Übersicht der Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Übersicht der Vorlesung"

Transkript

1 Überscht der Vorlesung. Enführung. Bldverarbetung 3. Morphologsche Operatonen 4. Bldsegmenterung 5. Merkmale von Objekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Bewegungsanalyse aus Bldfolgen 9. PCA (Hauptkomponentenanalyse) 0.ICA (Independent Component Analyss Unabhänggketsanalyse)

2 4. Bldsegmenterung 4. Enführung 4. Punktorenterte Segmenterung 4.3 Mathematsche Grundlagen 4.4 Bestmmung von Komponenten 4.5 Regonenorenterte Segmenterung 4.6 Kantenorenterte Segmenterung 4.7 Kantenverfolgung 4.8 Gebetsnachbarschaftsgraph 4.9 Modellabhängge Verfahren zur Segmenterung

3 4.6 Kantenorenterte Segmenterung

4 4.6. Überblck

5 Überblck Zel: Fnden der Randkanten von Gebeten Sobald man de Kanten gefunden hat, erhält man auch ene Segmenterung des Bldes.

6 Kern Rand Nachbarschaftsstruktur: [ P, N ] M P p M p Kernpunkt von M: N( p) M Menge aller Kernpunkte von M: Nachbarn von p K(M ) Randpunkt von M: q M q K(M ) Menge aller Randpunkte von M: R(M )

7 endmensonale Menge (Kante) Nachbarschaftsstruktur: [ P, N ] K P zusammenhängend K heßt endmensonal: p K: N( p) K Problem be verzwegten Kanten En Pxel hat 3 Nachbarn

8 endmensonal andere Möglchket für Bldraster p K : kene zwe Punkte der Menge snd benachbart bezüglch N 4 N 8 ( p) K erfüllt

9 Kantenorenterte Segmenterung Nachbarschaftsstruktur: [ P, N ] Kantenorenterte Segmenterung: { K, K,, } K K n K K j, j endmensonal { } exstert Zerlegung von P: Z X,, K X m m U n U R( X j ) K j

10 3 Telaufgaben Im Folgenden se [P,N] mmer en Bld. Zel: { K, K,, } K K n Kantendetekton man erhält ene Menge K kantenverdächtger Punkte (Kaptel ) Kantenverdünnung es wrd ene endmensonale Telmenge von K erzeugt Kantenverfolgung bsher gefundene Kantensegmente werden verlängert bzw. geschlossen

11 4.6. Kantendetekton

12 Kantendetekton H SZ H SS

13 4.6.3 Kantenverdünnung

14 Kantenverdünnung De Menge K der kantenverdächtgen Punkte enthält.a. noch Anhäufungen von Kantenpunkten, de Kanten von mehr als Bldpunkt Brete erzeugen (K st ncht endmensonal). Der Zweck der Kantenverdünnung st es, Punkte aus K so zu elmneren, dass endmensonale Kantensegmente entstehen.

15 enfaches Bespel L.. L.. L.. L.. zuerst lnke (L) Randpunkte entfernen. R. R. R. R dann rechte (R) Randpunkte entfernen.... L... R. L... R.

16 weteres Bespel de Randpunkte werden n der Rehenfolge L (Lnks), R (Rechts), U (Unten), O (Oben) entfernt andere Rehenfolgen snd möglch Resultat st von deser Rehenfolge abhängg be der angegebenen Rehenfolge werden vertkale Kantensegmente bevorzugt hat rechten Nachbarn hat kenen lnken Nachbarn hat mnd. Nachbarn (4 Nachbarschaft). Iteraton. Iteraton

17 4.6.4 Skeletterung

18 Skeletterung allgemenere Möglchket der Kantenverdünnung mt morphologschen Operatonen (Kaptel 3) Algorthmus von Lü und Wang für Bnärblder

19 Algorthmus von Lü und Wang 3 x 3 Maske: P P P 3 P 8 P P 4 P 7 P 6 P 5 P { 0,} P gehört mmer zum Segment (alle Ensen) und hat den Wert (Bnärblder) A(P) Anzahl der Übergänge von 0, wenn de Punkte P,, P 8, P enmal durchlaufen werden A(P) B(P)3 B(P) Anzahl der unter den Punkten P,, P A(P)3 B(P)4

20 Algorthmus von Lü und Wang Wr scheben de Maske n mehreren Iteratonen über das Bld. P wrd m Segment gelöscht, wenn: 3 B( P) 6 A( P) P P P P ) 4 6 ( 8 P P P P ) 8 ( 4 6 false false be gerader Iteraton (.,4., ) be ungerader Iteraton (.,3., ) Be den letzten Bedngungen betrachten wr P als logsche Varable mt den Werten true und false.

21 Bespele P B( P) P wrd ncht entfernt 0 0 P A( P) P wrd ncht entfernt 0 0 P 0 0 P P P P ) true 4 6 ( 8 P P P P ) true 8 ( 4 6 P wrd be kener Iteraton entfernt

22 4.7 Kantenverfolgung

23 Kantenverfolgung bsher gefundene Kantensegmente verlängern bzw. schleßen (klenere Tele werden eventuell auch entfernt) Aufgaben: Wahl enes Startpunktes Sukzessve wrd versucht, wetere Punkte der Kante zu fnden Informatonen zur Beurtelung, ob en weterer Punkt zur Kante gehört: aus Bld (z.b. Grauwertänderung) a pror (z.b. Form der Kante)

24 4.7. Freemancode

25 Freemancode (Rchtung) P p p, 8 ), ( N p p ), ( j j j j j j j j j j j j j j j j falls p p r { }, 0,,, 0, ) :, ( J j I j P K K

26 Addton, Subtrakton von Freemancodes Codes: Addton: c, c { 0,,,3,4,5,6,7 } c c ( c + ) mod8 c Subtrakton: c c c ( c ) mod8

27 Wnkeldfferenz c, c { 0,,,3,4,5,6,7 } c c ( c c)mod8 [( c c )]mod8 falls ( c ( c c c )mod8 4 )mod8 > 4 Bespele: 0 [mod8] 0 mod mod8 7 0 [ 7mod8]

28 Beschrebung enes Weges Weg: w ( p0, p, K, pn) p P ( 0, K, n) ( p, p+ ) N8 ( 0, K, n ) w c ( p, C) C ( c, c, K, c 0 n r( p, p ) (, K, n) ) Startpunkt des Weges Länge des Weges w n

29 Drehung enes Weges um enen Punkt w ( p, C) C ( c, c, K, c 0 n ) Drehpunkt Drehwnkel: π m 4 w D ( p0, CD) CD ( c m, c m, K, cn m)

30 Bespel Bespel: Drehung um 90 (m) p

31 4.7. Kantenverfolgung Suchen von Wegen

32 Suchen von Wegen Kantenverfolgung kann als Fnden enes Weges beschreben werden vom Startpunkt p 0 werden mmer weder neue Nachbarpunkte bezüglch der 8 Nachbarschaft zum Weg hnzufügt, bs en geegneter Weg gefunden st Endpunkt des Weges kann vorgegeben sen oder man sucht enen Weg ener bestmmten Länge k nsgesamt 8 k möglche Wege der Länge k (Suchmenge muss engeschränkt werden) Enschränken der lokale Wegkrümmung engeschränkter Wnkelberech um den Startpunkt

33 Enschränken der lokalen Wegkrümmung w c ( p, C) C ( c, c, K, c 0 k r( p, p ) (, K, k) ) {, }, k c c a K, Bespel: a, c 0, k 3 Wege

34 Enschränken der lokalen Wegkrümmung Bespel: a, c 0, k 3 9 Wege

35 engeschränkter Wnkelberech um den Startpunkt w c ( p, C) C ( c, c, K, c 0 k r( p, p ) (, K, k) ) c {,,3 },, k c cmax K

36 4.7.3 Aufbau ener Kostenfunkton und Anwendung von Suchverfahren

37 Kostenfunkton Knotenmenge { p,, } 0 L und Kantenmenge { c }, L,c k blden Graph Gesucht st en möglchst optmaler Weg bezüglch ener Kostenfunkton von p 0 zu p k De Kostenfunkton enthält Angaben über de Grauwertänderung entlang des Weges und über de Form des Weges p k

38 Bespel ener Kostenfunkton ) ( d k k k d k g k g w K α möglchst gerng Weglänge Gewchtsfaktoren Grauwertdfferenz am -ten Wegelement lokale Krümmung am -ten Wegelement z.b. für d 3 (5 Möglchketen)

39 4.8 Gebetsnachbarschaftsgraph

40 Gebetsnachbarschaftsgraph Zusammenhang zwschen den Segmenten Beschrebung mttels Graphen Knoten entsprechen den Segmenten Kanten beschreben geometrsche Relatonen zwschen den Segmenten benachbart umgbt lnks (rechts) von über dese Graphen werden be der Objektklassfkaton benutzt

41 Gebetsnachbarschaftsgraph Nachbarschaftsstruktur: [ P, N ] Homogentätsfunkton: h P : { true, false} Segmenterung bezüglch h: { X, } Z, S K X n Gebetsnachbarschaftsgraph: G [ Z, K ] N S N Knoten Kanten ( X, X j ) K N X und X j snd benachbart

42 Bespel

43 Nachbarschaftsstruktur: P Homogentätsfunkton: Segmenterung bezüglch h: Gebetsherarche [ P, N ] {(, j) : 0,, I, j 0, K, } J K 8 P h : { true, false} { X, } Z, K S X n N N 4 oder N Gebetsherarche: G [ Z, K ] H S H ( X, X j ) K H ( X, X j ) K N und X umgbt X j exakte Defnton noch notwendg

44 Umgbtgraph Gebetsherarche: G [ Z, K ] H S H Umgbtgraph: G, U [ Z K ] S U transtve Hülle von K H

45 Bespel

46 Wetere Relatonen

47 4.9 Modellabhängge Verfahren zur Segmenterung

48 Modellabhängge Verfahren zur Segmenterung Wssen über de geometrsche Form der gesuchten Segmente wrd benutzt Verfahren: Matchen Hough Transformaton

49 4.9. Matchen

50 Matchen Engabebld: G E ( g (, j)), 0, K, I, j 0, K, J E Muster: A ( a( a, j)), 0, K, a, j 0, K, ( l, m): l 0, K, I, m 0, K, J d( l, m) I lm (, j) [ g I lm E (, j) a( l, j m)] {(, j) : l { 0, L, a } j m { 0, L a }, Muster st m Bld vorhanden und befndet sch am Ort (l,m), wenn: d ( l, m) < T0 vorgegebener Schwellwert

51 4.9. Hough Transformaton

52 Hough Transformaton wrd oft zur Detekton von Geraden m Bld benutzt dadurch kann man Segmente fnden, de durch geradlnge Kanten begrenzt werden aber auch Krese oder Ellpsen können gefunden werden

53 Allgemenes Vorgehen p ) n Vektor von Parametern zur ( p,..., p n R Beschrebung enes Objektes repräsentert en konkretes Objekt, z.b. ene Gerade oder enen Kres n der Ebene R bnäres Engabebld: G E ( g (, j)), 0, K, I, j 0, K, J g E E (, j) {0,} De Punkte (,j) mt g E (,j) können z.b. kantenverdächtge Punkte sen, de man mt Operatoren der Bldverarbetung berets herausgefltert hat.

54 Allgemenes Vorgehen f (, j, p) belebge Funkton mt Werten aus R {( p, p )} n A R K, n endlche Telmenge (z.b. en Gtter) p A d( p) (, j) mt g E H(, (, j) j, p) H(, j, p) falls f (, j, p) 0 0 sonst d ( p) > T Objekt mt der Parameterkombnaton p gefunden vorgegebener Schwellwert

55 Geraden n p ( ρ, θ) R Gerade n Hessescher Normalform ρ cos( θ) + jsn( θ) Abstand vom Nullpunkt zur Geraden Wnkel zwschen der Achse und dem Lot vom Nullpunkt auf de Gerade f (, j, ρ, θ) cos( θ) + jsn( θ) ρ

56 Geraden Parameterraum

57 Geraden Parameterraum Ene Schar von Geraden durch enen Punkt (,j) erschent m Parameterraum als ene Punktmenge.

58 Geraden Parameterraum Ene Gerade durch 3 Punkte erschent nur an ener Stelle p m Parameterraum. Dafür st der Wert von d(p) aber schon 3.

59 Geraden Algorthmus,, k ρ ρ ρ K l θ θ θ,, K Parameter ρ und θ werden dskretsert, z.b. n Form enes Gtters ), ( ), ( ),, ( ) ( j g mt j E p j H p d l k p θ θ θ ρ ρ ρ θ ρ,,,,, ),, ( K K + sonst 0 0 ) sn( ) cos( ),,, ( falls ),, ( ρ θ θ θ ρ j j f p j H ) ( T p d > Gerade mt der Parameterkombnaton p gefunden

60 Bespel Engabebld Kantendetekton Parameterraum (4 markante Punkte) gefundene Geraden

61 Bespel

62 Bespel De Werte d(p) können m Parameterraum bldlch dargestellt werden. d(p) kann als Grauwert nterpretert werden. Im Parameterraum fnden wr 8 markante Enträge für de 8 Geraden m Engabebld.

63 Bespel Um de geradlng begrenzten Segmente zu fnden, st aber noch ene Nachbearbetung nötg, da man ncht de gesamten Geraden benötgt, sondern nur Telstrecken deser Geraden.

64 Krese R0 - gegeben ( x, y) - gesucht (Mttelpunkt) n p ( x, y) f (, j, x, y) ( x) + ( j y) R0 R kann auch noch en drtter Parameter sen Be mehr als Parametern kann allerdngs der Rechenaufwand schon sehr groß werden.

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Überscht der Vorlesun. nführun. Bldverarbetun 3. Morpholosche Operatonen 4. Bldsementerun 5. Merkmale von Obekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Beweunsanalyse aus Bldfolen 9. PCA Hauptkomponentenanalyse.ICA

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Überscht der Vorlesung. Enführung. Blderarbetung. orphologsche Operatonen 4. Bldsegmenterung 5. erkmale on Objekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Bewegungsanalyse aus Bldfolgen 9.

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Robotik. Robotik Wintersemester Kapitel 4 : Vorwärtsrechnung. Angew. Mathematik (B.Sc. + M.Sc.)

Robotik. Robotik Wintersemester Kapitel 4 : Vorwärtsrechnung. Angew. Mathematik (B.Sc. + M.Sc.) Wesbaden Unverst of Appled Scences LV Robotk 5 Credts Angew. Mathematk (B.Sc. + M.Sc.) Wntersemester 25 Prof. Dr. D. Rchter Department [Desgn>Computer Scence>Meda] Wesbaden Unverst of Appled Scences Hochschule

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

4 Die geometrische Darstellung der komplexen

4 Die geometrische Darstellung der komplexen 4 De geometrsche Darstellung der komplexen Zahlen Mt komplexen Zahlen kann man rechnen we mt gewöhnlchen Zahlen. Man kann mt hnen alle quadratschen Glechungen lösen. Aber das st be wetem ncht alles: Komplexe

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

1. Graphen 8. B={{d,e},{b,d},{a,b},{d,f},{b,c}}.

1. Graphen 8. B={{d,e},{b,d},{a,b},{d,f},{b,c}}. . Graphen 8 Bespel: f 5 5 d e 7 7 a 4 b 6 c Für den obenstehenden zusammenhängenden Graphen soll en Mnmalgerüst konstruert werden. Wr ordnen zunächst de Kanten des Graphen nach wachsender Bewertung, d.h.

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren Inhalt 4 Realserung elementarer Funktonen Rehenentwcklung Konvergenzverfahren 5 Unkonventonelle Zahlenssteme redundante Zahlenssteme Restklassen-Zahlenssteme logarthmsche Zahlenssteme 6 Rechnen mt Zahlen

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

3.1 Extensive Form, Spielbaum und Teilspiele

3.1 Extensive Form, Spielbaum und Teilspiele 3. Spele n extensver Form 3.1 Extensve Form, Spelbaum und Telspele 3.2 Strategen n extensven Spelen 4. Spele mt vollkommener Informaton 4.1 Telspelperfekte Nash-Glechgewchte 4.2 Das chan-store -Paradox

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Zusammenfassung Pfade Zusammenfassung: en Pfad --Y-Z- st B A E Blockert be Y, wenn Dvergerende Verbndung,

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Seminararbeit. Wasserscheiden - Ansätze zur Bildsegmentierung I

Seminararbeit. Wasserscheiden - Ansätze zur Bildsegmentierung I Unverstät Ulm Fakultät für Mathematk und Wrtschaftswssenschaften Abtelung angewandte Informatonsverarbetung, Abtelung Stochastk Dr. J. Mayer, Prof. Dr. V. Schmdt, Prof. Dr. F. Schweggert, Jun. - Prof.

Mehr

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr

Übungsblatt 7 Lösungsvorschläge

Übungsblatt 7 Lösungsvorschläge Insttut für Theoretsche Informatk Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Lösungsvorschläge Vorlesung Algorthmentechnk m WS 09/10 Problem 1: Mnmale Schnttbass Approxmatonsalgos relatver Gütegarante

Mehr

Approximationsalgorithmen. Facility Location K-Median. Cheng, Wei 12. Juli

Approximationsalgorithmen. Facility Location K-Median. Cheng, Wei 12. Juli Approxmatonsalgorthmen aclty Locaton K-Medan heng We 12. Jul aclty Locaton Defnton Gegeben: möglche Standorte = { 1 2 m } Städte = { 1 2 n } Eröffnungskosten f für Verbndungskosten c zwschen und Dreecksunglechung

Mehr

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie Prof. Dr. Jürgen Dassow Otto-von-Guercke-Unverstät Magdeburg Fakultät für Informatk Coderungstheore und Kryptographe Sommersemester 2005 1 2 Inhaltsverzechns 1 Defnton und Charakterserung von Codes 5 1.1

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

I) Mechanik 1.Kinematik (Bewegung)

I) Mechanik 1.Kinematik (Bewegung) I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Denavit-Hartenberg-Notation

Denavit-Hartenberg-Notation DENAVIT und HARTENBERG haben ene Methode engeführt, de es erlaubt für alle knematsche Ketten de Lagen der Gleder zuenander enhetlch auszudrücken. De Gelenke, de de Gleder mtenander verbnden, dürfen dabe

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Die mathematischen Grundlagen der Wellenmechanik

Die mathematischen Grundlagen der Wellenmechanik De mathematschen Grundlagen der Wellenmechank Zustände und deren Darstellung En physkalsches System wrd durch enen Zustand u charaktersert, ndem es durch ene bestmmte expermentelle Präparaton gebracht

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Entscheidungstheorie Teil 3. Thomas Kämpke

Entscheidungstheorie Teil 3. Thomas Kämpke Entschedngstheore Tel 3 Thomas Kämpke Sete Entschedngstheore Tel 3 Inhalt St. Petersbrg Paradoon (Bernoll 73) Präferenzfnktonen ttelpnktsmethode zr Bestmmng von Wertfnktonen über Intervallen (endmensonal)

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematk für das Ingeneurstudum von Martn Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck m Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzechns schnell und portofre

Mehr

Sequential minimal optimization: A fast Algorithm for Training Support Vector machines

Sequential minimal optimization: A fast Algorithm for Training Support Vector machines Sequental mnmal optmzaton: A fast Algorthm for Tranng Support Vector machnes By John C. Platt (998) Referat von Joerg Ntschke Fall der ncht-trennbaren Tranngs-Daten (/) In der Realtät kommen lnear ncht-trennbare

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Lösungen aller Aufgaben und Lernkontrollen

Lösungen aller Aufgaben und Lernkontrollen Oft gbt es be den Aufgaben mehr als nur enen rchtgen Lösungsweg. Es st jedoch mest nur ene Lösung dargestellt. Aufgaben u Kaptel Lösung u Aufgabe a) nach Defnton von. b) 4 ( ) ( ). c) 5 4. d) ( ) (( )

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

Wir steuern einen Mini-Roboter!

Wir steuern einen Mini-Roboter! Wr steuern enen Mn-Roboter! Telnehmer: Marek Bartusch Cecla Lange Yannck Lehmann Johannes-Lucas Löwe Ncolas Menzel Huong Thao Pham Floran Pogatzk Anne Reulke Jonas Wanke Maran Zuska mt tatkräftger Unterstützung

Mehr

Computergestützte Gruppenarbeit

Computergestützte Gruppenarbeit Computergestützte Gruppenarbet 8. Undo von Operatonen Dr. Jürgen Vogel European Meda Laboratory (EML) Hedelberg SS 2006 0 CSCW SS 2006 Jürgen Vogel Inhalt der Vorlesung 1. Enführung 2. Grundlagen von CSCW

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Übungen zu Algorithmen

Übungen zu Algorithmen Insttut für Informatk Unverstät Osnabrück, 06.12.2016 Prof. Dr. Olver Vornberger http://www-lehre.nf.uos.de/~anf Lukas Kalbertodt, B.Sc. Testat bs 14.12.2016, 14:00 Uhr Nls Haldenwang, M.Sc. Übungen zu

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretsche Physk 2 (Theoretsche Mechank Prof. Dr. Th. Feldmann 28. Oktober 2013 Kurzzusammenfassung Vorlesung 4 vom 25.10.2013 1.6 Dynamk mehrerer Massenpunkte Dynamk für = 1... N Massenpunkte mt.a. komplzerter

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Über eine besondere Teilung einer Dreieckfläche

Über eine besondere Teilung einer Dreieckfläche Paper-ID: VGI 93202 Über ene besondere Telung ener Dreeckfläche Leopold Herzka Hofrat. R., Wen Österrechsche Zetschrft für Vermessungswesen 30 (), S. 3 6 932 BbT E X: @ARTICLE{Herzka_VGI_93202, Ttle =

Mehr

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am TU Graz, Insttut für Regelungs- und Automatserungstechnk 1 Schrftlche Prüfung aus Sgnaltransformatonen Tel: Dourdoumas am 1. 10. 01 Name / Vorname(n): Kennzahl / Matrkel-Nummer: 1 errechbare Punkte 4 errechte

Mehr

Komplexe Zahlen. Teil 1. Grundrechenarten. Darstellung in der Gaußschen Zahlenebene. Datei Nr Friedrich Buckel. Stand 23.

Komplexe Zahlen. Teil 1. Grundrechenarten. Darstellung in der Gaußschen Zahlenebene. Datei Nr Friedrich Buckel. Stand 23. Höhere Analyss Komplexe Zahlen Tel Grundrechenarten Darstellung n der Gaußschen Zahlenebene Date Nr. 500 Stand. November 08 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK https/:mathe-cd.de 500 Komplexe Zahlen

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E Höhere nalss Komplexe Zahlen Tel Darstellung der komplexen Zahlen als Vektoren mt Polarkoordnaten trgonometrsch oder exponentell Eulersche Funkton E Date Nr. 500 Stand. November 08 FRIEDRICH W. BUCKEL

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Komplexe Zahlen. Roger Burkhardt 2008

Komplexe Zahlen. Roger Burkhardt 2008 Komplexe Zahlen Roger Burkhardt (roger.burkhardt@fhnw.ch) 008 Enführung De Unvollkommenhet des Körpers der reellen Zahlen N 1,,,,... snd sowohl { } In der Menge der natürlchen Zahlen Addton we Multplkaton

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Wahl auf Bäumen: FireWire

Wahl auf Bäumen: FireWire Wahl auf Bäumen: FreWre IEEE 94 Hgh Performance Seral Bus (FreWre) Internatonaler Standard Hochgeschwndgketsbus Transport von dgtalen Audo- und Vdeo-Daten 400 Mbps (94b: 800 MBps... 3200 Mbps) Hot-pluggable

Mehr