Grundlagen der Hydraulik

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Hydraulik"

Transkript

1 Horst-W. Grollius Grundlagen der Hydraulik 7., aktualisierte Auflage

2 18 2 Physikalisches Basiswissen Bei der Bewegung des Kolbens 1umden Weg s 1 nach unten wird das Volumen V 1 ¼ A 1 s 1 verdr ngt, wodurch der Kolben 2umden Weg s 2 nach oben bewegt wird. Mit V 1 ¼ A 1 s 1 ¼ V 2 ¼ A 2 s 2 : ergibt sich ð 2 : 22Þ s 2 ¼ s 1 A 1 A 2 : ð 2 : 23Þ Mit Gl. (2.23) l sst sich das Prinzip der Wegübersetzung verdeutlichen: Ist wie beim Beispiel zur Kraft bersetzung die Fl che A 2 um das Zehnfache grçßer als die Fl che A 1 ð A 2 ¼ 10 A 1 ), so wird s 2 ¼ s 1 A 1 A 2 ¼ 1 10 s 1 : ð 2 : 24Þ Der Weg s 2,den der Kolben 2zur cklegt, ist bei diesem Beispiel also nur ein Zehntel des vom Kolben 1zur ckgelegten Weges s Druck bersetzung Das Prinzip der Druckübersetzung wird durch Bild 2.6 verdeutlicht. Bild 2.6: Zur Druck bersetzung Die beiden reibungsfrei gef hrten und leckfrei abdichtenden Kolben mit den Kolbenfl chen A 1 und A 2 sind durch eine Stange fest miteinander verbunden. Herrscht an der Kolbenfl che A 1 der Druck p 1, wirkt daran die Kraft F ¼ p 1 A 1,die ber die Stange auch an der Kolbenfl che A 2 wirksam ist. Der Druck an der Kolbenfl che A 2 ist p 2 ¼ F = A 2.

3 2.6 Hydraulische Arbeit, Leistung, Wirkungsgrade 19 Mit F ¼ p 1 A 1 ¼ p 2 A 2 wird p 2 ¼ p 1 A 1 A 2 : ð 2 : 25Þ ð 2 : 26Þ Ist beispielsweise die Fl che A 1 doppelt so groß wie die Fl che A 2 ð A 1 ¼ 2 A 2 ), so wird der Druck p 1 auf das Doppelte seines Wertes bersetzt: p 2 ¼ 2 p Hydraulische Arbeit, Leistung, Wirkungsgrade Wird bei der hydraulischen Presse nach Bild 2.5 der Kolben 1(Kolbenfl che A 1 )mit der Kraft F 1 um den Weg s 1 nach unten bewegt, so ist die dabei verrichtete hydraulische Arbeit W 1 ¼ F 1 s 1 ¼ p 1 A 1 s 1 : ð 2 : 27Þ Die bei diesem Vorgang am Kolben 2(Kolbenfl che A 2 )verrichtete hydraulische Arbeit ist W 2 ¼ F 2 s 2 ¼ p 2 A 2 s 2 : Mit V 1 ¼ A 1 s 1 und V 2 ¼ A 2 s 2 erh lt man ð 2 : 28Þ W 1 ¼ p 1 V 1 und W 2 ¼ p 2 V 2 : ð 2 : 29Þ ; ð 2 : 30Þ Wird f r die Bewegung des Kolbens 1umden Weg s 1 die Zeit t 1 bençtigt, ist die hydraulische Leistung P 1 ¼ W 1 t 1 ¼ p 1 V 1 t 1 : ð 2 : 31Þ Mit dem Volumenstrom Q 1 ¼ V 1 = t 1 wird daraus P 1 ¼ p 1 Q 1 : ð 2 : 32Þ Analog gilt f r den Kolben 2inBild 2.5 f r die hydraulische Leistung P 2 ¼ p 2 Q 2 : ð 2 : 33Þ Die hydraulische Leistung ist hier also das Produkt aus Druck und Volumenstrom. F r den Gesamtwirkungsgrad einer Hydropumpe und eines Hydromotors gilt g t ¼ g v g hm : ð 2 : 34Þ

4 20 2 Physikalisches Basiswissen Hinweis: Auf Hydropumpen und Hydromotoren wird in den Kapiteln 6 und 7 noch eingegangen. Auch werden dort die den Wirkungsgraden zugrunde liegenden Definitionen noch ausf hrlich erl utert. In Gl. (2.34) ist g v der volumetrische Wirkungsgrad. Erber cksichtigt die so genannten volumetrischen Verluste, die sich aufgrund von Leckstrçmen ergeben. Der hydraulisch-mechanische Wirkungsgrad g hm ist ein Maß f r Verluste, die sich durch Strömungsverluste und aufeinander gleitende Maschinenteile (Reibung) ergeben. Bild 2.7 soll den Begriff des Gesamtwirkungsgrades g t veranschaulichen. Bild 2.7: Zur Veranschaulichung des Begriffes Gesamtwirkungsgrad Die Wellenleistung (mechanische Eingangsleistung) an der Hydropumpe (Index P) ist P m ; P ¼ T e ; P x P.Diese wird zum berwiegenden Teil in die hydraulische Leistung P e,p ¼ D p P Q e umgewandelt (ein geringer Teil der Wellenleistung wird zur Deckung der in der Hydropumpe auftretenden volumetrischen Verluste und der Strçmungs- und Reibungsverluste bençtigt). Der Gesamtwirkungsgrad der Hydropumpe ist somit g t ; P ¼ P e ; P P m ; P ¼ D p P Q e T e ; P x P ¼ ð p A ; P p E ; P Þ Q e T e ; P x P : ð 2 : 35Þ Die dem Hydromotor (Index M) zur Verf gung stehende hydraulische Leistung P e,m ist wegen des zwischen Hydropumpe und Hydromotor auftretenden Leistungsverlustes D P e,p-m kleiner als die am Austritt der Hydropumpe vorhandene hydraulische Leistung P e,p.esist P e ; M ¼ P e ; P D P e ; P - M : ð 2 : 36Þ

5 2.7 Kontinuitätsgleichung 21 Die hydraulische Leistung P e, M steht zum berwiegenden Teil an der Welle des Hydromotors (Index M) in Form von mechanischer Leistung P m, M = T e, M. x (Ausgangsleistung) zur Verf gung (auch im Hydromotor treten volumetrische Verluste und Strçmungs- und Reibungsverluste auf, die von der hydraulischen Leistung zu decken sind). Der Gesamtwirkungsgrad des Hydromotors ist somit g t ; M ¼ P m ; M ¼ T e ; M x M T e ; M x M ¼ : P e ; M D p M Q e ð p E ; M p A ; M Þ Q e ð 2 : 37Þ 2.7 Kontinuit tsgleichung Nach Bild 2.8 strçmt eine Fl ssigkeit durch ein Rohr mit unterschiedlich großen Querschnittsfl chen. Bild 2.8: Konstanz des Volumenstromes inkompressible Fl ssigkeit Da zwischen den mit 1, 2 und 3 gekennzeichneten Querschnittsfl chen kein Verlust an Fl ssigkeit auftritt, gilt f r die durch diese Fl chen hindurch strçmenden Massenströme: _m 1 ¼ _m 2 ¼ _m 3 : ð 2 : 38Þ Mit _m 1 ¼ Q 1 % 1 ¼ A 1 v 1 % 1, _m 2 ¼ Q 2 % 2 ¼ A 2 v 2 % 2 und _m 3 ¼ Q 3 % 3 ¼ A 3 v 3 % 3 wird daraus A 1 v 1 % 1 ¼ A 2 v 2 % 2 ¼ A 3 v 3 % 3 : ð 2 : 39Þ Fl ssigkeiten auch die in der Hydraulik verwendeten Hydrauliköle lassen sich nur geringf gig zusammendr cken. Deshalb gilt % 1 % 2 % 3 : ð 2 : 40Þ Damit erh lt man die als Kontinuitätsgleichung bezeichnete Gleichung A 1 v 1 ¼ A 2 v 2 ¼ A 3 v 3 ¼ konst: ð 2 : 41Þ

6 22 2 Physikalisches Basiswissen 2.8 Bernoulli-Gleichung Die Bernoulli-Gleichung stellt einen Sonderfall der aus der Strçmungsmechanik bekannten Navier-Stokes-Gleichungen dar, die f r dreidimensionale z higkeitsbehaftete Strçmungen g ltig sind. Wird angenommen, dass die Strçmung station r, reibungsfrei (verlustlos), inkompressibel und eindimensional ist, lassen sich die Navier-Stokes-Gleichungen in die nach Bernoulli benannte Gleichung berf hren. Als stationär werden Strçmungen bezeichnet, deren Zustandsgrçßen sich mit der Zeit nicht ndern. Die Bernoulli-Gleichung lautet in der Energieform v 2 2 þ g z þ p ¼ konst:; ð 2 : 42Þ % nach der die sich aus kinetischer Energie, Energie der Lage und Druckenergie zusammensetzende Gesamtenergie einer strçmenden Fl ssigkeit l ngs des Stromfadens erhalten bleibt. Multipliziert man Gl. (2.42) mit 1= g, ergibt sich die vorwiegend verwendete Höhenform v 2 2 g þ z þ p ¼ konst:; ð 2 : 43Þ % g bei der alle Anteile die Dimension der L nge haben. Deshalb werden v 2 = ð 2 g Þ mit Geschwindigkeitshçhe, z mit Ortshçhe und p = ð % g Þ mit Druckhçhe bezeichnet. Wird Gl. (2.42) mit der Dichte % multipliziert, erh lt man die Druckform : % v 2 2 þ % g z þ p ¼ konst: ð 2 : 44Þ Bild 2.9 soll die Anwendung der Gl. (2.43) verdeutlichen. F r das in Bild 2.9 dargestellte System l sst sich f r den Oberwasserspiegel 0 und die Rohrquerschnitte 1, 2 und 3 mit % 0 ¼ % 1 ¼ % 2 ¼ % 3 ¼ % entsprechend Gl. (2.43) formulieren z 0 þ p 0 % g þ v g ¼ z 1 þ p 1 % g þ v g ¼ z 2 þ p 2 % g þ v g ¼ z 3 þ p 3 % g þ v g : ð 2 : 45Þ Werden die Absolutdr cke p 0, p 1, p 2 und p 3 durch die Summe aus Atmosph rendruck und jeweiligem berdruck ersetzt, ergibt sich z 0 þ p amb þ p e0 % g þ v g ¼ ::: ¼ z 3 þ p amb þ p e3 þ v 2 3 % g 2 g ð 2 : 46Þ

Leseprobe. Horst-Walter Grollius. Grundlagen der Hydraulik. ISBN (Buch): 978-3-446-43081-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Horst-Walter Grollius. Grundlagen der Hydraulik. ISBN (Buch): 978-3-446-43081-5. Weitere Informationen oder Bestellungen unter Leseprobe Horst-Walter Grollius Grundlagen der Hydraulik ISBN (Buch): 978-3-446-43081-5 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43081-5 sowie im Buchhandel.

Mehr

Bild 6.1: Beispiel für eine Hydropumpe Radialkolbenpumpe (Wepuko Hydraulik)

Bild 6.1: Beispiel für eine Hydropumpe Radialkolbenpumpe (Wepuko Hydraulik) 6 Hydropumpen 6.1 Allgemeines Als Herzstück eines hydraulischen Systems gilt die Hydropumpe. Die über ihre Antriebswelle zugeführte mechanische Energie wird dazu benötigt, die Energie des durch die Pumpe

Mehr

Grundlagen der Hydraulik

Grundlagen der Hydraulik Horst-W. Grollius Grundlagen der Hydraulik 7., aktualisierte Auflage Grollius Grundlagen der Hydraulik Horst-W. Grollius Grundlagen der Hydraulik 7., aktualisierte Auflage Mit 137 Abbildungen, 8Tafeln,

Mehr

Leseprobe. Horst-Walter Grollius. Grundlagen der Hydraulik. ISBN (Buch): ISBN (E-Book):

Leseprobe. Horst-Walter Grollius. Grundlagen der Hydraulik. ISBN (Buch): ISBN (E-Book): Leseprobe Horst-Walter Grollius Grundlagen der Hydraulik ISBN (Buch): 978-3-446-44275-7 ISBN (E-Book): 978-3-446-44104-0 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-44275-7

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Bernoulli - Gleichung. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Sie sagt aus, dass jedes Teilchen in einer Stromröhre denselben Wert der spezifischen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Formelsammlung: Thermo- und Fluiddynamik 1

Formelsammlung: Thermo- und Fluiddynamik 1 Modul: TFDMI Semester: HS 202 / 3 Formelsammlung: Thermo- und Fluiddynamik Physikalische Konstanten & wichtige Tabellenwerte Universelle Gaskonstante. Stoffdaten Ammoniak Argon Helium Kohlenmonoxid Kohlendioxid

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Inhaltsverzeichnis. Kurz, G�nther Strà mungslehre, Optik, Elektrizit�tslehre, Magnetismus digitalisiert durch: IDS Basel Bern

Inhaltsverzeichnis. Kurz, GÃ?nther Strà mungslehre, Optik, ElektrizitÃ?tslehre, Magnetismus digitalisiert durch: IDS Basel Bern Inhaltsverzeichnis I Strömungslehre 11 1 Ruhende Flüssigkeiten (und Gase) - Hydrostatik 11 1.1 Charakterisierung von Flüssigkeiten 11 1.2 Druck - Definition und abgeleitete 11 1.3 Druckänderungen in ruhenden

Mehr

II. Thermodynamische Energiebilanzen

II. Thermodynamische Energiebilanzen II. Thermodynamische Energiebilanzen 1. Allgemeine Energiebilanz Beispiel: gekühlter Verdichter stationärer Betrieb über Systemgrenzen Alle Energieströme werden bezogen auf Massenstrom 1 Energieformen:

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 1. Auflage Hydraulik für Bauingenieure Freimann schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Grundlagen der Berechnung von hydraulischen Strömungsmaschinen

Grundlagen der Berechnung von hydraulischen Strömungsmaschinen Grundlagen der Berechnung von hydraulischen Strömungsmaschinen Dr. Gero Kreuzfeld CFturbo Software & Engineering GmbH Dresden, München gero.kreuzfeld@cfturbo.de Kurzlehrgang Turbomaschinen, Universität

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Strömung realer inkompressibler Fluide

Strömung realer inkompressibler Fluide 4 STRÖMUNG REALER INKOMPRESSIBLER FLUIDE 4.1 EIGENSCHAFTEN REALER FLUIDE 4.1.1 Fluidreibung und Viskosität Wesentlichstes Merkmal realer Fluide ist die Fluidreibung. Sie wurde erstmals von I. Newton (engl.

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

4.8.2 Ber cksichtigung besonderer Ertragssituationen

4.8.2 Ber cksichtigung besonderer Ertragssituationen Ermittlung des Ertragswerts in Sonderf llen 4 Bodenwert der bençtigten Grundst cksfl che: 1000 m 2 80 e ¼ 80 000 e Jahresreinertrag 20 000, e Bodenertragsanteil 4,0% von 80 000, e 3 200, e 16 800, e Vervielf

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

Umsetzung des Kernlehrplans Physik (G8) Stoffverteilungsplan für die Klassen 8 und 9 ( beschlossen am , Red. Sti) Klassenstufe 8.

Umsetzung des Kernlehrplans Physik (G8) Stoffverteilungsplan für die Klassen 8 und 9 ( beschlossen am , Red. Sti) Klassenstufe 8. Das Thema Geschwindigkeit wird im Rahmen der Labortage (Anfang 8.2) bearbeitet. Umsetzung des Kernlehrplans Physik (G8) Stoffverteilungsplan für die Klassen 8 und 9 ( beschlossen am 6.10.2011, Red. Sti)

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

Grundwissen Physik 8. Klasse Schuljahr 2011/12

Grundwissen Physik 8. Klasse Schuljahr 2011/12 1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

Dietrich-Bonhoeffer-Gymnasium Wiehl

Dietrich-Bonhoeffer-Gymnasium Wiehl Dietrich-Bonhoeffer-Gymnasium Wiehl Erneuerbare Energien - die maximal nutzbare Energie der Wasserkraft Facharbeit Projektkurs Erneuerbare Energien Abiturjahrgang 2012/2013 vorgelegt von Jan Wittersheim

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Grundlagen, Versuche, Aufgaben, Lösungen. Mit 389 Abbildungen, 24 Tafeln, 340 Aufgaben und Lösungen sowie einer Formelsammlung

Grundlagen, Versuche, Aufgaben, Lösungen. Mit 389 Abbildungen, 24 Tafeln, 340 Aufgaben und Lösungen sowie einer Formelsammlung Alfred Böge Jürgen Eichler Physik Grundlagen, Versuche, Aufgaben, Lösungen 10., überarbeitete und erweiterte Auflage Mit 389 Abbildungen, 24 Tafeln, 340 Aufgaben und Lösungen sowie einer Formelsammlung

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Inhalt. Fernlehrgang Hydraulik kompakt...1 Einleitung...5

Inhalt. Fernlehrgang Hydraulik kompakt...1 Einleitung...5 Hydraulik kompakt Lehrbrief 1 Inhalt Inhalt Fernlehrgang Hydraulik kompakt...1 Einleitung...5 1 Einstieg in die Hydraulik... 11 1.1 Grundkenntnisse der Hydraulik...12 1.2 Überblick Beispiele Industriehydraulik...13

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

Physikalische Grundlagen

Physikalische Grundlagen Physikalische Grundlagen Hydrostatik Wenn man das Verhalten der Flüssigkeiten in ruhendem oder relativ langsam bewegtem Zustand betrachtet, so spricht man von Hydrostatik. Das Gesetz von Pascal Im geschlossenem

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Formelsammlung Energietechnik

Formelsammlung Energietechnik Formelsammlung Energietechnik Kontinuitätsgleichung: A c A c A c konst. v u D n Bernoulligleichung: Energieform: p p c g h c g h Druckform: p c g h p c g h Höhenform: p c p c h h g g g g Höhendifferenz

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:

Mehr

4. Veranstaltung. 16. November 2012

4. Veranstaltung. 16. November 2012 4. Veranstaltung 16. November 2012 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Prinzip von Elektromotor und Generator Motor Generator Elektrischer Strom Elektrischer Strom Magnetkraft

Mehr

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten An dieser Stelle müssen wir dringend eine neue physikalische Größe kennenlernen: den Druck. SI Einheit : Druck = Kraft Fläche p = F A 1 Pascal

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Energieformen beim Trampolinspringen

Energieformen beim Trampolinspringen Energieformen beim Trampolinspringen Stand: 26.08.2015 Jahrgangsstufen 8 Fach/Fächer Physik Kompetenzerwartungen Die Schülerinnen und Schüler nutzen das Prinzip der Energieerhaltung, um die bei Energieumwandlungen

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff

Mehr

Grundlagen, Versuche, Aufgaben, Lösungen. Unter Mitarbeit von Gert Böge, Wolfgang Böge und Walter Schlemmer

Grundlagen, Versuche, Aufgaben, Lösungen. Unter Mitarbeit von Gert Böge, Wolfgang Böge und Walter Schlemmer Alfred Böge PHYSIK Grundlagen, Versuche, Aufgaben, Lösungen Unter Mitarbeit von Gert Böge, Wolfgang Böge und Walter Schlemmer mit 389 Bildern, 24 Tafeln, 340 Aufgaben und Lösungen sowie einer Formelsammlung

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Induktives Laden ein Themenschwerpunkt der Elektromobilität

Induktives Laden ein Themenschwerpunkt der Elektromobilität Induktives Laden ein Themenschwerpunkt der Elektromobilität 1 Warum berührungslos elektrische Energie übertragen? Kabel ist eine kritische Komponente. Insbesondere bei Übertragungen zwischen stehenden

Mehr

Dr.-Ing. Klaus Herzog. Quelle: Porsche

Dr.-Ing. Klaus Herzog. Quelle: Porsche Kolbenmaschinen 1 Einteilung und Bauarten Dr.-Ing. Klaus Herzog Quelle: Porsche Inhalt der Vorlesungsreihe Kolbenmaschinen Einteilung und Bauarten Thermodynamische Grundlagen Kenngrößen und Kennfelder

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Klausur 3 Klasse 11c Physik Lösungsblatt

Klausur 3 Klasse 11c Physik Lösungsblatt 16.05.00 Klausur 3 Klasse 11c Physik Lösungsblatt Bei den Aufgaben dürfen Sie ausschließlich die Programme Cassy-Lab, erive 5 und Excel benutzen. Alle schriftlichen Überlegungen und Ergebnisse müssen auf

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

- Fahrgast in der Straßenbahn - Gepäck auf dem Autodach - Sicherheitsgurt

- Fahrgast in der Straßenbahn - Gepäck auf dem Autodach - Sicherheitsgurt PRÜFUNGSVORBEREITUNG MECHANIK 1.) Nenne das Trägheitsgesetz! Erläutere möglichst genau an folgenden Beispielen aus dem Straßenverkehr, warum Trägheit eine große Rolle bei Fragen der Verkehrssicherheit

Mehr

Lehrplan. Physik. Handelsschule. Ministerium für Bildung, Kultur und Wissenschaft

Lehrplan. Physik. Handelsschule. Ministerium für Bildung, Kultur und Wissenschaft Lehrplan Physik Handelsschule Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2006 Hinweis: Der Lehrplan ist online

Mehr

14. Strömende Flüssigkeiten und Gase

14. Strömende Flüssigkeiten und Gase 14. Strömende Flüssigkeiten und Gase 14.1. orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Eine Erhaltungsgröße ist eine physikalische Größe, die.. s...

Eine Erhaltungsgröße ist eine physikalische Größe, die.. s... Eine Erhaltungsgröße ist eine physikalische Größe, die.... Die drei mechanischen Erhaltungsgrößen sind:.. Ein abgeschlossenes System ist ein Bereich, in dem.. Ein Beispiel für ein abgeschlossenes System

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr

Energieertrag Flussturbinen

Energieertrag Flussturbinen Energieertrag von Flussturbinen Abschätzung des Energieertrags von Turbinen ohne Staustufen am Oberrhein, der Weser, der Werra und der Unterelbe Prof. Dr.-Ing. Carsten Fräger 23. Januar 2014 2013-11-02-0.0

Mehr

11.6 Laval - Düse Grundlagen

11.6 Laval - Düse Grundlagen 11.6-1 11.6 Laval - Düse 11.6.1 Grundlagen Beim Ausströmen eines gas- oder dampfförmigen Mediums aus einem Druckbehälter kann die Austrittsgeschwindigkeit höchstens den Wert der Schallgeschwindigkeit annehmen.

Mehr

Flygt C-Pumpen 3068-3800

Flygt C-Pumpen 3068-3800 Flygt C-Pumpen 3068-3800 Tauchmotorpumpen für Abwasser und Rohwasser Flygt Tauchmotorpumpen für unterschiedliche Anwendungsbereiche Flygt Tauchmotorpumpen arbeiten direkt in das Fördermedium eingetaucht.

Mehr

mt ci 4 F04D 13/12 HU-2220 Vecses(HU)

mt ci 4 F04D 13/12 HU-2220 Vecses(HU) Europäisches Patentamt European Patent Office Office europeen des brevets Veröffentlichungsnummer: 0 303 739 A2 EUROPAISCHE PATENTANMELDUNG Anmeldenummer: 87201779.3 mt ci 4 F04D 13/12, F04D 13/10 Anmeldetag:

Mehr

Demonstrationsexperimente Mechanik

Demonstrationsexperimente Mechanik Demonstrationsexperimente Mechanik 57 M 3.1 Kräfteparallelogramm M 3.2 Schwerpunkt M 3.3 Stabile Lage M 4.1 Flaschenzug 58 M 4.2 Hebelgesetze Schwerpunkt M 4.3 Starrer Körper (physikalisches Pendel) M

Mehr

Fachhochschule Köln Institut für Physik. Dipl.-Ing. (FH) Wintel WS 2011/12. Mechanik. Bereich zwischen Hörsaal H9 und H8. Mechanik

Fachhochschule Köln Institut für Physik. Dipl.-Ing. (FH) Wintel WS 2011/12. Mechanik. Bereich zwischen Hörsaal H9 und H8. Mechanik Ort: Bereich zwischen Hörsaal H9 und H8 Fachhochschule Köln Institut für Physik M 3.1 Kräfteparallelogramm M 3.2 Schwerpunkt M 3.3 Stabile Lage M 4.1 Flaschenzug M 4.2 Hebelgesetze Schwerpunkt M 4.3 Starrer

Mehr

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h 1. Kraft und ihre Wirkungen KA 22h Energie, Umwelt, Mensch 8h 2. Projekt Physik Klasse 7 3. Elektrische Leitungsvorgänge KA 20h 4. Naturgewalten Blitz und Donner 3h Kraft und ihre Wirkungen Lies LB. S.

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

Elektrische und hydraulische Antriebe - Hydraulische Antriebe. Dr. Rüdiger Schwarze

Elektrische und hydraulische Antriebe - Hydraulische Antriebe. Dr. Rüdiger Schwarze Elektrische und hydraulische Antriebe - Hydraulische Antriebe Übungen Dr. Rüdiger Schwarze 6. April 2009 Wiederholung Bearbeitungsreihenfolge: Aufgabe 2 4 5 6 fakultativ: Aufgaben 1 3 Wiederholung 1 Die

Mehr

Druck. Aufgaben. 1. Wie groß ist der Auflagedruck eines Würfels mit der Kantenlänge von 8 cm, der aus Holz gefertigt wurde ( ρ= 0,8 g/cm³)?

Druck. Aufgaben. 1. Wie groß ist der Auflagedruck eines Würfels mit der Kantenlänge von 8 cm, der aus Holz gefertigt wurde ( ρ= 0,8 g/cm³)? Druck ufgaben. Wie groß ist der uflagedruck eines Würfels it der Kantenlänge von 8 c, der aus Holz gefertigt wurde ( ρ 0,8 g/c³)?. Ein frisches Ei wird it einer Kraft von 0 N auf die Nadelspitze eines

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Dr.-Ing. habil. Jörg Wollnack AWZM.1. Hydraulische Systeme

Dr.-Ing. habil. Jörg Wollnack AWZM.1. Hydraulische Systeme AWZM.1 Hydraulische Systeme AWZM.2 Hydraulische Motoren AWZM.3 AWZM.4 AWZM.5 AWZM.6 AWZM.7 AWZM.8 AWZM.9 AWZM.10 AWZM.11 h q [0,1] Energie pro Hub EH = Fh= p Ah qt 0 h Max T 0 t F = p A Energie periodischer

Mehr

Q eschenbach Landluft in Stadtn he

Q eschenbach Landluft in Stadtn he Gemeinde Q eschenbach Landluft in Stadtn he Energiestadt Eschenbach SG Innovativ in Energie Richtlinien f r F rderbeitr ge Energie vom 16. November 2012, in Vollzug seit 1. Januar 2013 Gest tzt auf das

Mehr

Physik für technische Berufe

Physik für technische Berufe Alfred Böge Jürgen Eichler Physik für technische Berufe Physikalisch-technische Grundlagen, Formelsammlung, Versuchsbeschreibungen, Aufgaben mit ausführlichen Lösungen 11., aktualisierte und erweiterte

Mehr

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Vorlesung AFS, 06.06.007 1 Letzte Woche: Auslegung der Klimaanlage durch stationäre Gleichungen Berechnung des Gleichgewichtszustand

Mehr

Sensorik & Aktorik Wahlpflichtfach Studienrichtung Antriebe & Automation

Sensorik & Aktorik Wahlpflichtfach Studienrichtung Antriebe & Automation Sensorik & Aktorik Wahlpflichtfach Studienrichtung Antriebe & Automation - Hydraulik & Pneumatik - Prof. Dr. Ulrich Hahn SS 2010 Übertragung von Flüssigkeiten: Hydraulik Hydraulik und Pneumatik Kräften

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

MECHANIKER/IN IN PNEUMATIK-HYDRAULIK

MECHANIKER/IN IN PNEUMATIK-HYDRAULIK Meisterprogramm G19 Mechaniker/in in Pneumatik-Hydraulik INSTITUT FÜR AUS- UND WEITERBILDUNG IM MITTELSTAND UND IN KLEINEN UND MITTLEREN UNTERNEHMEN Vervierser Straße 4 A 4700 EUPEN Tel. 087/30 68 80 Fax.

Mehr

Diana Lange. GENERATIVE GESTALTUNG Arten des Zufalls

Diana Lange. GENERATIVE GESTALTUNG Arten des Zufalls Diana Lange GENERATIVE GESTALTUNG Arten des Zufalls RANDOM int index = 0; while (index < 200) { float x = random(0, width); float y = random(0, height); float d = random(40, 100); ellipse(x, y, d, d);

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Grundwissen Physik 8. Klasse II

Grundwissen Physik 8. Klasse II Grundwissen Physik 8. Klasse II Größen in der Physik Physikalische Größen sind alle messbare Eigenschaften eines Körpers. Dabei gibt es Grundgrößen, deren Einheit der Mensch willkürlich, also beliebig

Mehr