Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann

Größe: px
Ab Seite anzeigen:

Download "Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann"

Transkript

1 Einführung in die formale Logik Prof. Dr. Andreas Hüttemann Textgrundlage: Paul Hoyningen-Huene: Formale Logik, Stuttgart 1998

2 1. Einführung 1.1 Logische Folgerung und logische Form Logische Folgerung (logischer Schluss) Ein Beispiel: Prämisse 1: Alle Logiker sind Menschen. Prämisse 2: Alle Menschen sind schlafbedürftig Konklusion: Alle Logiker sind schlafbedürftig. Der Übergang von den Prämissen zur Konklusion des Beispielschlusses erscheint irgendwie zwingend. Es handelt sich offenbar um einen korrekten (logischen) Schluss, da man unter der Voraussetzung der Akzeptanz der Prämissen zur Akzeptanz der Konklusion geführt wird. (Statt korrekt verwendet man auch die Ausdrücke gültig und richtig, statt Schluss spricht man auch von Folgerung.) korrekter (logischer) Schluss Wenn es um die Korrektheit eines Schlusses geht, ist offensichtlich das gesamte Satzsystem, das aus den Prämissen und der Konklusion besteht, relevant, nicht ein einzelner Satz des Schlusses. Insbe- 2. Vorlesung

3 sondere ist durch die Korrektheit eines Schlusses nicht ausgemacht, ob die Konklusion wahr oder falsch ist. Ist der Schluss korrekt? Ist die Konklusion wahr? sind von einander verschiedene Fragen, auf die es unterschiedliche Antworten geben kann. (vgl. Beispiele weiter unten) Die Korrektheit eines Schlusses besteht vielmehr in einer Beziehung zwischen den Prämissen und der Konklusion des Schlusses. Diese Beziehung sorgt für den Zwang des Übergangs von den Prämissen zur Konklusion: Wenn man die Prämissen für wahr hält, ist man gezwungen, auch die Konklusion für wahr zu halten. Fünf Merkmale korrekter logischer Schlüsse: 1) Wenn die Prämissen wahr sind, dann ist auch die Konklusion wahr. Wahrheitstransfer 2) Ob die Prämissen wahr sind, spielt für die Beurteilung der Korrektheit des Schlusses keine Rolle. 2. Vorlesung

4 Modifikation des Beispiels: Prämisse 1: Alle Logiker sind Menschen. Prämisse 2: Alle Menschen haben die Eigenschaft S Konklusion : Alle Logiker haben die Eigenschaft S. Die Eigenschaft S bleibt in diesem Schluss unbestimmt. Damit bleibt auch offen, ob Prämisse 2 und die Konklusion des Schlusses wahr sind. Der Schluss ist dennoch nach wie vor gültig! Offensichtlich können Prämisse 2 und die Konklusion sogar falsch sein man setze beispielsweise für S den Ausdruck unsterblich zu sein ein, ohne dass die Gültigkeit des Schlusses tangiert wird. 3) Aus einem korrekten Schluss lassen sich viele weitere korrekte Schlüsse ( mechanisch ) erzeugen. Dies geschieht durch die einheitliche Ersetzung eines Begriffes durch einen anderen Begriff, d.h. dadurch dass an jeder Stelle eines Schlusses, an der ein bestimmter Begriff vorkommt, dieser durch ein und denselben neuen Begriff ausgetauscht wird. Beispiel: Wenn man in dem Ausgangsbeispiel alle Vorkommnisse des Ausdrucks Logiker durch 2. Vorlesung

5 den Ausdruck Tiere, alle Vorkommnisse des Ausdrucks Menschen durch den Ausdruck Lebewesen und alle Vorkommnisse des Ausdrucks schlafbedürftig durch den Ausdruck Geschöpfe Gottes ersetzt, erhält man den folgenden neuen korrekten Schluss: Prämisse 1: Alle Tiere sind Lebewesen. Prämisse 2: Alle Lebewesen sind Geschöpfe Gottes Konklusion: Alle Tiere sind Geschöpfe Gottes. 4) Für die Korrektheit eines Schlusses sind die Bedeutungen der in ihm vorkommenden Begriffe unwesentlich. Man führe folgende Ersetzungen in den Ausgangsbeispiel durch: Logiker A Menschen B schlafbedürftig C Damit erhält man den folgenden Schluss: Prämisse 1: Alle A sind B. Prämisse 2: Alle B sind C Konklusion: Alle A sind C. 2. Vorlesung

6 Die Merkmale 1) bis 3) sind in dem Merkmal 4) enthalten. Dies kann man sich an dem zuletzt aufgeführten Schluss deutlich machen. 5) Die Gültigkeit von korrekten Schlüssen hängt von Wörtern wie alle und einige ab. Es gibt offensichtlich zwei Sorten von Wörtern. Wörter der ersten Sorte ( Menschen, Tiere, schlafbedürftig, unsterblich usf.) können nach obigem Muster in korrekten Schlüssen ersetzt werden, ohne dass an der Korrektheit des Schlusses etwas geändert wird. Wörter der zweiten Sorte ( alle, einige usw.) dürfen in einem Schluss hingegen nicht nach obigem Verfahren ersetzt werden, wenn die Gültigkeit des Schlusses erhalten bleiben soll. Man betrachte zur Verdeutlichung dieses Zusammenhangs den folgenden Schluss, der aus dem unter 4) aufgeführten Schluss durch Ersetzung von alle durch einige zustande kommt: 2. Vorlesung

7 Prämisse 1: Einige A sind B. Prämisse 2: Einige B sind C Konklusion: Einige A sind C. Dass es sich bei diesem Schluss um einen ungültigen Schluss handelt, macht man sich leicht an folgendem Beispiel klar, für das das unter 1) festgehaltene Merkmal des Wahrheitstransfers bei korrekten Schlüssen nicht zutrifft: Prämisse 1: Einige Pflanzen sind Fleischfresser. Prämisse 2: Einige Fleischfresser sind Katzen Konklusion :Einige Pflanzen sind Katzen Logische Form Logische Form (vorläufig): Alle Bestandteile einer Aussage, die für die Korrektheit von Schlüssen, die diese Aussage enthalten, relevant (wesentlich) sind, sollen zur logischen Form der Aussage gehören. 2. Vorlesung

8 Logischer Inhalt: Alle Bestandteile einer Aussage, die für die Korrektheit von Schlüssen, die diese Aussage enthalten, irrelevant (unwesentlich) sind, sollen zum (logischen) Inhalt der Aussage gehören. Einige Bemerkungen zum Begriff der logischen Form: 1) Die logische Form eines Satzes erhält man durch Abstraktion von seinem Inhalt. Geleitet vom Interesse an der Analyse der Korrektheit von Schlüssen isoliert der Begriff der logischen Form dasjenige an Sätzen, was für die Korrektheit der Schlüsse, in denen die Sätze vorkommen, relevant ist. Zu berücksichtigen ist, dass Abstraktionen je nach Interesse auf unterschiedliche Formen führen können. (Reimschema, Grammatik) 2) Es gibt nicht eine logische Form eines Satzes, sondern mehrere. Man kann sich z. B. für die aussagenlogische Form eines Satzes oder seine prädikatenlogische Form 2. Vorlesung

9 interessieren. Auch innerhalb der einzelnen Teilgebiete der Logik ist die logische Form eines Satzes nicht eindeutig bestimmt. 3) Zur Darstellung der logischen Form eines Satzes verwendet man bestimmte Zeichensysteme. Die Darstellungen logischer Formen mittels bestimmter Zeichensysteme heißen Formeln. Daher rührt auch der Begriff der formalen Logik. In der formalen Logik wird u. a. die logische Form von Sätzen und Schlüssen durch Formeln dargestellt. Sätze werden in der formalen Logik nicht in ihrer Ganzheit, sondern nur hinsichtlich ihrer logischen Form betrachtet. logische Formel formale Logik 2. Vorlesung

Erinnerung 1. Erinnerung 2

Erinnerung 1. Erinnerung 2 Erinnerung 1 Ein Argument ist eine Folge von Aussagesätzen, mit der der Anspruch verbunden ist, dass ein Teil dieser Sätze (die Prämissen) einen Satz der Folge (die Konklusion) in dem Sinne stützen, dass

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Prof. Dr. Ansgar Beckermann Wintersemester 2001/2 Allgemeines vorab Wie es abläuft Vorlesung (Grundlage: Ansgar Beckermann. Einführung in die Logik. (Sammlung Göschen Bd. 2243)

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Logik und Missbrauch der Logik in der Alltagssprache

Logik und Missbrauch der Logik in der Alltagssprache Logik und Missbrauch der Logik in der Alltagssprache Wie gewinnt man in Diskussionen? Carmen Kölbl SS 2004 Seminar: " Logik auf Abwegen: Irrglaube, Lüge, Täuschung" Übersicht logische Grundlagen Inferenzregeln

Mehr

y(p F x) gebunden und in den Formeln F xy

y(p F x) gebunden und in den Formeln F xy Wirkungsbereich (Skopus) eines Quantors i bzw. i nennen wir die unmittelbar auf i bzw. i folgende Formel. Wir sagen, eine IV i kommt in einer Formel A gebunden vor, wenn sie unmittelbar auf oder folgt

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

Aufgabe - Fortsetzung

Aufgabe - Fortsetzung Aufgabe - Fortsetzung NF: Nicht-Formel F: Formel A: Aussage x :( y : Q(x, y) R(x, y)) z :(Q(z, x) R(y, z)) y :(R(x, y) Q(x, z)) x :( P(x) P(f (a))) P(x) x : P(x) x y :((P(y) Q(x, y)) P(x)) x x : Q(x, x)

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Kapitel 11 Aussageformen Mathematischer Vorkurs TU Dortmund Seite 103 / 170 11.1 Denition: Aussageformen Eine Aussageform

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

Wissenschaftliches Arbeiten

Wissenschaftliches Arbeiten Teil 7: Argumentieren und Begründen 1 Grundregel: Spezifisch argumentieren Wissenschaftliches Arbeiten Nie mehr zeigen, als nötig oder gefragt ist. Sonst wird das Argument angreifbar und umständlich. Schwammige

Mehr

Das Beweisverfahren der vollständigen Induktion

Das Beweisverfahren der vollständigen Induktion c 2004 by Rainer Müller - http://www.emath.de 1 Das Beweisverfahren der vollständigen Induktion Einleitung In der Mathematik gibt es im Prinzip drei grundlegende Beweismethoden, mit denen man versucht,

Mehr

Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009

Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009 TU Dortmund, Wintersemester 2009/10 Institut für Philosophie und Politikwissenschaft C. Beisbart Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

Prüfungsprotokoll Kurs 1825 Logik für Informatiker. Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015

Prüfungsprotokoll Kurs 1825 Logik für Informatiker. Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015 Prüfungsprotokoll Kurs 1825 Logik für Informatiker Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015 1. Aussagenlogik Alphabet und AS gegeben, wie sind die Aussagenlogischen

Mehr

Aus unseren Leitzielen: Wir gehen verantwortungsvoll mit unserer Position gegenüber den uns anvertrauten Menschen um. Durch die Kontinuität unserer Angebote schaffen wir eine wesentliche Voraussetzung

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Einführung: Logisches Schließen im Allgemeinen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Beispiel:

Mehr

Eine Abfrage (Query) ist in Begriffe und Operatoren unterteilt. Es gibt zwei verschiedene Arten von Begriffen: einzelne Begriffe und Phrasen.

Eine Abfrage (Query) ist in Begriffe und Operatoren unterteilt. Es gibt zwei verschiedene Arten von Begriffen: einzelne Begriffe und Phrasen. Lucene Hilfe Begriffe Eine Abfrage (Query) ist in Begriffe und Operatoren unterteilt. Es gibt zwei verschiedene Arten von Begriffen: einzelne Begriffe und Phrasen. Ein einzelner Begriff ist ein einzelnes

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

1. Erläutern Sie die Aufgaben von Datentypen in der imperativen Programmierung.

1. Erläutern Sie die Aufgaben von Datentypen in der imperativen Programmierung. 1. Erläutern Sie die Aufgaben von Datentypen in der imperativen Programmierung. Beschreiben Sie ferner je einen frei gewählten Datentyp aus der Gruppe der skalaren und einen aus der Gruppe der strukturierten

Mehr

Grundlagen- und Orientierungsprüfung im Fach Philosophie im Rahmen des Bachelorstudiengangs der Philosophischen Fakultäten:

Grundlagen- und Orientierungsprüfung im Fach Philosophie im Rahmen des Bachelorstudiengangs der Philosophischen Fakultäten: Grundlagen- und Orientierungsprüfung im Fach Philosophie im Rahmen des Bachelorstudiengangs der Philosophischen Fakultäten: a) Philosophie als Hauptfach: bis zum Ende des 2. Fachsemesters müssen Lehrveranstaltungen

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automaten, Spiele, und Logik Woche 13 7. Juli 2014 Inhalt der heutigen Vorlesung Terminationsanalyse Rekursive Funktionnen fact(n)= if n==0 then 1 else n*fact(n-1) fibo(n)= if n

Mehr

Logische Strukturen 7. Vorlesung

Logische Strukturen 7. Vorlesung Logische Strukturen 7. Vorlesung Martin Dietzfelbinger 18. Mai 2010 Kapitel 2 Prädikatenlogik Was ist das? Logik und Strukturen Natürliches Schließen Normalformen Herbrand-Theorie Prädikatenlogische Resolution

Mehr

Einführung in die Wissenschaftstheorie

Einführung in die Wissenschaftstheorie Einführung in die Wissenschaftstheorie von Dr. Wolfgang Brauner Was ist Wissen? Wissen = Kenntnis von etwas haben (allg.) Wissen = wahre, gerechtfertigte Meinung (Philosophie: Platon) Formen des Wissens:

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Paul Watzlawick II. Gestörte Kommunikation

Paul Watzlawick II. Gestörte Kommunikation Prof. Dr. Wilfried Breyvogel Sommersemester 05 Montag 12.00-14.00 Uhr R11 T00 D05 Vorlesung vom 18.07.2005 Paul Watzlawick II. Gestörte Kommunikation 1. Die Unmöglichkeit, nicht zu kommunizieren, oder:

Mehr

3. Sätze und Formeln

3. Sätze und Formeln Klaus Mainzer, Die Berechnung der Welt. Von der Weltformel zu Big Data, München 2014 29.07.14 (Verlag C.H. Beck, mit zahlreichen farbigen Abbildungen, geb. 24,95, S.352) (empfohlene Zitierweise: Detlef

Mehr

Friedrich-Ebert-Schule Brunhildenstraße 53 65819 Wiesbaden. Leitfaden zur Anfertigung von Projektdokumentationen

Friedrich-Ebert-Schule Brunhildenstraße 53 65819 Wiesbaden. Leitfaden zur Anfertigung von Projektdokumentationen Friedrich-Ebert-Schule Brunhildenstraße 53 65819 Wiesbaden Leitfaden zur Anfertigung von Projektdokumentationen INHALTSVERZEICHNIS Seite 1. ALLGEMEINES 1 1.1 VORBEMERKUNGEN.1 1.2 ABGABE DER ARBEIT..1 2.

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Begegnungen mit Mathematik

Begegnungen mit Mathematik Begegnungen mit Mathematik 1. Vorlesung: Zahlen 1. Große Zahlen: Million - Milliarde Nach einer weit verbreiteten Meinung hat Mathematik vor allem mit Zahlen zu tun. Mathematiker müssen Leute sein, die

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Übungen zum Kapitel "Aussagelogik"

Übungen zum Kapitel Aussagelogik Übungen zum Kapitel "Aussagelogik" 1. Man beweise oder gebe ein Gegenbeispiel: a) Falls F -> G gültig ist und F gültig ist, so ist auch G gültig. b) Falls F -> G gültig ist und F erfüllbar, so ist G erfüllbar.

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe

Mehr

3.1 Die Grenzen von AL

3.1 Die Grenzen von AL 3 Prädikatenlogik der. Stufe (PL) Teil I 3 Prädikatenlogik der. Stufe (PL) Teil I 3. Die Grenzen von AL [ Partee 95-97 ] Schluss AL- Schema Prädikatenlogische Struktur Alle Logiker sind Pedanten. φ x [

Mehr

BIOL, HST HS 2014 Dr. M. Kalisch. MC-Quiz 1. Einsendeschluss: Dienstag, der :59 Uhr

BIOL, HST HS 2014 Dr. M. Kalisch. MC-Quiz 1. Einsendeschluss: Dienstag, der :59 Uhr BIOL, HST HS 2014 Dr. M. Kalisch MC-Quiz 1 Einsendeschluss: Dienstag, der 23.09.2014 23:59 Uhr Dieses Quiz soll Ihnen helfen, die Regression mit Faktoren und Wechselwirkungen besser zu verstehen. Zum Teil

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Aufbau und Beurteilung der Prüfung (Gültig für Prüfungstermine vor dem 1.1.2016)

Aufbau und Beurteilung der Prüfung (Gültig für Prüfungstermine vor dem 1.1.2016) Aufbau und Beurteilung der Prüfung (Gültig für Prüfungstermine vor dem 1.1.2016) Die Prüfung zur VO Rechnungswesen findet in EDV-gestützter Form unter Verwendung des Softwaretools Questionmark Perception

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet 22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet Autor Volker Claus, Universität Stuttgart Volker Diekert, Universität Stuttgart Holger Petersen, Universität Stuttgart

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

Rhetorik und Argumentationstheorie. [frederik.gierlinger@univie.ac.at]

Rhetorik und Argumentationstheorie. [frederik.gierlinger@univie.ac.at] Rhetorik und Argumentationstheorie 1 [frederik.gierlinger@univie.ac.at] Ablauf der Veranstaltung Termine 1-6 Erarbeitung diverser Grundbegriffe Termine 7-12 Besprechung von philosophischen Aufsätzen Termin

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia

Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia Elementare Logik Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Elementare Logik Slide 1/26 Agenda Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung

Mehr

Wir bedanken uns für die Gelegenheit zur Stellungnahme zu o.g. Entwurf.

Wir bedanken uns für die Gelegenheit zur Stellungnahme zu o.g. Entwurf. Stellungnahme des zum Entwurf des IDW Prüfungsstandards (IDW EPS 840) zur Prüfung von Finanzanlagenvermittlern i.s.d. 34f Abs. 1 Satz 1 GewO nach 24 Finanzanlagenvermittlungsverordnung (FinVermV) Wir bedanken

Mehr

MERKBLATT KASSENBUCH RICHTIG FÜHREN

MERKBLATT KASSENBUCH RICHTIG FÜHREN MERKBLATT KASSENBUCH RICHTIG FÜHREN Inhalt I. Bedeutung II. Wer muss ein Kassenbuch führen? III. Wie kann ein Kassenbuch geführt werden? IV. Voraussetzungen V. Besonderheiten bei digitalen Kassen VI. Häufige

Mehr

Kapitel 5 Zustand eines Objekts

Kapitel 5 Zustand eines Objekts Kapitel 5 Zustand eines Objekts Seite 1 / 6 Kapitel 5 Zustand eines Objekts Lernziel: Bedingte Anweisung in Java Objektzustand 5.1 Unverwundbar soll sichtbar sein Die Methode VerwundbarSetzen sorgt dafür,

Mehr

Funktion Erläuterung Beispiel

Funktion Erläuterung Beispiel WESTFÄLISCHE WILHELMS-UNIVERSITÄT WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT BETRIEBLICHE DATENVERARBEITUNG Folgende Befehle werden typischerweise im Excel-Testat benötigt. Die Beispiele in diesem Dokument

Mehr

Darstellung der Berechnungsproblematik der neuen PTVS 1 anhand des Beispiels vollständig erfüllt bei 3 von 4 Bewohnern

Darstellung der Berechnungsproblematik der neuen PTVS 1 anhand des Beispiels vollständig erfüllt bei 3 von 4 Bewohnern Darstellung der Berechnungsproblematik der neuen PTVS 1 anhand des Beispiels vollständig erfüllt bei 3 von 4 Bewohnern (Zum besseren Verständnis des Folgenden sollte ein Pflegetransparenzbericht einer

Mehr

Nichtmonotones Schließen

Nichtmonotones Schließen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen klassischer Aussagenlogik: Entscheidungstabellen, -bäume, -diagramme Wissensrepräsentation und -verarbeitung durch

Mehr

Deductive Reasoning Agents

Deductive Reasoning Agents Multiagentensysteme Deductive Reasoning Agents Volkan Aksu & Sebastian Ptock Überblick Einleitung Deductive Reasoning Agents Der Staubsauger-Roboter Agentenorientierte Programmierung (AOP) Concurrent MetateM

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Programmierkurs II. C und Assembler

Programmierkurs II. C und Assembler Programmierkurs II C und Assembler Prof. Dr. Wolfgang Effelsberg Universität Mannheim Sommersemester 2003 1-1 Inhalt Teil I: Die Programmiersprache C 2. Datentypen und Deklarationen 3. Operatoren und Ausdrücke

Mehr

GA Seite 1 (04/2012) 137. Änderungen

GA Seite 1 (04/2012) 137. Änderungen GA Seite 1 (04/2012) 137 Aktualisierung, Stand 04/2012 Wesentliche Änderungen Änderungen Die Weisungen zum Arbeitslosengeld werden im Hinblick auf das Gesetz zur Verbesserung der Eingliederungschancen

Mehr

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Barbara König Logik 1 Motivation: Wir beschäftigen uns nun im folgenden mit der, die gegenüber

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Schreiben. Prof. Dr. Fred Karl. Veranstaltung Wissenschaftliches Arbeiten

Schreiben. Prof. Dr. Fred Karl. Veranstaltung Wissenschaftliches Arbeiten Schreiben Prof Dr Fred Karl Veranstaltung Wissenschaftliches Arbeiten Schreiben Ihre Gedanken zusammenhängend, nachvollziehbar und verständlich zu Papier zu bringen Schreiben 1 Strukturieren 2 Rohfassung

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Zusammenhänge präzisieren im Modell

Zusammenhänge präzisieren im Modell Zusammenhänge präzisieren im Modell Dr. Roland Poellinger Munich Center for Mathematical Philosophy Begriffsfeld Logik 1 Mathematik und Logik Die Mathematik basiert auf logisch gültigen Folgerungsschritten

Mehr

Lösen einer Gleichung

Lösen einer Gleichung Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

EINLADUNG. zur Hauptversammlung der RWE Aktiengesellschaft am Donnerstag, dem 23. April 2015

EINLADUNG. zur Hauptversammlung der RWE Aktiengesellschaft am Donnerstag, dem 23. April 2015 EINLADUNG zur Hauptversammlung der RWE Aktiengesellschaft am Donnerstag, dem 23. April 2015 3 RWE AKTIENGESELLSCHAFT ESSEN International Securities Identification Numbers (ISIN): DE 0007037129 DE 0007037145

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

6. Gleichungen und Ungleichungen

6. Gleichungen und Ungleichungen 6. Gleichungen und Ungleichungen 6.Z Zusammenfassung Eine Gleichung entsteht, wenn zwei Terme unter Verwendung des Gleichheitszeichens " = " gleichgesetzt werden: T 1 = T 2. Eine Gleichung ohne Variablen

Mehr

BATESON / FEYERABEND ÖKOLOGIE DES GEISTES, WIDER DEM METHODENZWANG

BATESON / FEYERABEND ÖKOLOGIE DES GEISTES, WIDER DEM METHODENZWANG BATESON / FEYERABEND ÖKOLOGIE DES GEISTES, WIDER DEM METHODENZWANG Wissenserwerb durch Experimente tu dortmund Niels Lategahn, Helge Lente Übersicht 2 Biographie Bateson Ökologie des Geistes Wissenserwerb

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Seminararbeit. Seminar Softwareentwicklung. Andreas Fink Fabian Lang. Frühjahrstrimester 2011. Wirtschaftsinformatik: Softwareentwicklung

Seminararbeit. Seminar Softwareentwicklung. Andreas Fink Fabian Lang. Frühjahrstrimester 2011. Wirtschaftsinformatik: Softwareentwicklung Fakultät Wirtschafts- und Sozialwissenschaften Professur für BWL, insbes. Wirtschaftsinformatik Holstenhofweg 85 22043 Hamburg Wirtschaftsinformatik: Softwareentwicklung Seminararbeit Frühjahrstrimester

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Gefühle. Das limbische System. An was erkennt man deine Befindlichkeit? KG US MS OS. Spiegel. Material. Bemerkungen

Gefühle. Das limbische System. An was erkennt man deine Befindlichkeit? KG US MS OS. Spiegel. Material. Bemerkungen 01 Gefühle An was erkennt man deine Befindlichkeit? Spiegel Gesichter verraten viel und lösen beim Gegenüber immer etwas aus. Was denkt jemand, wenn er dich sieht? Schaue in den Spiegel und versuche verschiedene

Mehr

STUDIE: Psychologische Verfahren der externen Personalauswahl aus Sicht der Bewerber

STUDIE: Psychologische Verfahren der externen Personalauswahl aus Sicht der Bewerber STUDIE: Psychologische Verfahren der externen Personalauswahl aus Sicht der Bewerber personnel insight Deinhardplatz 3 56068 Koblenz Tel.: 0261 9213900 nicole.broockmann@personnel-insight.de Theoretischer

Mehr

Folgen und Grenzwerte

Folgen und Grenzwerte Wintersemester 2015/201 Folgen und Grenzwerte von Sven Grützmacher Dieser Vortrag wurde für den (von der Fachschaft organisierten) Vorkurs für die Studienanfänger an der Fakultät für Mathematik und Informatik

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr