Listen, Stapel, Warteschlangen

Größe: px
Ab Seite anzeigen:

Download "Listen, Stapel, Warteschlangen"

Transkript

1 Lsten, Stapel, Warteschlangen Thomas Röfer Abstrakte Datentypen Rehung Stapel Warteschlange Enfach und doppelt verkettete Lste

2 Rückblck Prozeduren, Funktonen, Datenströme, JavaDoc Unterprogramme Prozeduren Funktonen Kopf (Sgnatur) Rumpf Formale Aktuelle Parameter En/Ausgabe & Transente P. Überladung plus plus :: nt nt longnt longnt plus plus :: nt nt longlong longlong plus plus :: long long longlong longlong plus plus :: long long ntnt ntnt De Funkton man() >java Klasse Hallo "des und das" Strng[] args args args.length 3 args[0] "Hallo" args[1] "21333" args[2] "des und das" JavaDoc Datenströme Datenströme n Java stream stream FleInputStream FleInputStream reader reader InputStreamReader buffer buffer BufferedReader BufferedReader lne lne Strng Strng PI-1: Lsten, Stapel, Warteschlangen 2

3 Abstrakte Datentypen Defnton En abstrakter Datentyp besteht aus den Daten selbst (z.b. Objektzustand) und den auf den Daten auszuführenden Operatonen (z.b. Methoden) Öffentlche Schnttstelle der Operatonen Interne Abläufe werden versteckt (Gehemnsprnzp) In Java: Klassen Algebrasche abstrakte Datentypen Neben der Schnttstelle der Operatonen wrd zusätzlch de Semantk der Operatonen formal beschreben, z.b. n Form von Axomen plus : nt ntnt null : nt plus(a, b) plus(b, a) plus(a, null) a plus(a, plus(b, c)) plus(plus(a, b), c) PI-1: Lsten, Stapel, Warteschlangen 3

4 Rehungen Egenschaften Wahlfreer Zugrff auf alle Elemente n konstanter Zet über Index Rehungen haben normalerwese ene feste Größe Wenn ncht, snd Vergrößern und Verklenern teure Operatonen (neue Rehung anlegen, alte Daten hnüberkoperen) Enfügen und Löschen snd teure Operatonen, da alle Elemente hnter dem engefügten/gelöschten kopert werden müssen Operatonen ener Rehung fester Größe Rehung erzeugen create : ntarray Entrag schreben set : Array nt EntryArray Entrag auslesen get : Array ntentry Länge auslesen length : Array nt PI-1: Lsten, Stapel, Warteschlangen 4

5 Rehung mt Enfügen und Löschen // // nt nt Datentyp Datentyp der der Enträge Enträge Array Array nt[] nt[] entres entres nt[0]; nt[0]; nt nt get(nt get(nt pos) pos) entres[pos]; entres[pos]; set(nt set(nt pos, pos, nt nt entres[pos] entres[pos] entres.length entres.length 0; 0; nsertbefore(nt nsertbefore(nt pos, pos, nt nt nt[] nt[] temp temp nt[entres.length nt[entres.length 1]; 1]; for(nt for(nt 0; 0; < < pos; pos; ) ) temp[] temp[] entres[]; entres[]; temp[pos] temp[pos] for(nt for(nt pos; pos; < < entres.length; entres.length; ) ) temp[ temp[ 1] 1] entres[]; entres[]; entres entres temp; temp; remove(nt remove(nt pos) pos) nt[] nt[] temp temp nt[entres.length nt[entres.length - - 1]; 1]; for(nt for(nt 0; 0; < < pos; pos; ) ) temp[] temp[] entres[]; entres[]; for(nt for(nt pos pos 1; 1; < < entres.length; entres.length; ) ) temp[ temp[ - - 1] 1] entres[]; entres[]; entres entres temp; temp; PI-1: Lsten, Stapel, Warteschlangen 5

6 Stapel (Stack) Zweck En Stapel dent zum Zwschenspechern von Elementen Der Zugrff erfolgt nach dem last-n, -out Prnzp (lfo), d.h. das zuletzt abgelegte Element wrd zuerst zurückgelefert Operatonen Stapel erzeugen create : Stack Entrag ablegen push : Stack EntryStack Kopf auslesen top : StackEntry Entrag entnehmen pop : StackStack Auf Leere testen empty : Stack Axome top(push(s, e)) e pop(push(s, e)) s empty(create()) empty(push(s, e)) Alternatve Entrag entnehmen und zurücklefern pop : StackStack Entry PI-1: Lsten, Stapel, Warteschlangen 6

7 Bespel: En UPN-Rechner Umgekehrte Polnsche Notaton De Operanden kommen zuerst, dann kommt der Operator, z.b. 1 2 Arbetet als Stack-Maschne: Jeder Operator holt sch sene Operanden von der Sptze des Stapels und legt das Ergebns weder dort ab Bespel Für 1 2 * 3 schrebt man: * * PI-1: Lsten, Stapel, Warteschlangen 7

8 Bespel: En UPN-Rechner n Java Eval Eval statc statc eval(strng[] eval(strng[] expresson) expresson) Stack Stack stack stack Stack(); Stack(); for(nt for(nt 0; 0; < < expresson.length; expresson.length; ) ) Strng Strng s s expresson[]; expresson[]; f(s.equals("")) f(s.equals("")) stack.push(stack.pop() stack.push(stack.pop() stack.pop()); stack.pop()); f(s.equals("-")) f(s.equals("-")) stack.push(-stack.pop() stack.push(-stack.pop() stack.pop()); stack.pop()); f(s.equals("*")) f(s.equals("*")) stack.push(stack.pop() stack.push(stack.pop() * * stack.pop()); stack.pop()); f(s.equals("/")) f(s.equals("/")) stack.push(1 stack.push(1 / / stack.pop() stack.pop() * * stack.pop()); stack.pop()); stack.push(double.parsedouble(s)); stack.push(double.parsedouble(s)); stack.pop(); stack.pop(); PI-1: Lsten, Stapel, Warteschlangen 8

9 Beschränkter Stapel Stack Stack top top 34 3 entres s.push(6) s.pop() PI-1: Lsten, Stapel, Warteschlangen 9

10 Beschränkter Stapel Stack [] [] entres; entres; nt nttop; top; Stack(nt Stack(ntsze) entres entres [sze]; top top 0; 0; push( push( assert asserttop top < entres.length; entres.length; entres[top] entres[top] pop() assert assert!;!; entres[--top]; entres[--top]; top top 0; 0; // // Datentyp Datentyp der der Enträge Enträge PI-1: Lsten, Stapel, Warteschlangen 10

11 Stack als enfach verkettete Lste Stack Stack s.push(4) s.pop() PI-1: Lsten, Stapel, Warteschlangen 11

12 Stack als enfach verkettete Lste ; ; ; ; Stack Stack ; ; Stack() Stack() push( push( s s (); (); s. s. s. s. ; ; s; s; pop() pop() d d.;.;.;.; d; d; PI-1: Lsten, Stapel, Warteschlangen 12

13 Warteschlange (Queue) Zweck Ene Warteschlange dent zum Zwschenspechern von Elementen Der Zugrff erfolgt nach dem -n, -out Prnzp (llo), d.h. das zuerst abgelegte Element wrd auch zuerst zurückgelefert Operatonen Warteschlange erzeugen create : Queue Entrag ablegen push : Queue EntryQueue Kopf auslesen top : Queue Entry Entrag entnehmen pop : Queue Queue Auf Leere testen empty : Queue Axome top(push(push(create(), e), f)) e pop(push(push(create(), e), f)) push(create(), f) empty(create()) empty(push(q, e)) Alternatve Entrag entnehmen und zurücklefern pop : Queue Queue Entry PI-1: Lsten, Stapel, Warteschlangen 13

14 Bespel: UPN-Rechner mt Puffer Eval Eval statc statc eval(strng eval(strng expresson) expresson) eval(splt(expresson)); eval(splt(expresson)); statc statc Queue Queue splt(strng splt(strng expresson) expresson) Queue Queue queue queue Queue(); Queue(); expresson expresson expresson.trm(); expresson.trm(); whle(!expresson.equals("")) whle(!expresson.equals("")) nt nt ndex ndex (expresson (expresson " " ").ndexof(" ").ndexof(" "); "); queue.push(expresson.substrng(0, queue.push(expresson.substrng(0, ndex)); ndex)); expresson expresson expresson.substrng(ndex).trm(); expresson.substrng(ndex).trm(); queue; queue; statc statc eval(queue eval(queue queue) queue) Stack Stack stack stack Stack(10); Stack(10); whle(!queue.) whle(!queue.) Strng Strng s s queue.pop(); queue.pop(); PI-1: Lsten, Stapel, Warteschlangen 14

15 Beschränke Warteschlange (Rngpuffer) Queue Queue 3 2 last last 90 9 entres "17" "5" "3" "0" q.push("6") "7" "8" "42" "19" "11" null "6" q.pop() PI-1: Lsten, Stapel, Warteschlangen 15

16 Beschränke Warteschlange (Rngpuffer) Queue Queue Strng[] Strng[] entres; entres; nt nt,, last; last; Queue(nt Queue(nt sze) sze) entres entres Strng[sze Strng[sze 1]; 1]; last last 0; 0; push(strng push(strng entres[last] entres[last] last last % % entres.length; entres.length; assert assert!;!; Strng Strng pop() pop() assert assert!;!; Strng Strng entry entry entres[]; entres[]; % % entres.length; entres.length; last; last; // // Strng Strng Datentyp Datentyp der der Enträge Enträge PI-1: Lsten, Stapel, Warteschlangen 16

17 Warteschlange als enfach verkettete Lste Queue Queue last last q.push(4) QueueElement "1" "1" q.pop() QueueElement "2" "2" QueueElement "4" "4" QueueElement "3" "3" PI-1: Lsten, Stapel, Warteschlangen 17

18 Warteschlange als enfach verkettete Lste QueueElement QueueElement QueueElement QueueElement ; ; Strng ; Strng ; QueueElement(Strng QueueElement(Strng s) s) s; s; Queue Queue QueueElement QueueElement,, last; last; Queue() Queue() last last push(strng push(strng s) s) f() f() last QueueElement(s); last QueueElement(s); last. last. QueueElement(s); QueueElement(s); last last last.; last.; Strng Strng pop() pop() assert assert!;!; Strng Strng s s.;.;.;.; s; s; PI-1: Lsten, Stapel, Warteschlangen 18

19 Lsten Enfach verkettete Lste Jedes Element enthält enen Zeger auf senen Nachfolger Kann nur n ener Rchtung durchlaufen werden Enfügen mmer hnter en exsterendes Lstenelement En Element kann nur gelöscht werden, wenn sen Vorgänger bekannt st Doppelt verkettete Lste Jedes Element enthält enen Zeger auf senen Vorgänger und senen Nachfolger Kann vor- und rückwärts durchlaufen werden Enfügen vor und hnter exsterende Lstenelemente Elemente können problemlos gelöscht werden Lst Lst DLLst DLLst last last 3 3 null null DL DL 1 1 prevous prevous null null DL DL 1 1 prevous prevous DL DL 1 1 prevous prevous null null PI-1: Lsten, Stapel, Warteschlangen 19

20 Operatonen auf Lsten Egenschaften Zugrff auf Elemente nur n fester Rehenfolge Enfügen und Löschen snd n konstanter Zet möglch Specherplatzverbrauch höher als be Rehungen Operatonen auf Lsten (z.b. enfach verkettet) Lst create : Lst : Lst nsert : Lst Entry Lst remove : Lst Lst empty : Lst last : : entry : Entry PI-1: Lsten, Stapel, Warteschlangen 20

21 Enfach verkettete Lste mt Index nt nt ; ; (nt (nt e) e) entry entry e; e; Lst Lst ; ; Lst() Lst() at(nt at(nt pos) pos) current current ; ; whle(pos whle(pos > > 0 0 && && current current!! null) null) current current current.; current.; --pos; --pos; current; current; nt nt get(nt get(nt pos) pos) at(pos). at(pos). set(nt set(nt pos, pos, nt nt at(pos).entry at(pos).entry PI-1: Lsten, Stapel, Warteschlangen 21

22 Enfach verkettete Lste mt Index nsertbefore(nt nsertbefore(nt pos, pos, nt nt Elem Elem (; (; f(pos f(pos 0) 0) Elem. Elem. ; ; Elem; Elem; current current at(pos at(pos - - 1); 1); Elem. Elem. current.; current.; current. current. Elem; Elem; remove(nt remove(nt pos) pos) f(pos f(pos 0) 0).;.; current current at(pos at(pos - - 1); 1); current. current. current..; current..; PI-1: Lsten, Stapel, Warteschlangen 22

23 Abbldung von Stack/Queue auf Lst Stack Stack Lst Lst lst lst Lst(); Lst(); push(entry push(entry e) e) lst.nsertbefore(e, lst.nsertbefore(e, lst.()); lst.()); Entry Entry pop() pop() e e (); (); lst.remove(e); lst.remove(e); e. e. lst.; lst.; Queue Queue Lst Lst lst lst Lst(); Lst(); push(entry push(entry e) e) lst.nsertbefore(e, lst.nsertbefore(e, lst.()); lst.()); Entry Entry pop() pop() e e last(); last(); lst.remove(e); lst.remove(e); e. e. lst.; lst.; PI-1: Lsten, Stapel, Warteschlangen 23

Vererbung. Thomas Röfer. Pakete Vererbung Frühes / spätes Binden Lokale Klassen Zugriffsschutz Abstrakte Klassen und Schnittstellen Mehrfaches Erben

Vererbung. Thomas Röfer. Pakete Vererbung Frühes / spätes Binden Lokale Klassen Zugriffsschutz Abstrakte Klassen und Schnittstellen Mehrfaches Erben Vererbung Thomas Röfer Pakete Vererbung Frühes / spätes Binden Lokale Klassen Zugriffsschutz bstrakte Klassen und Schnittstellen Mehrfaches Erben Rückblick Listen, Stapel, Warteschlangen bstrakte Datentypen

Mehr

Vererbung. Thomas Röfer

Vererbung. Thomas Röfer Vererbung Thomas Röfer Pakete Vererbung Frühes / spätes Binden Lokale Klassen Zugriffsschutz bstrakte Klassen und Schnittstellen nonyme Klassen Mehrfaches Erben Rückblick Listen, Stapel, Warteschlangen

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr

Chair of Software Engineering

Chair of Software Engineering 1 2 Enführung n de Programmerung Bertrand Meyer Vorlesung 13: Contaner-Datenstrukturen Letzte Bearbetung 1. Dezember 2003 Themen für dese Vorlesung 3 Contaner-Datenstrukturen 4 Contaner und Genercty Enthalten

Mehr

16. Dynamische Datenstrukturen

16. Dynamische Datenstrukturen Datenstrukturen 6. Dynamische Datenstrukturen Eine Datenstruktur organisiert Daten so in einem Computer, dass man sie effizient nutzen kann. Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Klassen und Abstrakte Datentypen Abstrakte Datentypen (ADT) Beschreibung der Datentypen nicht auf Basis ihrer Repräsentation, sondern auf Basis ihrer Operationen und

Mehr

Übungen zu Algorithmen

Übungen zu Algorithmen Insttut für Informatk Unverstät Osnabrück, 06.12.2016 Prof. Dr. Olver Vornberger http://www-lehre.nf.uos.de/~anf Lukas Kalbertodt, B.Sc. Testat bs 14.12.2016, 14:00 Uhr Nls Haldenwang, M.Sc. Übungen zu

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

ALP II Dynamische Datenmengen Datenabstraktion

ALP II Dynamische Datenmengen Datenabstraktion ALP II Dynamische Datenmengen Datenabstraktion O1 O2 O3 O4 SS 2012 Prof Dr Margarita Esponda M Esponda-Argüero 1 Dynamische Datenmengen Dynamische Datenmengen können durch verschiedene Datenstrukturen

Mehr

Stack. Queue. pop() liefert zuletzt auf den Stack gelegtes Element und löscht es push( X ) legt ein Element X auf den Stack

Stack. Queue. pop() liefert zuletzt auf den Stack gelegtes Element und löscht es push( X ) legt ein Element X auf den Stack Stack und Queue Grundlegender Datentyp Menge von Operationen (add, remove, test if empty) auf generischen Daten Ähnlich wie Listen, aber mit zusätzlichen Einschränkungen / Vereinfachungen: Einfügen immer

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

13. Dynamische Datenstrukturen

13. Dynamische Datenstrukturen Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Sortierte Liste 40 40 Motivation: Stapel ( push, pop, top, empty ) Wir brauchen einen neuen

Mehr

Einfügen immer nur am Kopf der Liste Löschen auch nur an einem Ende (2 Möglichkeiten!)

Einfügen immer nur am Kopf der Liste Löschen auch nur an einem Ende (2 Möglichkeiten!) Stack und Queue Grundlegender Datentyp Menge von Operationen (add, remove, test if empty) auf generischen Daten Ähnlich wie Listen, aber mit zusätzlichen Einschränkungen / Vereinfachungen: Einfügen immer

Mehr

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken.

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Abstrakte Datentypen und Datenstrukturen/ Einfache Beispiele Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Datenstruktur (DS): Realisierung

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2)

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 49 Einfach verkettete Listen O1 O2 O3 50 Einführung Einfach verkettete Listen sind die einfachsten

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

12. Dynamische Datenstrukturen

12. Dynamische Datenstrukturen Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Implementationsvarianten der verketteten Liste 0 04 Motivation: Stapel ( push, pop, top, empty

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Musterlösung: IntToGerman

Musterlösung: IntToGerman Musterlösung: IntToGerman class classinttogerman static staticfinal finalstring[] digit digit = "","ein","zwei","drei","vier","fünf","sechs", "sieben","acht","neun","zehn","elf","zwölf" }; }; static staticfinal

Mehr

o Alphabet Σ ( Beispiel: {F, +, -} ) o P: Σ -> Σ * eine Produktion o w 0 = F o w 1 = F+F+ o w 2 = F+F++F+F++ o w 3 = F+F++F+F+++F+F++F+F+++ o...

o Alphabet Σ ( Beispiel: {F, +, -} ) o P: Σ -> Σ * eine Produktion o w 0 = F o w 1 = F+F+ o w 2 = F+F++F+F++ o w 3 = F+F++F+F+++F+F++F+F+++ o... Fraktale rekursv zechnen Defnton o Alphabet Σ ( Bespel: F, +, - ) o Σ * = Menge aller endlchen Wörter über Σ ( Bespel: F+F+ st n Σ * ) o P: Σ -> Σ * ene Produkton Bespel: P(F) = F+F+ P(+) = + P(- ) = -

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Konkatenation zweier Listen mit concat

Konkatenation zweier Listen mit concat Ein Datenmodell für Listen Konkatenation zweier Listen mit concat Was ist an der Konkatenation etwas unschön? Man muss die vordere Liste einmal durchgehen, um den letzten Nachfolger (urspr. null zu erhalten,

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Spezielle Datenstrukturen

Spezielle Datenstrukturen Spezielle Datenstrukturen Stapel (Stack) Beschreibung der Datenstruktur Stapel Ein Stapel (engl. Stack), auch Stapelspeicher oder Keller bzw. Kellerspeicher genannt, ist eine Datenstruktur, in der Daten

Mehr

Manipulation von Mengen

Manipulation von Mengen Manpulaton von Mengen Thomas Röfer Vorrangwarteschlange Lnksbaum Heap HeapSort Unon-Fnd-Strukturen Allgemener Rahmen für Mengenmanpulatonen Rückblck Hashng Streuspecherverfahren Hashfunkton Hashen mt Verkettung

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält

Mehr

1 Abstrakte Datentypen

1 Abstrakte Datentypen 1 Abstrakte Datentypen Spezifiziere nur die Operationen! Verberge Details der Datenstruktur; der Implementierung der Operationen. == Information Hiding 1 Sinn: Verhindern illegaler Zugriffe auf die Datenstruktur;

Mehr

12.3 Ein Datenmodell für Listen

12.3 Ein Datenmodell für Listen Zweiter Versuch: Wir modellieren ein Element der Liste zunächst als eigenständiges Objekt. Dieses Objekt hält das gespeicherte Element. Andererseits hält das Element- Objekt einen Verweis auf das nächste

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Aufgaben NF 11; Seite 1

Aufgaben NF 11; Seite 1 Aufgabe Ref 1: Gegeben ist die Klasse Schueler public class Schueler { private String name, vorname, kurs; // Konstruktor public Schueler(String n, String vn, String k) { name=n; vorname=vn; kurs=k; public

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Einige wichtige Datenstrukturen: Vektor, Matrix, Liste, Stapelspeicher, Warteschlange Prof. Dr. Nikolaus Wulff Datenstruktur / Datentyp Programme benötigen nicht nur effiziente

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Abstrakte Datentypen und deren Implementierung in Python

Abstrakte Datentypen und deren Implementierung in Python Kapitel 15: Abstrakte Datentypen und deren Implementierung in Python Einführung in die Informatik Wintersemester 007/08 Prof. Bernhard Jung Übersicht Abstrakte Datentypen ADT Stack Python-Implementierung(en)

Mehr

Wiederholung: Zusammenfassung Felder. Algorithmen und Datenstrukturen (für ET/IT) Definition Abstrakter Datentyp. Programm heute

Wiederholung: Zusammenfassung Felder. Algorithmen und Datenstrukturen (für ET/IT) Definition Abstrakter Datentyp. Programm heute Wiederholung: Zusammenfassung Felder Algorithmen und Datenstrukturen (für ET/IT) Wintersemester / Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Ein Feld A kann repräsentiert

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 13. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 13. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Folensatz Mchael Brnkmeer Technsche Unverstät Ilmenau Insttut für Theoretsche Informatk Sommersemester 009 TU Ilmenau Sete / Sorteren TU Ilmenau Sete / Das Sorterproblem Das Sorterproblem Daten: ene total

Mehr

5.3 Doppelt verkettete Listen

5.3 Doppelt verkettete Listen 5.3 Doppelt verkettete Listen Einfach verkettete Listen unterstützen das Einfügen und Löschen am Anfang in konstanter Zeit; für das Einfügen und Löschen am Ende benötigen sie jedoch lineare Laufzeit Doppelt

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Sortierte Listen 2. Stacks & Queues 3. Teile und Herrsche Nächste Woche: Vorrechnen (first-come-first-served)

Mehr

Rte de Tavel 10 - Case postale / Postfach Fribourg - Tél. 026 / Fax 026 /

Rte de Tavel 10 - Case postale / Postfach Fribourg - Tél. 026 / Fax 026 / 2011.03.30 Benutzeranletung Onlne Termnreservaton Zu unseren Interndenstlestungen gelangen Se unter www.ocn.ch 1. ASS ONLINE NLINE anklcken 2. Termne Technsche Kontrollen anklcken a Rte de Tavel 10 - Case

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. (Sortierte) Listen 2. Stacks & Queues 3. Datenstrukturen 4. Rekursion und vollständige Induktion

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1 MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Algorthmen und Programmeren II Sorteralgorthmen mperatv Tel II Prof. Dr. Margarta Esponda Free Unverstät Berln Tele und Herrsche "Dvde und Conquer" Vele Probleme lassen sch ncht mt trvalen Schlefen lösen

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Kapitel 4: Datentyp Keller und Schlange

Kapitel 4: Datentyp Keller und Schlange Kapitel 4: Datentyp Keller und Schlange Keller (Stack) Schlange (Queue) 4-1 Definition Keller und seine Operationen Ein Keller (engl. Stack; Stapel) ist eine endliche Menge von Elementen mit einer LIFO-Organisation

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Programmieren I. Kapitel 13. Listen

Programmieren I. Kapitel 13. Listen Programmieren I Kapitel 13. Listen Kapitel 13: Listen Ziel: eigene Datenstrukturen erstellen können und eine wichtige vordefinierte Datenstruktur( familie) kennenlernen zusammengehörige Elemente zusammenfassen

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 6 (14.5.2014) Abstrakte Datentypen, Einfache Datenstrukturen Algorithmen und Komplexität Abstrakte Datentypen : Beispiele Dictionary: (auch:

Mehr

Stacks, Queues & Bags. Datenstrukturen. Pushdown/Popup Stack. Ferd van Odenhoven. 19. September 2012

Stacks, Queues & Bags. Datenstrukturen. Pushdown/Popup Stack. Ferd van Odenhoven. 19. September 2012 , Queues & Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 19. September 2012 ODE/FHTBM, Queues & 19. September 2012 1/42 Datenstrukturen Elementare Datenstrukturen

Mehr

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten?

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten? Prof. Dr. Fredel Bolle 1 Prof. Dr. Fredel Bolle Vorlesung 1 Defnton: Kooperatves Spel En ooperatves Spel Γ st en Tupel (N,V), wobe der N = {1,...,m} mt m > 1 de Menge der Speler bezechnet und Was erwarten

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Bäume 1. Thomas Röfer

Bäume 1. Thomas Röfer Bäume Thomas Röfer Preisverleihung Begriffsdefinitionen Eigenschaften Implementierung von Bäumen Durchlaufen von Bäumen Breitensuche/Tiefensuche Huffman-Kodierung Rückblick Sortieren Permutieren nach Dijkstra

Mehr

Algorithmen und ihre Programmierung -Teil 3-

Algorithmen und ihre Programmierung -Teil 3- Veranstaltung Pr.-Nr.: Algorthmen und hre Programmerung -Tel - Veronka Waue WS / Veronka Waue: Grundstudum Wrtschaftsnformatk WS/ Übung Ersetzen Se n folgendem Bespel de For schlefe durch ene WhleWend-Schlefe

Mehr

3. Vorlesung Sommersemester

3. Vorlesung Sommersemester 3. Vorlesung Sommersemester 1 Bespele (Fortsetzung) 1. Der starre Körper: Formulerung der Zwangsbedngungen später. Anschaulch snd schon de Frehetsgrade: dre der Translaton (z. B. Schwerpuntsoordnaten)

Mehr

Computergestützte Gruppenarbeit

Computergestützte Gruppenarbeit Computergestützte Gruppenarbet 8. Undo von Operatonen Dr. Jürgen Vogel European Meda Laboratory (EML) Hedelberg SS 2006 0 CSCW SS 2006 Jürgen Vogel Inhalt der Vorlesung 1. Enführung 2. Grundlagen von CSCW

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

DLK Pro Multitalente für den mobilen Datendownload. Maßgeschneidert für unterschiedliche Anforderungen. www.dtco.vdo.de

DLK Pro Multitalente für den mobilen Datendownload. Maßgeschneidert für unterschiedliche Anforderungen. www.dtco.vdo.de DLK Pro Multtalente für den moblen Datendownload Maßgeschnedert für unterschedlche Anforderungen www.dtco.vdo.de Enfach brllant, brllant enfach DLK Pro heßt de Produktfamle von VDO, de neue Standards n

Mehr

Robotik. Robotik Wintersemester Kapitel 4 : Vorwärtsrechnung. Angew. Mathematik (B.Sc. + M.Sc.)

Robotik. Robotik Wintersemester Kapitel 4 : Vorwärtsrechnung. Angew. Mathematik (B.Sc. + M.Sc.) Wesbaden Unverst of Appled Scences LV Robotk 5 Credts Angew. Mathematk (B.Sc. + M.Sc.) Wntersemester 25 Prof. Dr. D. Rchter Department [Desgn>Computer Scence>Meda] Wesbaden Unverst of Appled Scences Hochschule

Mehr

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten.

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten. ayessches Theorem Das ayessche Theorem st en Ergens aus der ahrschenlchetstheore und lefert enen Zusammenhang zwschen edngten ahrschenlcheten.. ayessches Theorem für Eregnsse Senen und zwe elege Eregnsse.

Mehr

Algorithmen und Programmierung III

Algorithmen und Programmierung III Musterlösung zum 3. Aufgabenblatt zur Vorlesung WS 2006 Algorithmen und Programmierung III von Christian Grümme Aufgabe 1 Potenzieren von Matrizen Testlauf der Klasse Matrix.java: 10 Punkte Erzeuge Matrix

Mehr

Einfache Liste: Ein Stapel (Stack) Ansatz. Schaubild. Vorlesung 1. Handout S. 2. Die einfachste Form einer Liste ist ein Stapel (stack).

Einfache Liste: Ein Stapel (Stack) Ansatz. Schaubild. Vorlesung 1. Handout S. 2. Die einfachste Form einer Liste ist ein Stapel (stack). Programmieren I Martin Schultheiß Hochschule Darmstadt Sommersemester 2011 1 / 64 2 / 64 Motivation Hauptteil dieser Vorlesung sind die so genannten. Zur Motivation (und als Vorbereitung der Datencontainer-Klassen

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Lineare Listen (2) Doppelt verkettete Listen Ringlisten, Stapel, Schlangen Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 175 Doppelt verkettete Listen

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

B2.1 Abstrakte Datentypen

B2.1 Abstrakte Datentypen Algorithmen und Datenstrukturen 21. März 2018 B2. Abstrakte Datentypen Algorithmen und Datenstrukturen B2. Abstrakte Datentypen B2.1 Abstrakte Datentypen Marcel Lüthi and Gabriele Röger B2.2 Multimengen,

Mehr

4.3 Keller und Warteschlangen

4.3 Keller und Warteschlangen .3 Keller und Warteschlangen Wir werden zuerst die weitverbreitete Datenstruktur Keller (auch stack, pushdown) kennenlernen. Auch in Python selbst wird sie z.b. bei der Auswertung arithmetischer Ausdrücke

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Algorithmen und Programmierung III

Algorithmen und Programmierung III Musterlösung zum 4. Aufgabenblatt zur Vorlesung WS 2006 Algorithmen und Programmierung III von Christian Grümme Aufgabe 1 Amortisierte Analyse 10 Punkte Zu erst betrachte ich wie oft die letzte Ziffer

Mehr

Universität Bremen. Hashing. Thomas Röfer. Hash-Funktionen Hashing mit Verkettung Offenes Hashing Doppeltes Hashing Dynamische Hash-Tabellen

Universität Bremen. Hashing. Thomas Röfer. Hash-Funktionen Hashing mit Verkettung Offenes Hashing Doppeltes Hashing Dynamische Hash-Tabellen Unverstät Bremen Hshng Thoms Röfer Hsh-Funktonen Hshng mt Verkettung Offenes Hshng Doppeltes Hshng Dynmsche Hsh-Tbellen Unverstät Bremen Rückblck Bäume 2 Suchbäume Blttsuchbäume Löschen us Suchbum 8 5

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Vorlesung Programmieren II

Vorlesung Programmieren II Hashng Vorlesung Prograeren II Mchael Bergau Fortsetzung der Stoffenhet Hashng Hashng 2 Was st Hashng? Hashng st ene Methode zur dynaschen Verwaltung von Daten, wobe de Daten durch enen Schlüssel (key)

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Ihr geschützter Bereich Organisation Einfachheit Leistung

Ihr geschützter Bereich Organisation Einfachheit Leistung Rev. 07/2012 Ihr geschützter Berech Organsaton Enfachhet Lestung www.vstos.t Ihr La geschützter tua area rservata Berech 1 MyVstos MyVstos st ene nformatsche Plattform für den Vstos Händler. Se ermöglcht

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Überscht der Vorlesung. Enführung. Bldverarbetung 3. Morphologsche Operatonen 4. Bldsegmenterung 5. Merkmale von Objekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Bewegungsanalyse aus Bldfolgen

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

Nachtrag: Vergleich der Implementierungen von Stack

Nachtrag: Vergleich der Implementierungen von Stack Nachtrag: Vergleich der Implementierungen von Stack In der letzten Vorlesung hatten wir zwei Implementierung der Klasse Stack: eine Implementierung als Liste (Array): liststack eine Implementierung als

Mehr

Anmeldeseite zur persönlichen Servicewelt

Anmeldeseite zur persönlichen Servicewelt https://servce.mcsm.de/ Anmeldesete zur persönlchen Servcewelt McSIM Kundenservce onlne Persönlche Daten Ändere enfach und schnell dene Adresse oder Bankdaten Tarfdetals Informere Dch über denen Tarf oder

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen

Mehr