Kursmaterial: Geld und Kredit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kursmaterial: Geld und Kredit"

Transkript

1 Handout : Die Entstehung von Geld in einer Tauschwirtschaft Prof. Dr. Thomas Lux Lehrstuhl für Geld, Währung und Internationale Finanzmärkte Institut für Volkswirtschaftslehre Universität Kiel Kursmaterial: Geld und Kredit Die Entstehung von Geld in einer Tauschwirtschaft Fragestellung: Wie kann sich in einer Tauschwirtschaft ein Gut als allgemein akzeptiertes Zahlungsmittel herausbilden? Ein einfaches Modell einer Tauschökonomie: es existiert eine beliebige Anzahl n an Gütern, jedes Individuum produziert eines der Güter und beabsichtigt, es gegen ein bestimmtes anderes Gut einzutauschen, die Anzahl der Produzenten und Konsumenten jedes Gutes ist identisch (d.h. alle Bedürfnisse können prinzipiell befriedigt werden). Sind p i und p j die Wahrscheinlichkeiten, dass ein zufällig ausgewählter Agent Nachfrager bzw. Anbieter des Gutes i bzw. j ist, dann ist die Erfolgswahrscheinlichkeit für wechselseitige Übereinstimmung der Tauschwünsche bei einem zufälligen Treen zweier Agenten gleich p i p j (wobei angenommen wird, dass die Wahrscheinlichkeiten statistisch unabhängig sind). = die Anzahl der notwendigen Kontakte (und damit die Suchkosten) vor einem Treen mit einem geeigneten Tauschpartner wäre im Durchschnitt also p i p j. Wird ein Gut n als allgemeines Tauschmittel eingeführt, so wäre die Anzahl der

2 Handout : Die Entstehung von Geld in einer Tauschwirtschaft 2 notwendigen Kontakte: +. p i p n p n p j Damit wäre die Verwendung eines solchen Geldgutes vorteilhaft, falls + < p i p n p n p j p i p j p n > p i + p j () Geeignete Geldgüter wären also solche, die relativ häug in der betreenden Wirtschaft getauscht werden, die relative Häugkeit von n müÿte gröÿer als die Summe der Häugkeiten von i und j sein. Wann ist Bedingung () erfüllt? Da bei Aufkommen indirekten Tausches p n selbst davon abhängen wird, wie viele Akteure Gut n als Tauschmittel akzeptieren, wird p n durch die Erwartungen der Akteure determiniert! Im Ausgangszustand einer Tauschwirtschaft kann () für einige Güter erfüllt sein, für andere dagegen nicht. Frage: Gibt es einen evolutorischen Prozess, durch den sich die Herausbildung eines allgemein akzeptierten Tauschgutes beschreiben läÿt (über Veränderungen von p n, die Gut n schlieÿlich zum allgemeinen Tauschmittel werden lassen)? Ein einfaches dynamisches Modell: in jeder Periode produziert nur ein Anteil m der gesamten Bevölkerung und bietet sein Produkt am Markt an (d.h. diese Akteure suchen einen Tauschpartner), bei indirektem Tausch (Gut Geld) wird der erhaltene Geldbetrag in die nächste Periode transferiert, in der dann das gewünschte Konsumgut nachgefragt wird, wir unterscheiden zwischen objektiven Wahscheinlichkeiten q i und subjektiven Wahrscheinlichkeiten p i für das Vorhandensein von Tauschpartnern, die Gut i anbieten bzw. verkaufen,

3 Handout : Die Entstehung von Geld in einer Tauschwirtschaft 3 wir bezeichnen mit u ij den Anteil derer, die i produziert haben und gegen j eintauschen wollen (es gilt: i j u ij =, u i = j u ij mit i u i =, und u ij = u ji ). Der Anteil derer, die Geldtausch akzeptieren, ist s = u i,j. (2) i,j mit pn>p i +p j Die objektive Wahrscheinlichkeit, einen Agenten zu treen, der in der nächsten Periode Gut i nachfragt, ist: q i = m u i m + ms = für alle i bis auf das Geldgut n. Für n gilt dagegen: q n = mu n + ms m + ms u i + s, (3) = u n + s + s. (4) Subjektive Wahrscheinlichkeiten können eingeführt werden, indem der tatsächliche Anteil derer, die Geld akzeptieren (s) durch den aus Sicht der (unvollständig informierten) Akteure erwarteten Anteil (s e ) ersetzt wird: p i = u i + s, p e n = u n + s e + s. (5) e Gegeben die Erwartungen bzgl. der Häugkeiten verschiedener Akteure, wird Geldtausch präferiert, falls p n > p i + p j u n + s e > u i + s e + s + u j e + s e u n + s e > u i + u j. (6) Damit ist der tatsächliche Anteil der Geldnutzer: s = s ist eine Funktion von s e, mit ds/ds e > 0! Implikationen: u ij. (7) i,j,mit un+s e >u i +u j Individuen müssen in hinreichender Zahl daran glauben, dass andere über Zwischengüter (Geld) tauschen wollen, damit Geldtausch entsteht ( Vertrauen in die Währung bzw. in das entstehende Geldsystem),

4 ¼ ¾ Handout : Die Entstehung von Geld in einer Tauschwirtschaft 4 Anfänge des Geldwesens: wichtig ist die relative Häugkeit eines Gutes, Akteure müssen sich bei Existenz mehrerer geeigneter Geldgüter auf die Auswahl eines Zahlungsmittels koordinieren. Beispiel: 4 Güter mit u = 0, ; u 2 = 0, 2; u 3 = 0, 3; u 4 = 0, 4. Bei angenommener statistischer Unabhängigkeit von Produktions- und Konsumspezialisierung gilt für alle u ij : u ij = u i u j. (Wir nehmen zusätzlich an, dass Akteure mit gleichem Output- und Konsumgut, z.b. u, mit anderen tauschen müssen, um von der Produktions- zur Konsumstufe zu gelangen): Durch Einsetzen verschiedener Werte für s e in Gleichung (6) läÿt sich leicht zeigen, dass die Anzahl tatsächlicher Geldnutzer in Abhängigkeit von der erwarteten Anzahl der Geldnutzer durch folgende Treppenfunktion beschrieben wird: ¼ s s = s e ¼ ¼ ¼ ½ Abb. : Graphische Darstellung des evolutorischen Prozesses ¼ ¼ ¾ ¼ ½ In diesem Beispiel existiert nur ein stabiles Gleichgewicht s = s e bei vollständiger Monetarisierung der Wirtschaft. Das reine Tauschgleichgewicht (0,0) ist Der Anteil der natürlichen Geldnutzer, d.h. derjenigen Akteure, deren Transaktionen sowieso s e

5 Handout : Die Entstehung von Geld in einer Tauschwirtschaft 5 instabil, da es immer für einige Akteure lohnend ist, über das Zwischengut n zu tauschen. Beachte aber: der Verlauf der Funktion s ist abhängig von den relativen Häu- gkeiten. Je nach Konstellation sind beliebige treppenförmige Verläufe denkbar und damit auch Fälle eines stabilen Tauschgleichgewichts im Ursprung oder einer nur teilweisen Monetarisierung einer Volkswirtschaft. Literatur: Das dargestellte Modell stammt aus Jones, W., The Origin and Development of Media of Exchange, Journal of Political Economy 84, 976, In der jüngsten Zeit wurden verwandte Modellansätze als Search-Theoretic Approach to Monetary Economics zur Analyse einer Vielzahl von politikrelevanten Fragestellungen formuliert. Für einen Überblicksartikel siehe: Rupert P., M. Schindler, A. Shevchenko & R. Wright, The searchtheoretic approach to monetary economics: a primer, Economic Review, Federal Reserve Bank of Cleveland, 2000, Gut n = 4 beinhaltet, ist 0,64 (= n 4 ( + n + n 2 + n 3 ) = 0, 4( + 0, 3 + 0, 2 + 0, ) = 0, 64). Vollständiger Geldgebrauch tritt also dann ein, wenn die verbleibenden 36% der Bevölkerung ebenfalls n = 4 für ihre Transaktionen verwenden.

Grundlagen der Geldtheorie

Grundlagen der Geldtheorie Kapitel Grundlagen der Geldtheorie. Denition und Funktion des Geldes Denition Geld ist ein Medium, welches im Rahmen des Zahlungsverkehrs zur Bezahlung von Gütern und Leistungen, oder zur Abdeckung von

Mehr

4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz"

4.4 AnonymeMärkteunddasGleichgewichtdervollständigen Konkurrenz 4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz" Wir haben bisher nachvollziehen können, wie zwei Personen für sich den Anreiz zum TauschentdeckenundwiemitwachsenderBevölkerungdieMengederAllokationensinkt,

Mehr

Finanzmarkt. Einführung in die Makroökonomie SS 2012. Einführung in die Makroökonomie (SS 2012) Finanzmarkt 1 / 22

Finanzmarkt. Einführung in die Makroökonomie SS 2012. Einführung in die Makroökonomie (SS 2012) Finanzmarkt 1 / 22 Finanzmarkt Einführung in die Makroökonomie SS 2012 Einführung in die Makroökonomie (SS 2012) Finanzmarkt 1 / 22 Was bisher geschah In der letzten Einheit haben wir das Gleichgewicht auf dem Gütermarkt

Mehr

Kapitel 14: Unvollständige Informationen

Kapitel 14: Unvollständige Informationen Kapitel 14: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

Informationsökonomik: Anwendung Versicherungsmarkt

Informationsökonomik: Anwendung Versicherungsmarkt Informationsökonomik: Anwendung Versicherungsmarkt Tone Arnold Universität des Saarlandes 13. Dezember 2007 Tone Arnold (Universität des Saarlandes) Informationsökonomik: Anwendung Versicherungsmarkt 13.

Mehr

Unterschiede bei den Produktionsfunktionen zurückzuführen und können sich auf partielle Produktivitäten (Arbeitsproduktivität, Kapitalproduktivität,

Unterschiede bei den Produktionsfunktionen zurückzuführen und können sich auf partielle Produktivitäten (Arbeitsproduktivität, Kapitalproduktivität, 20 Etappe 1: Reale Außenwirtschaft Unterschiede bei den Produktionsfunktionen zurückzuführen und können sich auf partielle Produktivitäten (Arbeitsproduktivität, Kapitalproduktivität, Bodenproduktivität

Mehr

Übungen XVII: Auswahlprobleme und Startfinanzierung

Übungen XVII: Auswahlprobleme und Startfinanzierung Übungen XVII: Auswahlprobleme und Startfinanzierung Christian Keuschnigg Universität St.Gallen, FGN Dezember 2004 Exercise 1 Angenommen die unternehmerische Fähigkeit a ist in der Bevölkerung wie in (17.2)

Mehr

Sozialpolitik I (Soziale Sicherung) Wintersemester 2005/06

Sozialpolitik I (Soziale Sicherung) Wintersemester 2005/06 Sozialpolitik I (Soziale Sicherung) Wintersemester 2005/06 3. Vorlesung: Theorie der Alterssicherung Dr. Wolfgang Strengmann-Kuhn Strengmann@wiwi.uni-frankfurt.de www.wiwi.uni-frankfurt.de/~strengma Theorie

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Lösungshinweise zur Einsendearbeit 2 SS 2011

Lösungshinweise zur Einsendearbeit 2 SS 2011 Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Wiederholungsklausur zur Vorlesung Informationsökonomik

Wiederholungsklausur zur Vorlesung Informationsökonomik Prof. Dr. Isabel Schnabel Johannes Gutenberg-Universität Mainz Wiederholungsklausur zur Vorlesung Informationsökonomik Sommersemester 2011, 15.08.2011, 13:00 14:30 Uhr Hinweise zur Klausur Die Klausur

Mehr

Das Trittbrettfahrerproblem in der Unternehmensübernahme

Das Trittbrettfahrerproblem in der Unternehmensübernahme Das Trittbrettfahrerproblem in der Unternehmensübernahme Eike Houben 08.01.2000 Dipl.-Vw. Eike Houben, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre, Lehrstuhl für Finanzwirtschaft,

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981)

Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe 100 identische Unternehmer

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Prüfungsfach/Modul: Allgemeine Volkswirtschaftslehre Wirtschaftstheorie Wahlmodul Klausur: Institutionenökonomik (Klausur 60 Min) (200101, 201309, 211301)

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

Klausur Mikroökonomie I Diplom SS 06 Lösungen

Klausur Mikroökonomie I Diplom SS 06 Lösungen Universität Lüneburg Prüfer: Prof. Dr. Thomas Wein Fakultät II Prof. Dr. Joachim Wagner Institut für Volkswirtschaftslehre Datum: 17.7.2006 Klausur Mikroökonomie I Diplom SS 06 Lösungen 1. Eine neue Erfindung

Mehr

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe

Mehr

Lösungen zu Aufgabensammlung. Konsumgüter. Arbeitseinkommen. Was wird am Geld-, bzw. Güterstrom gemessen und was bedeuten diese Begriffe?

Lösungen zu Aufgabensammlung. Konsumgüter. Arbeitseinkommen. Was wird am Geld-, bzw. Güterstrom gemessen und was bedeuten diese Begriffe? Thema Dokumentart Makroökonomie: Volkswirtschaftliche Gesamtrechnung Lösungen zu Aufgabensammlung LÖSUNGEN VGR: Aufgabensammlung I Aufgabe 1 1.1 Zeichnen Sie den einfachen Wirtschaftskreislauf. Konsumausgaben

Mehr

Netzeffekte. Seminar im WS 10/11. Kapitel 17 aus: 26.01.2011 Netzeffekte Mathias Rhiel 1

Netzeffekte. Seminar im WS 10/11. Kapitel 17 aus: 26.01.2011 Netzeffekte Mathias Rhiel 1 Netzeffekte Seminar im WS 10/11 Kapitel 17 aus: 26.01.2011 Netzeffekte Mathias Rhiel 1 Netzeffekte sind positive externe Effekte Definition: Externalität Eine Externalität ist irgendeine Situation in der

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

Portfolio-Optimierung und Capital Asset Pricing

Portfolio-Optimierung und Capital Asset Pricing Portfolio-Optimierung und Capital Asset Pricing Peter Malec Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin Econ Boot Camp, SFB 649, Berlin, 4. Januar 2013 1. Einführung 2 29 Motivation

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Aufgabe 1: IS-Kurve Leiten Sie graphisch mit Hilfe

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Geld, Preise und die EZB

Geld, Preise und die EZB Geld, Preise und die EZB MB Gebrauch von Geld Funktionen von Geld Tauschmittel Ohne Geld müssten Transaktionen durch Tauschhandel (Naturaltausch) durchgeführt werden Problem der Doppelkoinzidenz der Wünsche

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Aufgabe 1: Geldnachfrage I Die gesamtwirtschaftliche

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

9. Übung zur Makroökonomischen Theorie

9. Übung zur Makroökonomischen Theorie Aufgabe 26 9. Übung zur akroökonomischen Theorie Gehen Sie davon aus, dass es in der Wirtschaft einen Bargeldbestand von 1.000 gibt. Nehmen Sie weiten an, dass das Reserve Einlage Verhältnis der Geschäftsbanken

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Effizienzgründe für die Existenz einer Sozialversicherung

Effizienzgründe für die Existenz einer Sozialversicherung Soziale Sicherung A.3.1 Effizienzgründe für die Existenz einer Sozialversicherung Erster Hauptsatz der Wohlfahrtsökonomik: In einer Ökonomie mit rein privaten Gütern und einer perfekten Eigentumsordnung

Mehr

Marktliquidität von Aktien

Marktliquidität von Aktien Marktliquidität von Aktien Inauguraldissertation zur Erlangung der Würde eines Doctor rerum oeconomicarum der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität Bern Lukas Roth Die Fakultät

Mehr

Antworten zu den Repetitionsfragen

Antworten zu den Repetitionsfragen Antworten zu den epetitionsfragen des Lehr- und Lernmittels von Aymo Brunetti Volkswirtschaftslehre Eine Einführung für die Schweiz Die Version für den Unterricht Die Antworten wurden von Damian Künzi

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

11.AsymmetrischeInformation

11.AsymmetrischeInformation .AsymmetrischeInformation Informationistnurwichtig,wenneineEntscheidungssituationdurcheinunsicheresUmfeld charakterisiertist.istesvielleichtso,daßauchdieunsicherheitselbstzueinereinschränkung derfunktionsfähigkeitvonmärktenführt?diesistinder

Mehr

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Adverse Selektion Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Fachbereich Finanzwissenschaft Alfred Weber Institut für Wirtschaftswissenschaften Ruprecht-Karls- Universität Heidelberg

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

UNIVERSITÄT DORTMUND WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT

UNIVERSITÄT DORTMUND WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT UNIVERSITÄT DORTMUND WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT Prüfungsfach: Teilgebiet: Prüfungstermin: 06.08.009 Zugelassene Hilfsmittel: Allgemeine Volkswirtschaftslehre (Diplom), Modul 8/9:

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05. Klausur Mikroökonomik. Matrikelnummer: Studiengang:

Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05. Klausur Mikroökonomik. Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05 Klausur Mikroökonomik Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05 Klausur Mikroökonomik Bitte bearbeiten Sie alle zehn

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Finanzwirtschaft Teil III: Budgetierung des Kapitals

Finanzwirtschaft Teil III: Budgetierung des Kapitals Finanzmärkte 1 Finanzwirtschaft Teil III: Budgetierung des Kapitals Kapitalwertmethode Agenda Finanzmärkte 2 Kapitalwertmethode Anwendungen Revolvierende Investitionsprojekte Zusammenfassung Kapitalwertmethode

Mehr

VWL für Ingenieure. Kernpunkte. Programm Termin 9. Programm Termin 9. Programm Termin 9. Karl Betz

VWL für Ingenieure. Kernpunkte. Programm Termin 9. Programm Termin 9. Programm Termin 9. Karl Betz Kernpunkte Karl Betz VWL für Ingenieure Termin 9: GELD Gelddefinition / -eigenschaften Geldmengenaggregate: H, Mo, M1. Abgrenzung willkürlich Kriterium: Je höher die Geldmenge, desto weniger liquide Titel

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomie I/Grundzüge der Makroökonomie Page 1 1 Makroökonomie I/Grundlagen der Makroökonomie Kapitel 4: Geld- und Finanzmärkte Günter W. Beck 1 Makroökonomie I/Grundzüge der Makroökonomie Page 2 2

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber

Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber Protokoll VIII Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber Datum: 10.12.2001 Projektgruppe 279 Tutorin: Grit Petschick Studenten: Mina Günther Berna Gezik Carola Nisse Michael

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen 3.5 Die chemische Produktionsdichte Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen und mit folgt Die rechte Seite der Gleichung wird als chemische Produktionsdichte bezeichnet: Sie

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Sylvie Roelly Lehrstuhl für Wahrscheinlichkeitstheorie, Institut für Mathematik der Universität Potsdam Lehrertag, Postdam,

Mehr

Geld ist ein Wertaufbewahrungsmittel:

Geld ist ein Wertaufbewahrungsmittel: 4. Geld, Zinsen und Wechselkurse 4.1. Geldangebot und -nachfrage Geldfunktionen u. Geldangebot (vgl. Mankiw; 2000, chap. 27) Geld genießt generelle Akzeptanz als Tauschmittel: Bartersystem ohne Geld: Jemand,

Mehr

Übung Grundzüge der VWL // Makroökonomie

Übung Grundzüge der VWL // Makroökonomie Übung Grundzüge der VWL // Makroökonomie Wintersemester 2011/2012 Thomas Domeratzki 27. Oktober 2011 VWL allgemein, worum geht es??? Wie funktioniert die Wirtschaft eines Landes? wie wird alles koordiniert?

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Grundlagen und Basisalgorithmus

Grundlagen und Basisalgorithmus Grundlagen und Basisalgorithmus Proseminar -Genetische Programmierung- Dezember 2001 David König Quelle: Kinnebrock W.: Optimierung mit genetischen und selektiven Algorithmen. München, Wien: Oldenbourg

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

Zusammenfassung Geldangebot Geldtheorie und Geldpolitik Wintersemester, 2011/12

Zusammenfassung Geldangebot Geldtheorie und Geldpolitik Wintersemester, 2011/12 Zusammenfassung Geldangebot Geldtheorie und Geldpolitik Wintersemester, 2011/12 1 Geldangebot Geldangebot: Wie entsteht Geld? Die ZB druckt Geld und verleiht es an Geschäftsbanken oder kauft damit Assets.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung w-transformation Die w-transformationbildet das Innere des Einheitskreises der z-ebene in die linke w-ebene ab. z 1 w= z+1, bzw. z= 1+w 1 w Nach Anwendung der w-transformationist

Mehr

Hat Oracle das Recht ein Audit durchzuführen?

Hat Oracle das Recht ein Audit durchzuführen? Hat Oracle das Recht ein Audit durchzuführen? Oracle hat das Recht, die Nutzung der von den einzelnen Kunden eingesetzten Programmen zu überprüfen. Dies ist im sogenannten OLSA (Oracle Licenseand Service

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Das Handwerkszeug. Teil I

Das Handwerkszeug. Teil I Teil I Das Handwerkszeug Beratung in der IT 3 Beratung ist ein häufig gebrauchter und manchmal auch missbrauchter Begriff in der IT. Wir versuchen in diesem Einstieg etwas Licht und Klarheit in diese Begriffswelt

Mehr

Grundlagen der Volkswirtschaftslehre Übungsblatt 10

Grundlagen der Volkswirtschaftslehre Übungsblatt 10 Grundlagen der Volkswirtschaftslehre Übungsblatt 10 Robert Poppe robert.poppe@uni-mannheim.de Universität Mannheim 19. November 2010 Überblick 1 Asymmetrische Information Verborgene Aktion Moralisches

Mehr

IWW Studienprogramm. Vertiefungsstudium. Strategische Marketingplanung. Lösungshinweise zur 3. Musterklausur

IWW Studienprogramm. Vertiefungsstudium. Strategische Marketingplanung. Lösungshinweise zur 3. Musterklausur Institut für Wirtschaftswissenschaftliche Forschung und Weiterbildung GmbH Institut an der FernUniversität in Hagen IWW Studienrogramm Vertiefungsstudium Strategische Marketinglanung Lösungshinweise zur

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Übung Währungstheorie WS 2007/08 - Julia Bersch

Übung Währungstheorie WS 2007/08 - Julia Bersch Übung Währungstheorie WS 2007/08 - Julia Bersch Aufgabe a - Zinsparität Spot exchange rate / Deviskassakurs: Wechselkurs, der sich auf dem Spotmarkt (=Deviskassamarkt) bildet Devis werd spätests 2 Tage

Mehr

Der Rechner. Grundbegriffe. Aufbau. Funktionsweise. Betriebssystem. Kategorisierung. PC-Komponenten. Prof. Dr. Aris Christidis

Der Rechner. Grundbegriffe. Aufbau. Funktionsweise. Betriebssystem. Kategorisierung. PC-Komponenten. Prof. Dr. Aris Christidis Der Rechner Grundbegriffe Aufbau Funktionsweise Betriebssystem Kategorisierung PC-Komponenten Auf der Grundlage eines Programms kann ein Computer Daten mit seiner Umgebung austauschen, mathematische und

Mehr

Arbeitsblatt Markt und Marktformen

Arbeitsblatt Markt und Marktformen Arbeitsblatt Markt und Marktformen 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Der Markt Bestimmt warst auch du schon mal auf einem

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Lösungshinweise zur Einsendearbeit 1 zum Fach Finanz- und bankwirtschaftliche Modelle, Kurs 42000, SS 2014 1

Lösungshinweise zur Einsendearbeit 1 zum Fach Finanz- und bankwirtschaftliche Modelle, Kurs 42000, SS 2014 1 Lösungshinweise zur Einsendearbeit zum Fach Finanz- und bankwirtschaftliche Modelle, Kurs 42000, SS 204 Kurs: Finanz- und bankwirtschaftliche Modelle (42000) Lösungshinweise zur Einsendearbeit Nr. im SS

Mehr

Verhaltenskodex über vorvertragliche Informationen für wohnungswirtschaftliche Kredite

Verhaltenskodex über vorvertragliche Informationen für wohnungswirtschaftliche Kredite Verhaltenskodex über vorvertragliche Informationen für wohnungswirtschaftliche Kredite 1. Allgemeine Informationen, die dem Verbraucher zur Verfügung gestellt werden sollten Die ersten Informationen über

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Zwei einfache Kennzahlen für große Engagements

Zwei einfache Kennzahlen für große Engagements Klecksen nicht klotzen Zwei einfache Risikokennzahlen für große Engagements Dominik Zeillinger, Hypo Tirol Bank Die meisten Banken besitzen Engagements, die wesentlich größer sind als der Durchschnitt

Mehr

Schriftliche Vordiplomprüfung Betriebsökonomie FH Serie C

Schriftliche Vordiplomprüfung Betriebsökonomie FH Serie C Schriftliche Vordiplomprüfung Betriebsökonomie FH Serie C Fach: Zeit: Volkswirtschaftslehre - Teil Mikroökonomie - 60 Minuten Punkte: 34 Name, Vorname: Studiengang / evtl. Klasse: Erster Prüfungsversuch

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2!

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2! Bachelor-Kursprüfung International Finance Schwerpunktmodule Finanzmärkte und Außenwirtschaft 6 Kreditpunkte, Bearbeitungsdauer: 90 Minuten WS 2014/15, 04.02.2015 Prof. Dr. Lutz Arnold Bitte gut leserlich

Mehr

Lösungen zu den Übungsaufgaben aus Kapitel 5

Lösungen zu den Übungsaufgaben aus Kapitel 5 Lösungen zu den Übungsaufgaben aus Kapitel 5 Ü5.1: Die entsprechende Bellman sche Funktionalgleichung kann angegeben werden als: Vct (, ) = max qt D { r rt t ( min{ q t, c} ) min{ q t, c} Vc ( min{ q t,

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

A 8: Preisbildung auf freien Märkten (1)

A 8: Preisbildung auf freien Märkten (1) A 8 Preisbildung auf freien Märkten (1) Eine Marktfrau bietet auf dem Wochenmarkt Eier an. Angebot und Nachfrage werden lediglich über den Preismechanismus des freien Marktes gesteuert. Über die Verhaltensweise

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6)

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) Geldtheorie und -politik Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) 2. Mai 2011 Überblick Bestimmung des Zinssatzes im Markt für Anleihen Erklärung der Dynamik von Zinssätzen Überblick

Mehr

Das Geldangebot. 2.1 Wichtige Begriffe. 2.2 Geldschöpfung und -vernichtung. 2.3 Das Multiplikatormodell. 2.4 Die endogen bestimmte Geldmenge

Das Geldangebot. 2.1 Wichtige Begriffe. 2.2 Geldschöpfung und -vernichtung. 2.3 Das Multiplikatormodell. 2.4 Die endogen bestimmte Geldmenge Universität Ulm 89069 Ulm Germany Dipl-WiWi Sabrina Böck Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 2007/2008

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr