Zentrum für Mathematik

Größe: px
Ab Seite anzeigen:

Download "Zentrum für Mathematik"

Transkript

1 Fakultät: Mathematik und Naturwissenschaften, Fachrichtung: Mathematik, Professur für Didaktik der Mathematik Bilder und Perlen der Mathematik Tag der Mathematik 2017 Dr. rer. nat. Frank Morherr Marburg, Zentrum für Mathematik

2 Satz des Pythagoras In einem rechtwinkligen Dreieck mit den Katheten a und b und der Hypotenuse c gilt: Pythagoräische Zahlentripel

3 Schaufelradbeweise und Klappbeweise Methode 1 (ohne Rechnen) Methode 2 (Perigal) Methode 1 (mit Rechnen) Methode 3 (Klappbeweis)

4 Beweise des Satzes des Pythagoras Ähnlichkeitsbeweis: c F

5 Höhensatz und Kathetensatz in Bildern

6 Summen natürlicher Zahlen Figurierte Zahlen n-te k-eckszahl: 3-Eckszahlen (k=3):

7 4-Eckszahlen (Quadratzahlen) (k=4): Summen natürlicher Zahlen

8 Spirale mit Quadratzahlen

9 Summen natürlicher Zahlen 5-Eckszahlen (k=5): Pentagonalzahlensatz von Leonhard Euler ( Resultat aus der Funktionentheorie): Als formale Potenzreihe in q gilt: Die Koeffizienten auf der rechten Seite sind lediglich 0,1,-1

10 Summen natürlicher Zahlen Summe der ersten n natürlichen Zahlen (Dreieckszahlen) Summe der ersten n Quadratzahlen (quadratische Pyramidenzahlen)

11 Summen natürlicher Zahlen Summe der ersten n Kubikzahlen Anwendung: Integration über Riemannsche Summe Beispiel: Obersumme:

12 Geometrische Visualisierung der Division mit Rest und des ggt Kettenbruchentwicklung ist ablesbar: Zerlegung in Quadrate ist ablesbar:

13 Zahlen am Pascalschen Dreieck

14 Zahlen am Pascalschen Dreieck

15 Die Fibonacci-Zahlen Leonardo da Pisa, auch Fibonacci genannt (von 1180 in Pisa; bis 1241 in Pisa) war Rechenmeister in Pisa und gilt als der bedeutendste Mathematiker des Mittelalters. Die Fibonacci-Zahlen beschreiben die Populationsentwicklung der Kaninchen Start mit einem Elternpaar. Die nächste Generation besteht aus der Summe der beiden vorhergehenden. Bildungsgesetz:

16 Die Fibonacci-Zahlen Rekursionsformel Explizite Formel

17 Die explizite Formel Die Gestalt der expliziten Formel erstaunt, da die irrationale Zahl 5 auftaucht, die Fibonacci-Zahlen, aber aufgrund der Rekursion alle ganzzahlig sind. Die 5 kürzt sich immer günstig: (Gelegenheit für Schüler, binomische Formeln zu üben)

18 Methode von Binet Allgemeines Verfahren, welches prinzipiell bei allen mehrstufigen Rekursionen funktioniert, eng verwandt mit der Methode der erzeugenden Funktionen. Ein analoges Verfahren funktioniert bei der Lösung von linearen Differentialgleichungen mit konstanten Koeffizienten.

19 Methode von Binet

20 Grenzen geometrischer Beweise Ein Beispiel sehen Sie hier: Weiße Fläche: 13*34=442 Kästchen Weiße Fläche: 21*21=441 Kästchen Die bunten Dreiecke sind in beiden Bildern jeweils gleich groß. Was ist hier los? Wo kommt das zusätzliche Quadrat her? Wieso gerade diese Zahlen?

21 Der Schein trügt scheinbare Hypotenuse hat in Wirklichkeit einen Knick dort versteckt sich der zusätzliche Kasten Der Knick fällt nicht auf, da Steigungen sich als Quotient von Fibonacci-Zahlen einem Grenzwert (Kehrwert des Goldenen Schnitts) annähern. Hier ein Beispiel in größerem Maßstab Weiße Fläche: 2*5=10 Kästchen Weiße Fläche: 3*3=9 Kästchen Allgemeine Formel, die dahinter steckt:

22 Beweis der Cassini-Identität

23 Anschauliche Beweise von Identitäten

24 Anwendung von Identitäten Cardanische Formel Die aus dem binomischen Satz stammende Identität Binomische Formel dient zum Lösen kubischer Gleichungen der Form Wähle Dann sind wegen Produkt und Summe von Bekannt, und aus der p-q-formel zur Lösung einer quadratischen Gleichung folgen und somit Binomischer Satz zur Ableitung von f(x)= x³

25

26 Bilder zum goldenen Schnitt Goldenes Rechteck Fibonacci-Rechtecke und goldene Spirale Goldenes Rechteck: Front des UN-Hauptgebäudes 3 goldene Rechtecke im Ikosaeder Fünfeck falten Kettenbruchentwicklung von Φ

27 Der goldene Schnitt in der Kunst

28 Der goldene Schnitt in der Architektur Rathaus in Leipzig Petersbasilika, Rom(Vorläufer des Petersdoms) Le Corbusier: Unité

29 Das Geheimnis der Din-Formate Die Standardgrößen für Papierformate in Deutschland sind die vom Deutschen Institut für Normung (DIN) erstmals am 18. August 1922 in der DIN-Norm DIN 476 festgelegten Formate. Das Verhältnis zwischen Breite und Höhe ist bei allen Formaten gleich. Um diesen Wert und die Hintergründe geht es auf Arbeitsblatt 1. Entwickelt wurde der Standard vom deutschen Ingenieur Walter Porstmann. Der Entwurf gleicht den in Vergessenheit geratenen Entwürfen aus der Zeit der Französischen Revolution.

30 Fragen rund ums Din-Format Welche Maße hat das üblicherweise zu Schreiben verwendete DinA4? Warum sind die Maße so krumm und keine glatten Zahlen? Was bedeutet Din? Was bedeutet A? Was bedeutet die Zahl? Wie gelange ich von einem Din-Format zum nächsten? Wie groß ist das konstante Seitenverhältnis der Din-Formate? Was ist der Vorteil eines konstanten Seitenverhältnisses? Wie verhalten sich die Flächen verschiedener Din-Formate zueinander? Wie sind die Maße aller anderen Din-Formate? Wie groß ist die Fläche von DinA0? Was hat diese Fläche mit der französischen Revolution und mit dem Erdumfang, bzw. Abstand Pol- Äquator zu tun? Welche Fläche ergibt sich, wenn man die Fläche alle Din-Formate aufsummieren würde?

31 Einige wenige mathematische Antworten

32

33

34 DinA-Maße

35 Die geometrische Summenformel und die geometrische Reihe

36 Formaler Beweis: Die geometrische Summenformel

37 Übergang zur geometrischen Reihe

38 Anschaulicher Beweis der Formel der geometrischen Reihe

39 Geometrische Reihe in Bildern

40 Fraktale Gebilde und Selbstähnlichkeit Siehe auch: Frank Morherr: Folgen und Fraktale: Mathematik in der Natur als Grundlage zum Verständnis des Grenzwertprozesses in der E-Phase der gymnasialen Oberstufe, Oberursel 2013 Fraktale Gebilde besitzen im Allgemeinen keine ganzzahlige Dimension sondern eine gebrochene daher der Name und weisen zudem einen hohen Grad von Skaleninvarianz bzw. Selbstähnlichkeit auf. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst besteht. Geometrische Objekte dieser Art unterscheiden sich in wesentlichen Aspekten von gewöhnlichen glatten Figuren. Bekannte Beispiele: Apfelmännchen, Kochsche Schneeflocke

41 Newtonverfahren für eine Funktion : Ziel ist das iterative Berechnen einer Nullstelle von f, sofern eine solche vorliegt. Idee: Fraktale durch Iteration von Funktionen Beispiel komplexes Newtonverfahren Analoges Verhalten tritt auf für komplexe Funktionen Hier liegt dieselbe Iterationsformel zugrunde und auch hier ist es erst mal unklar, mit welchem Startwert man bei welcher Nullstelle landet. Betrachten wir z.b. die Funktion Die Funktion hat drei komplexe Nullstellen: Iterationsformel ist: Problem: Nicht klar, mit welchem Startwert man bei welcher Nullstelle landet oder ob Verfahren divergiert Zeichnet man diese in die komplexe Zahlenebene ein und färbt Sie in den Farben rot, grün und blau. Außerdem färbt, man jeden Startpunkt in der Farbe der Nullstelle, bei der das Verfahren endet. Das Ergebnis ist typisch und das folgende fraktale Gebilde:

42

43 Benoit Mandelbrot und das Apfelmännchen Programm für die Schule, selbst ausprobieren: Fractalizer

44 Bilder ebener Fraktale Sierpinski-Dreieck: Apfelmännchen für n=4 und der Funktion mittels Fractalizer. Natürliche Erzeugung mittels Reaktions-Diffusions-Systemen:

45 Sierpinski-Dreieck und Pascalsches Dreieck Koeffizienten modulo 4:

46 Chaosspiel oder der verliebte Frosch Man stelle sie vor, in den Ecken eines gleichseitigen Dreiecks sitze jeweils eine Froschdame. In der Mitte sitzt ein Frosch mit Farbe an den Füßen, der sich nicht entscheiden kann, zu welcher Dame er möchte. Mit der Wahrscheinlichkeit 1/3 springt er den halben Weg auf eine bestimmte Dame zu. Dann hat er vergessen, wo er eigentlich hinwollte und springt wieder mit eine Wahrscheinlichkeit 1/3 den halben Weg auf eine bestimmte Dame zu. Jedes mal lässt er einen Farbklecks zurück. Videos bei Youtube: Sierpinski Dream Playing the Chaos Game (Sierpinski Triangle) ZELDA SYMBOL : created by a chaos-game

47 Fraktale im Raum Romanasco: Mengerschwamm: 3D-Drucker

48 Empfindlich gegenüber Anfangsbedingungen: Tod des Laplaceschen Dämons Ein kleiner Magnet hängt an einem Faden mit sechs gleichartigen, regelmäßig angeordneten Magneten. In der Ruhelage befindet er sich etwas oberhalb der Anordnung. Die Pole der sechs Magnete ziehen den darüber schwebenden Magnete an. Der Magnet wird zu unterschiedlichen Startpunkten ausgelenkt und losgelassen. Der Magnet vollführt eine Bewegung, die ihn schließlich bei einem der sechs anderen Magneten zur Ruhe kommen lässt. Auch bei genauster Kontrolle des Startpunktes lässt sich bei weiter Auslenkung nicht vorhersagen, bei welchem Magnet er stehenbleibt. Rechts sind die Startpunkte mit der Farbe des Magneten gekennzeichnet, an dem die Bewegung ändert. Es entsteht ein Fraktal. Schmetterlingseffekt

49 Selbstähnlichkeit in der Natur Natürliche Beispiele Selbstähnlichkeit bedeutet, dass ein Objekt auf Bäume/Äste/Blätter unterschiedlichen Skalen im wesentlichen gleich bzw. Küstenlinien ähnlich aussieht. Es besitzt eine Skaleninvarianz: Blitze Blutkreislauf/Kapillaren Flusssysteme/Flussdelta Risse Gemüsesorten wie Blumenkohl, Romanesco Farne Lungenbläschen/Bronchien Bäume Schmelzender Schnee auf Teer in unterschiedlicher Vergrößerung:

50 Küstenlinien Blitze Blutkreislauf/Kapillaren Flusssystem Flussdelta Risse Blumenkohl Romanesco Farne

51 Während in der Natur die Anzahl der Stufen von selbstähnlichen Strukturen begrenzt und oft nur drei bis fünf beträgt, kann man in der Mathematik ideale selbstähnliche Strukturen konstruieren, die egal, wie weit man reinzoomt, immer ähnlich aussehen. Mathematische Beispiele: Cantorsches Diskontinuum Sierpinski-Dreieck Mengerschwamm Mandelbrotmenge (Apfelmänchen) Pythagorasbaum Kochsche Schneeflocke Das Faszinierende bei Fraktalen ist, dass aus einfachen Konstruktionsvorschriften, die immer wieder angewendet werden, komplexe Strukturen entstehen. Dies ist auch ein Grund, wieso ihr Auftreten in der Natur so häufig ist. Minimale auf der DNA gespeicherte Informationen werden als Bauplan für komplexe Systeme immer wieder abgerufen.

52 Baumfraktale: Der Goldene Schnitt und Fraktale Ziel: Bestimme den Verkleinerungsfaktor f so, dass sich die Äste berühre, d.h. keinen Zwischenraum offenlassen, sich aber auch nicht überlappen. Alternativ: Pythagoras-Baum

53 Der Goldene Schnitt und Fraktale

54 Der Goldene Schnitt und Fraktale Das goldene Quadratfraktal Überlappbedingung für Verkleinerungsfaktor ist

55 Hausdorff-Dimension

56

57 Dimension klassischer Objekte

58

59 Dimension fraktaler Objekte Schmetterlingseffekt

60 Vielen Dank für Ihre Aufmerksamkeit und noch viel Spaß beim Tag der Mathematik 2017

Fibonacci-Zahlen und der goldene Schnitt

Fibonacci-Zahlen und der goldene Schnitt Fibonacci-Zahlen und der goldene Schnitt Behandlung von rekursiven Zahlenfolgen zum Umgang mit Excel, Mathematica, Maple und Octave (Matlab), sowie Einüben von Diagonalisierung und Stellenwertsystemen

Mehr

Din-Formate und Küstenlinien, Selbstähnlichkeit von Fraktalen und gebrochene Dimensionen

Din-Formate und Küstenlinien, Selbstähnlichkeit von Fraktalen und gebrochene Dimensionen www.bilder-plus.de/bildformate.php Spektrum der Wissenschaft http://bankderkuenste.de/wp-content/uploads/2012/03/mandelbrot.jpg Din-Formate und Küstenlinien, Selbstähnlichkeit von Fraktalen und gebrochene

Mehr

Selbstähnlichkeit in der Natur und mathematische Fraktale

Selbstähnlichkeit in der Natur und mathematische Fraktale www.bilder-plus.de/bildformate.php Spektrum der Wissenschaft http://bankderkuenste.de/wp-content/uploads/2012/03/mandelbrot.jpg Selbstähnlichkeit in der Natur und mathematische Fraktale Tag der Mathematik

Mehr

Modellierung mit Dynamischen Systemen und Populationsdynamik

Modellierung mit Dynamischen Systemen und Populationsdynamik Modellierung mit Dynamischen Systemen und Populationsdynamik Dynamische Systeme in der Schule Fachtagung Göttingen 2017 Alfred J. Lotka (1880-1949) Technische Universität Dresden Vito Volterra 1860-1940

Mehr

Kunst und Wissenschaft

Kunst und Wissenschaft Kunst und Wissenschaft HS 8 Visualisierung von Newton-Fraktalen Inhalt 1. Ist Schönheit Harmonie? Mathematik in Musik und Malerei 2. Warum heissen Fraktale Fraktale? oder: was ist hier zerbrochen? 3. Was

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 407 Der Goldene Schnitt Hans Walser: Modul 407, Der Goldene Schnitt ii Inhalt 1 Der Goldene Schnitt... 1 1.1 Bezeichnungen... 1 Der Türöffner... 1.1

Mehr

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen? Hier siehst du Figuren, die aus Kreisen bestehen. Schon ab der zweiten Figur ergibt sich ein Dreieck. Die Anzahl der Kreise, die ein Dreieck bilden, nennt man Dreieckszahlen. Man tut so, als ob auch der

Mehr

4 Die Fibonacci-Zahlen

4 Die Fibonacci-Zahlen 4 Die Fibonacci-Zahlen 4.1 Fibonacci-Zahlen und goldener Schnitt Die Fibonacci-Zahlen F n sind definiert durch die Anfangsvorgaben F 0 = 0, F 1 = 1, sowie durch die Rekursion F n+1 = F n + F n 1 für alle

Mehr

Fraktale. Mathe Fans an die Uni. Sommersemester 2009

Fraktale. Mathe Fans an die Uni. Sommersemester 2009 Fraktale Mathe Fans an die Uni Ein Fraktal ist ein Muster, das einen hohen Grad Selbstähnlichkeit aufweist. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst

Mehr

BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ

BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ BERÜHMTE KURVEN Gruppenleiter: Jürgen Appell, Kristina Appell, Anna Martellotti Hilfskräfte: Alison Cross, Ruth Smith Teilnehmer(innen): Ann-Christin Gerstner, Matthias Geuder, Michael Kierstein, Lukas

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

2. Fraktale Geometrie

2. Fraktale Geometrie 2. Fraktale Geometrie Komplexe Systeme ohne charakteristische Längenskala z.b. Risse in festen Materialien, Küstenlinien, Flussläufe und anderes.. Skaleninvariante Systeme Gebrochene Dimensionen Fraktale

Mehr

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates: Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Anzahl der Punkte auf Kreis und Gerade

Anzahl der Punkte auf Kreis und Gerade Anzahl der Punkte auf Kreis und Gerade Ein Kreis hat sicher einen viel kürzeren Umfang als eine unendliche Gerade. Trotzdem besteht ein Kreis (ohne seinen obersten Punkt) aus gleich vielen Punkten wie

Mehr

GOLDENER SCHNITT UND FIBONACCI-FOLGE

GOLDENER SCHNITT UND FIBONACCI-FOLGE GOLDENER SCHNITT UND FIBONACCI-FOLGE NORA LOOSE Der Goldene Schnitt - Eine Irrationalität am Ordenssymbol der Pythagoreer Schon im 5 Jahrhundert v Chr entdeckte ein Pythagoreer eine Konsequenz der Unvollständigkeit

Mehr

Anzahl der Punkte auf Kreis und Gerade

Anzahl der Punkte auf Kreis und Gerade Anzahl der Punkte auf Kreis und Gerade Ein Kreis hat sicher einen viel kürzeren Umfang als eine unendliche Gerade. Trotzdem besteht ein Kreis (ohne seinen obersten Punkt) aus gleich vielen Punkten wie

Mehr

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale c Priv.-Doz. Dr. Adelhard Köhler May 19, 2005 1 Gebrochene (fraktale) Dimension Fraktale haben eine gebrochene Dimension. Unterschiedliche Dimensionsbegriffe

Mehr

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck Hans Walser, [20040416a] Pythagoreische Rechtecke 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Wir starten mit einem beliebigen rechtwinkligen Dreieck in der üblichen Beschriftung. Startdreieck

Mehr

Kapitel 1. Kapitel 1 Vollständige Induktion

Kapitel 1. Kapitel 1 Vollständige Induktion Vollständige Induktion Inhalt 1.1 1.1 Das Das Prinzip A(n) A(n) A(n+1) 1.2 1.2 Anwendungen 1 + 2 + 3 +...... + n =? 1.3 1.3 Landkarten schwarz-weiß 1.4 1.4 Fibonacci-Zahlen 1, 1, 1, 1, 2, 2, 3, 3, 5, 5,

Mehr

3. rekursive Definition einer Folge

3. rekursive Definition einer Folge 3. rekursive Definition einer Folge In vielen Fällen ist eine explizite Formel für das n-te Glied nicht bekannt, es ist hingegen möglich, aus den gegebenen Gliedern das nächste Glied zu berechnen, d.h.

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

2. Aufgabe zu Unterrichtsplanung für eine Klasse der Unterstufe

2. Aufgabe zu Unterrichtsplanung für eine Klasse der Unterstufe 2. Aufgabe zu 31.05.2017 1. Unterrichtsplanung für eine Klasse der Unterstufe Thema: Pythagoräischer Baum und Wurzelschnecke Unterrichtsablauf Zu Beginn der Einheit wird der kürzlich gelernte Pythagoräische

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Hans Walser. Die allgemeine Fibonacci-Folge

Hans Walser. Die allgemeine Fibonacci-Folge Hans Walser Die allgemeine Fibonacci-Folge Hans Walser: Die allgemeine Fibonacci-Folge ii Inhalt Die Rekursion... Heuristischer Hintergrund... 3 Formel von Binet... 4 Übersicht... 5 Sonderfälle...3 6 Beispiele...3

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Goldener Schnitt Was war das große Geheimnis der Pythagoräer?

Goldener Schnitt Was war das große Geheimnis der Pythagoräer? Das Pentagramm Der Drudenfuß Das Pentagramm war das Zeichen des Geheimbundes der Pythagoräer, und diese geheimnisvolle Figur gilt schon seit alters her als magisches Symbol. So fand es z.b. in früherer

Mehr

9 Fraktale. Dabei hängt das Ergebnis vom Maßstab der Karte und von der eingestellten Weite des Stechzirkels

9 Fraktale. Dabei hängt das Ergebnis vom Maßstab der Karte und von der eingestellten Weite des Stechzirkels 79 9 Fraktale Problemstellung Im Jahr 1967 veröffentlichte der Mathematiker Benoit Mandelbrot 3 eine Arbeit mit dem Titel How long is the coast of Britain? Statistical self-similarity and fractional dimension.

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

Was haben die folgenden Dinge gemeinsam?

Was haben die folgenden Dinge gemeinsam? Was haben die folgenden Dinge gemeinsam? Parthenon zu Athen Mona Lisa von Leonardo da Vinci Nautilus Berliner Fernsehturm CN Tower Obelix Brüder Grimm Ananas Rose Biene Apple Das goldene Zeitalter Der

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 = Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /16 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 3. Zahlenfolgen und Grenzwerte

Mehr

2 Selbstähnlichkeit, Selbstähnlichkeitsdimension

2 Selbstähnlichkeit, Selbstähnlichkeitsdimension 9 2 Selbstähnlichkeit, Selbstähnlichkeitsdimension und Fraktale 2.1 Selbstähnlichkeit Bei den Betrachtungen zur Dimension in Kapitel 1 haben wir ähnliche (im geometrischen Sinn) Figuren miteinander verglichen.

Mehr

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier FRAKTALE Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier I. Fraktale allgemein a. Mathematischer Algorithmus i. Komplexe Zahlen b. Konvergieren und Divergieren i. Bei Mandelbrotmengen

Mehr

Martin-Anderson-Nexö-Gymnasium, Dresden

Martin-Anderson-Nexö-Gymnasium, Dresden Fraktale Wechselspiel zwischen Chaos und Ordnung Teilnehmer: David Burgschweiger Tim Gabriel Welf Garkisch Anne Kell Leonard König Erik Lorenz Sofie Martins Niklas Schelten Heinrich-Hertz-Oberschule, Berlin

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen

Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen 1 Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Beispiellösungen zu Blatt 65

Beispiellösungen zu Blatt 65 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 65 Welche regelmäßigen n-ecke der Seitenlänge 1 kann man in kleinere

Mehr

SPIRALE AUS RECHTECKEN

SPIRALE AUS RECHTECKEN SPIRALE AUS RECHTECKEN Die Rechtecke sid aus eiem Papierblatt im Format DIN A4 durch sukzessives Halbiere herausgeschitte ud da "über Eck" eu ageordet worde. Welche Folge bilde die Flächeihalte der Rechtecke

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Goldener Schnitt Fibonacci-Zahlen Nachträge

Goldener Schnitt Fibonacci-Zahlen Nachträge Goldener Schnitt Fibonacci-Zahlen Nachträge 4. Zusammenhang Goldener Schnitt - Fibonacci-Zahlen An der Mathematik irritiert mich, dass der goldene Schnitt und die Fibonacci-Zahlen sich zueinander so verhalten,

Mehr

Tag der Mathematik 2015

Tag der Mathematik 2015 Tag der Mathematik 2015 Einzelwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden Taschenrechner sind nicht zugelassen Teamnummer Die folgende Tabelle

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

1 Der Goldene Schnitt

1 Der Goldene Schnitt Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

7. Systeme mit drei (und mehr) Spezies: chaotische Systeme

7. Systeme mit drei (und mehr) Spezies: chaotische Systeme 7. Systeme mit drei (und mehr) Spezies: chaotische Systeme Dies kann z.b. Ein System mit mehreren verschiedenen Räubern sein, die die selben Beutetiere jagen. Auch ein nicht autonomes System mit zwei Spezies

Mehr

Dr. Robert Strich Dr. Ysette Weiss Pidstrygach

Dr. Robert Strich Dr. Ysette Weiss Pidstrygach Kinder Uni 2008 Geheimnis Mathematik oder wo sich Mathematik verstecken kann Dr. Robert Strich Dr. Ysette Weiss Pidstrygach Mathebrille Wir begeben uns in eine ideale Welt. Unsere Expeditionsausrüstung

Mehr

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal 1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de

Mehr

2. Bereich der reellen Zahlen IR

2. Bereich der reellen Zahlen IR Fachinternes Curriculum für das Fach Mathematik (letzte Aktualisierung: 14.03.2014) Ab Schuljahr: 14/15 Jahrgang: 9 Die dritte Klassenarbeit wird in Klasse 9 über 90 Minuten geschrieben. Zeitraum Pflichtmodul

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Bericht vom 1. Leipziger Seminar am 5. November 2005

Bericht vom 1. Leipziger Seminar am 5. November 2005 Bericht vom 1. Leipziger Seminar am 5. November 2005 Der Eulersche Satz und die Eulersche Phi-Funktion Wir wollen einen berühmten Satz der Zahlentheorie behandeln, den Eulerschen Satz. Dazu müssen wir

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Spielen mit Zahlen Seminarleiter: Dieter Bauke

Spielen mit Zahlen Seminarleiter: Dieter Bauke Spielen mit Zahlen Seminarleiter: Dieter Bauke EINLEITUNG Was ist Mathematik? Geometrie und Arithmetik: Untersuchung von Figuren und Zahlen. Wir kombinieren Arithmetik und Geometrie mittels figurierter

Mehr

n x n y n Tab.1: Zwei Beispiele

n x n y n Tab.1: Zwei Beispiele Hans Walser, [0404] Konvergente Fibonacci-Folgen Worum geht es? Die klassische Fibonacci-Folge,,,, 5, 8,,,... ist divergent. Wir untersuchen Beispiele von konvergenten Folgen mit der Rekursion: a n = pa

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Einzelwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden Taschenrechner sind nicht zugelassen Teamnummer Die folgende Tabelle

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

3. Argumentieren und Beweisen mit Punktemustern

3. Argumentieren und Beweisen mit Punktemustern 3 Punktemuster 22 3. Argumentieren und Beweisen mit Punktemustern 3.1 Figurierte Zahlen Gerade in der Grundschule bietet es sich immer wieder an, Zahlen durch Gegenstände zu verdeutlichen. Andererseits

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

Inhaltsverzeichnis. 1 Der Garten der natürlichen Zahlen Besondere Zahlen Vorwort... Einleitung...

Inhaltsverzeichnis. 1 Der Garten der natürlichen Zahlen Besondere Zahlen Vorwort... Einleitung... Inhaltsverzeichnis Vorwort... VII Einleitung... XV 1 Der Garten der natürlichen Zahlen... 1 1.1 Figurierte Zahlen... 1 1.2 Summen von Quadratzahlen, Dreieckszahlen und dritten Potenzen... 7 1.3 Es gibt

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 07 Fixpunkte Hans Walser: Modul 07, Fixpunkte ii Inhalt Fixpunkte.... Worum es geht....2 Geometrische Beispiele von Fixpunkten....2. Stadtplan....2.2

Mehr

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite Inhaltverzeichnis Inhalt... Seite Klasse 5: 1 Zahlen... 1 1.1 Zahlenmengen... 1 1.2 Dezimalsystem... 1 1.3 Römische Zahlen... 1 1.4 Runden... 1 1.5 Termarten... 1 1.6 Rechengesetze... 2 1.7 Rechnen mit

Mehr

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr),

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), 12.01.11 Thema: Der Satz des Pythagoras (Einführung) Lernziele Groblernziel Die Schülerinnen und Schüler entdecken anhand

Mehr

c) Zeigen Sie, dass dieses Parallelogramm AOBC kein Rhombus und auch kein Rechteck ist.

c) Zeigen Sie, dass dieses Parallelogramm AOBC kein Rhombus und auch kein Rechteck ist. Fach Klassen Mathematik alle 5. Klassen Dauer der Prüfung: Erlaubte Hilfsmittel: 4 Std. Fundamentum Mathematik und Physik Taschenrechner TI-83 Plus inkl. Applikation CtlgHelp Vorbemerkungen: 1. Ergebnisse

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 406 Fraktale Lernumgebung Hans Walser: Modul 406, Fraktale. Lernumgebung ii Inhalt 1 Die Kochsche Schneeflocke... 1 2 Weißt du wie viel Würfel stehen?...

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

inb.-htsvfvrzetehnis digitalisiert durch: IDS Basel Bern

inb.-htsvfvrzetehnis digitalisiert durch: IDS Basel Bern inb.-htsvfvrzetehnis 1 Der Stuhl der Braut 1 1.1 Der Satz des Pythagoras - Euklids und andere Beweise 2 1.2 Die Vecten-Figur 4 1.3 Der Kosinussatz 7 1.4 Der Satz von Grebe und die Erweiterung von van Lamoen...

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

3. Argumentieren und Beweisen mit Punktemustern

3. Argumentieren und Beweisen mit Punktemustern 3 Punktemuster 22 3. Argumentieren und Beweisen mit Punktemustern 3.1 Figurierte Zahlen Gerade in der Grundschule bietet es sich immer wieder an, Zahlen durch Gegenstände zu verdeutlichen. Andererseits

Mehr

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit).

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). Das geometrische π π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). nach Hans-Werner Meixner und Coautor Christian Meixner Als Basis für die Ausführungen zur geometrischen

Mehr

1 Goldener Schnitt. und a = m + M. 1, und wird im Allgemeinen mit τ (griechisch: tau) bezeichnet. Das Verhältnis M m hat den Wert 1+ 5

1 Goldener Schnitt. und a = m + M. 1, und wird im Allgemeinen mit τ (griechisch: tau) bezeichnet. Das Verhältnis M m hat den Wert 1+ 5 1 Goldener Schnitt Definition und Satz 1.1 (Goldener Schnitt) Sei AB die Strecke zwischen den Punkten A und B. Ein Punkt S von AB teilt AB im Goldenen Schnitt, falls sich die größere Teilstrecke M (Major)

Mehr

3. Stegreifaufgabe aus der Mathematik Lösungshinweise

3. Stegreifaufgabe aus der Mathematik Lösungshinweise (v0.1 16.1.09) Schuljahr 008/009. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Der Satz des Pythagoras lässt sich zum Beispiel so formulieren: In einem rechtwinkligen Dreieck

Mehr

Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 2 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2011 Mathematik Rechenfertigkeiten Übungen Donnerstag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dominik

Mehr

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren) Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)

Mehr

Mathe mit GeoGebra 9/10. Funktionen, Pythagoras, Ähnlichkeiten. Arbeitsheft mit CD. Werner Zeyen 1. Auflage, 2013 ISBN:

Mathe mit GeoGebra 9/10. Funktionen, Pythagoras, Ähnlichkeiten. Arbeitsheft mit CD. Werner Zeyen 1. Auflage, 2013 ISBN: Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-238-1 Mathe mit GeoGebra 9/10 Funktionen, Pythagoras, Ähnlichkeiten Arbeitsheft mit CD RS-MA-GEGE3 2 Quadratische Funktionen 2.1 In der Umwelt häufig anzutreffen:

Mehr

1. Rechensteine und Pythagoräischer Lehrsatz.

1. Rechensteine und Pythagoräischer Lehrsatz. 1. Rechensteine und Pythagoräischer Lehrsatz. Der Beginn der wissenschaftlichen Mathematik fällt mit dem Beginn der Philosophie zusammen. Er kann auf die Pythagoräer zurückdatiert werden. Die Pythagoräer

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Quadratfraktal. Abbildung 1 Abbildung 2 Abbildung 3

Quadratfraktal. Abbildung 1 Abbildung 2 Abbildung 3 Nimm ei quadratisches Blatt Papier. Scheide lägs eier Diagoale eimal die Hälfte ab. Zerlege die zweite Hälfte i vier rechtwiklige gleichscheklige Dreiecke (Abb. ). Zwei dieser vier Dreiecke kast du u abscheide

Mehr

Thema: Visualisierung mit MAPLE

Thema: Visualisierung mit MAPLE Ostervortrag zum Linux-Stammtisch am 07.04.2017 Thema: Visualisierung mit MAPLE Sybille Handrock 1 Computeralgebrasysteme Computeralgebra beschäftigt sich mit Methoden zum Lösen mathematischer Probleme

Mehr

Reelle Zahlenfolgen, Einleitung Fibonacci Folge

Reelle Zahlenfolgen, Einleitung Fibonacci Folge Reelle Zahlenfolgen, Einleitung Fibonacci Folge 1-E Einleitung Folgen und Reihen bilden eine wichtige Grundlage der Analysis. Sie führen zum Begriff des Grenzwertes, der für die Differential- und die Integralrechnung

Mehr

Schöne Forme(l)n. 7. Lange Nacht der Mathematik. Highlights der Mathematik. Thomas Westermann

Schöne Forme(l)n. 7. Lange Nacht der Mathematik. Highlights der Mathematik. Thomas Westermann Schöne Forme(l)n Highlights der Mathematik Thomas Westermann 7. Lange Nacht der Mathematik Was ist Mathematik überhaupt? Definition der Mathematik über die Objekte: - Punkt, Gerade, Ebenen,... -Zahlen

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung?

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? 1 Finde möglichst viele Gemeinsamkeiten und Unterschiede der folgenden Abbildungen.

Mehr

= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 =

= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 = 1 Lösungsvorschläge zu den Aufgaben 28, 29, 30 b), 31, 32, 33, 35, 36 i) und 37 a) von Blatt 4: 28) a) fx) := x 3 10! = 0 Wir bestimmen eine Näherungslösung mit dem Newtonverfahren: Als Startwert wählen

Mehr

Mathematische Überraschungen in der Natur

Mathematische Überraschungen in der Natur Mathematische Überraschungen in der Natur Die Goldene Zahl ist wahrscheinlich die außergewöhnlichste aller Zahlen. Sie hat hunderterlei einzigartige Eigenschaften wie sonst keine andere Zahl und so verwundert

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Beispiellösungen zu Blatt 77

Beispiellösungen zu Blatt 77 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 77 Die Zahl 9 ist sowohl als Summe der drei aufeinanderfolgenden Quadratzahlen,

Mehr

Perlen der Mathematik

Perlen der Mathematik Claudi Alsina Roger B. Nelsen Perlen der Mathematik 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen Aus dem Englischen übersetzt von Thomas Filk ~ Springer Spektrum Inhaltsverzeichnis

Mehr