierlichkeit ( kontinuierlich / diskret ) Bei zeitkontinuierlichen Signalen liegt ein Signalwert zu jedem beliebigen Zeitpunkt vor. Bei zeitdiskreten Signalen liegen nur Signalwerte zu diskreten Zeitpunkten vor. Wertekontinuierliche Signale können jeden beliebigen Wert annehmen. Wertediskrete Signale können nur diskrete Werte annehmen. 11

12 2.8.2 Symmetrieeigenschaften a) Ein Signal bezeichnet man als "gerade", wenn gilt: (Gerade Signale sind symmetrisch zur Ordinatenachse.) = x (-t) Beispiel: Kosinus-Funktion: b) Ein Signal bezeichnet man als "ungerade", wenn gilt: (Ungerade Signale sind symmetrisch zum Koordinatenursprung.) = - x (-t) Beispiel: Sinus-Funktion: c) Ein Signal besitzt Halbwellen-Symmetrie, wenn gilt: Beispiel: Bipolare Pulsfolge: T = - x ( t + 2 ) 12

Signale. und. Systeme. SoSe Übung 01. Charakterisierung. von Signalen

Signale. und. Systeme. SoSe Übung 01. Charakterisierung. von Signalen Signale und Systeme SoSe 9 Übung Charakterisierung von Signalen Aufgabe Zeichnen Siedie folgenden Signale und diskutieren Sie deren Eigenschaften: (a) Impulsfolgen: δ( k), δ( k 4) (b) Sprungfolgen: ε(

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 8-I Symmetrie einer Funktion: Aufgabe 8 Prüfen Sie, ob die Funktionen gerade, ungerade oder keines von beiden sind: a ) f (x ) = cos

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

Übung 1: Charakterisierung von Signalen

Übung 1: Charakterisierung von Signalen Übung Signale und Systeme Sommersemester Übung : Charakterisierung von Signalen 5.April Übung : Charakterisierung von Signalen. Zeichnen Sie die folgenden Signale und diskutieren Sie deren Eigenschaften:

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Übung 1: Charakterisierung von Signalen

Übung 1: Charakterisierung von Signalen AG Digitale Signalverarbeitung - Übung Signale und Systeme Sommersemester 9 Übung : Charakterisierung von Signalen.April 9 Übung : Charakterisierung von Signalen Aufgabe (a/):, k Der Einheitsimpuls (Impulsfolge)

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Binomische Formeln Für beliebige Zahlen a und b gelten die binomischen Formeln: (a + b) 2 = a a b + b 2

Binomische Formeln Für beliebige Zahlen a und b gelten die binomischen Formeln: (a + b) 2 = a a b + b 2 Errata.03.06 38 Grundlagen Satz.5 (Binomischer Satz) Für jede natürliche Hochzahl n und beliebige Zahlen a und b gilt die Formel (a + b) n = a n + ( n ) an b + ( n ) an b +... + ( n n ) a bn + b n n =

Mehr

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x)

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x) Vertikale Verschiebung a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g() = f() b) Zeichne den Graphen der Funktion h mit h() = f() ein. Oben oder unten? f() +

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X.

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X. Audiotechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 21.1.21 1. Aufgabe: Amplitudenstatistik analoger Audiosignale a. Ein Signal x(t) hat die durch Abb. 1 gegebene Wahrscheinlichkeitsdichtefunktion

Mehr

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik Kosinusfunktion: graphische Darstellung und Interpretation 1-E Vorkurs, Mathematik Kosinusfunktion: Erklärung der Aufgabe 1 Aufgabe 1: Zeichnen Sie die trigonometrische Kosinusfunktion g (x) = a cos x.

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner Änderungsindex Version Datum Verfasser Änderungen 5.3.4 9..3 8 8.3.3 7 3.. M. Strohrmann, U. Brunner M.

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Musterlösung zur Klausur Signale und Systeme

Musterlösung zur Klausur Signale und Systeme Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Herbst 005 Aufgabe : Kontinuierliche und diskrete Signale..a) y t ).b) y t ) -3T -T -T T T

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

Beschränkte Funktionen

Beschränkte Funktionen http://www.youtube.com/watch?v=vorskyophym Beschränkte Funktionen 1 1 Ma 1 Lubov Vassilevskaya Eine beschränkte Funktion: Beispiel 1 a = 1 Abb. 1 1: Eine von unten beschränkte Funktion y = 0.5 x² Die Funktion

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

7.1 Überlagerung von Schwingungen, Fourier Zerlegung

7.1 Überlagerung von Schwingungen, Fourier Zerlegung Kapitel 7 Schwingungen und Wellen 7. Überlagerung von Schwingungen, Fourier Zerlegung Im Abschnitt über die Bewegungen einzelner Teilchen haben wir uns sehr intensiv mit den Harmonischen Schwingungen beschäftigt,

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =

Mehr

Nachklausur zu Klausur Nr. 1, WS 2010

Nachklausur zu Klausur Nr. 1, WS 2010 Physikalisches Praktikum für Studierende der Biologie und Zahnmedizin Nachklausur zu Klausur Nr. 1, WS 2010 Name: Vorname: Matr. Nr.:......... (Bitte in Blockschrift) Anschrift:......... Bitte Studienfach

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

3. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 3. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Systemeigenschaften, Superpositionsprinzip Systemklassen: DESS, DEVS,

Mehr

ISDN- und PCM-Systeme

ISDN- und PCM-Systeme ISDN- und PCM-Systeme Michael Dienert 6. Oktober 2009 Inhaltsverzeichnis 1 Digitale Übertragung und Speicherung von Audiosignalen 1 1.1 Ein paar Definitionen.......................... 1 1.1.1 Analoge Signale........................

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Signalverarbeitung SS 2012

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Signalverarbeitung SS 2012 Name, Vorname: Matr.-Nr.: Wichtige Hinweise: Ausführungen, Notizen und Lösungen auf den Aufgabenblättern werden nicht gewertet. Vor der entsprechenden Lösung ist deutlich die dazugehörige Nummer der Aufgabe

Mehr

2. Anordnung zur digitalen Signalverarbeitung

2. Anordnung zur digitalen Signalverarbeitung 2. Anordnung zur digitalen Signalverarbeitung Prof. Dr.-Ing. Dr. h.c. Norbert Höptner Prof. Dr.-Ing. Stefan Hillenbrand Ergänzende Informationen zur Vorlesung Signalverarbeitungssysteme Abschnitte 2.1-2.5.

Mehr

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale Zeitsignale Je nach Zeitbasis und Wertemenge des Signals unterscheidet man zeit- und wertkontinuierliche Signale (analoge Signale); zeitdiskrete, aber wertkontinuierliche Signale (zeitdiskrete Signale);

Mehr

Signalverarbeitung Charakterisierung der Signale

Signalverarbeitung Charakterisierung der Signale Signalverarbeitung Charakterisierung der Signale SE+ Med 4. Semester Werner Backfrieder Mathematisches Repetitorium Winkel- oder Kreisfunktionen α H AK GK sin( α) cos( α) Gegenkathete Hypothenuse Ankathete

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

15.5 Beschreibung von linearen Systemen

15.5 Beschreibung von linearen Systemen 5.5 Beschreibung von linearen Systemen 965 5.5 Beschreibung von linearen Systemen Um das Übertragungsverhalten von Systemen zu bestimmen, untersucht man in der Regelungs- und Systemtechnik den Zusammenhang

Mehr

3 Zeitdiskrete Signale

3 Zeitdiskrete Signale 3 Zeitdiskrete Signale Die Systemtheorie beschreibt Systeme unter anderem durch den Zusammenhang von Signalen am Systemeingang und -ausgang. Im Teil A dieser Skriptreihe sind Beispiele für unterschiedliche

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Manfred Strohrmann Urban Brunner Änderungsindex Version Datum Verfasser Änderungen.3.6 5.3.5 5.3.4 9..3 8 8.3.3 7 3.. M. Strohrmann, U.

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

Signale und Systeme Die Fourier-Reihe

Signale und Systeme Die Fourier-Reihe Signale und Systeme Die Fourier-Reihe Zsolt Kollar BME HVT hvt.bme.hu 26. März 2012 Gliederung 1 Die kontinuierliche Fourier-Reihe Rekapitulation Berechnung der Koeffizienten Genauigkeit Spezielle Eigenschaften

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t)

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) Transformationen Übungen 1 1 Signale und Systeme 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) 1 c) f(-t) d) f(t + 3) 1 t e) f(t / 4) f) f(t) + 2 g)

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses

Mehr

Kapitel 6: Grundlagen der Wechselstromtechnik

Kapitel 6: Grundlagen der Wechselstromtechnik Inhalt Kapitel 6: Grundlagen der technik Sinusförmige Signale Zeigerdarstellung Darstellung mit komplexen Zahlen komplexe Widerstände Grundschaltungen Leistung im kreis Ortskurven Übertragungsfunktion

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 31. Oktober 2016 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

Signale und Systeme Signale

Signale und Systeme Signale Signale und Systeme Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung und Systemtheorie Inhalt der Vorlesung

Mehr

Musterlösung zur Aufgabe A1.1

Musterlösung zur Aufgabe A1.1 Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Wichtige zeitdiskrete Folgen

Wichtige zeitdiskrete Folgen Wichtige zeitdiskrete Folgen.8 Einheitsimpuls.6 δ(n) = {, n, n = δ(n).4.2 - -5 5 n Wichtige zeitdiskrete Folgen Einheitssprung u(n) = u(n) = = {, n

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Lösung 07 Klassische Theoretische Physik I WS 15/16

Lösung 07 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 7 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

sfg Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α:

sfg Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens b = Fläche des Kreissektors α α 2rπ A = 360 360 πr2 Das Bogenmaß

Mehr

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie Abschnitt: 2.1 Allgemeine Beschreibung A2.1: Gleichrichtung Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie so erhält man am Ausgang das

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Mathematik Tutorium. x 2

Mathematik Tutorium. x 2 Mathematik Tutorium Fakultät Grundlagen Termin Algebra Aufgabe : Vereinfachen Sie die folgenden Ausdrücke: a) 5 ) : ) 5 b) n+ n c) an+ a n a n+ + a n d) ) ) : ) ) e) 5 f) 5 z + z 5 Aufgabe : Berechnen

Mehr

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2 Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale ufgabe (5 Punkte) ufgabe : Kontinuierliche und diskrete Signale. Zeichnen Sie jeweils den geraden und den ungeraden nteil des Signals in bb..!. Sind Sie folgenden Signale periodisch? Falls ja, bestimmen

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Approximation von Funktionen

Approximation von Funktionen von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät

Mehr

Kapitel 8: Zeitdiskrete Zufallssignale

Kapitel 8: Zeitdiskrete Zufallssignale ZHAW, DSV2, 2007, Rumc, 8-1 Kapitel 8: Zeitdiskrete Zufallssignale Inhaltsverzeichnis 1. STOCHASTISCHER PROZESS...1 2. STATISTISCHE EIGENSCHAFTEN EINER ZUFALLSVARIABLEN...2 3. STATISTISCHE EIGENSCHAFTEN

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK )

ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK ) Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK ) Übungsleiter:

Mehr

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an! Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr