Aufgabenkomplex 3: Vektoren und Matrizen

Größe: px
Ab Seite anzeigen:

Download "Aufgabenkomplex 3: Vektoren und Matrizen"

Transkript

1 Technische Universität Chemnitz 2. November 29 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex : Vektoren und Matrizen Letzter Abgabetermin: 7. Dezember 29 (in Übung oder Briefkasten bei Zimmer Rh. Str. 9/72) Bitte die Arbeiten deutlich mit Höhere Mathematik I., Aufgabenkomplex kennzeichnen und die Übungsgruppe angeben, in der die Rückgabe erfolgen soll!. Handelt es sich bei folgenden Mengen um Unterräume des R : x x x x a), x R, b), x R, c), x,y R, d) 2x, x R, y x x x x e) x+2, x R, f) y, x,y,z R, g) 2y, x,y R? x+ z x+4y Geben Sie ggf. die Dimension und eine Basis an! c 7 2. a) Für welche Werte von c ist der Vektor 5 Linearkombination von 5 und, für welche nicht? 4 2 b) In welchen Fällen handelt es sich bei den Mengen 7 c +α +γ 5, α,β,γ R und c 6 +α +γ 5, α,β,γ R um Unterräume des R? Was stellen die Mengen geometrisch dar?. In einer Großbäckerei werden drei Sorten Kuchen mit Äpfeln hergestellt. Dafür werden drei Grundteige verwendet. Für ein Blech Quark-Apfel-Kuchen werden je 6 g der Grundteige A, B und C, 8 g Quark und 4 Äpfel benötigt; für ein Blech Apfel-Quark-Kuchen g Grundteig B, 8 g Grundteig C, 4 g Quark und 7 Äpfel; für ein Blech Apfelkuchen g Grundteig A, je 5 g Grundteig B und C und Äpfel. Die Grundteige werden in der Teigmischmaschine hergestellt. Für einen Backtrog mit 2 kg Teig werden neben anderen Zutaten benötigt beim Grundteig A kg Mehl, 2 kg Zucker und 6 kg Margarine; beim Grundteig B kg Mehl, 25 kg Zucker und 7 kg Margarine und beim Grundteig C 2 kg Mehl, 5 kg Zucker und 4 kg Magarine. a) Geben Sie die Aufwandsmatrizen für den Bedarf an Mehl, Zucker und Margarine je Backtrog Grundteig, den Bedarf an Grundteig je Blech Kuchen sowie für den Bedarf an Quark und Äpfeln je Blech Kuchen an! b) Stellen Sie dar, wie sich aus diesen Matrizen die Aufwandsmatrix für den Bedarf an Mehl, Zucker und Margarine je Blech Kuchen errechnet und führen Sie diese Berechnung aus! c) Es sind 2 Bleche Quark-Apfel-Kuchen, 8 Bleche Apfel-Quark-Kuchen und Bleche Apfelkuchen zu backen. Ermitteln Sie unter Verwendung der Matrizen aus a) und b) den hierfür entstehenden Bedarf an den genannten Ausgangsstoffen! b.w.

2 Höhere Mathematik I. Aufgabenkomplex 2. November ( ) 2 ( 4. Sei A =, B =, c =, 2 d =. ) Berechnen Sie folgende Ausdrücke, sofern diese existieren: a) AB d, b) dba T, c) d c T + A T, d) A d + c, e) B c+ d, f) B d + c T, g) c T A d, h) (A d) T A! 5. Was bewirkt die Multiplikation einer dreizeiligen Matrix von links mit a) 2, b), c) bzw. d) ( )?

3 Höhere Mathematik I. Aufgabenkomplex 2. November 29 Aufgabenkomplex : Vektoren und Matrizen Letzter Abgabetermin: 7. Dezember 29. Handelt es sich bei folgenden Mengen um Unterräume des R : x x x x a), x R, b), x R, c), x,y R, d) 2x, x R, y x x x x e) x+2, x R, f) y, x,y,z R, g) 2y, x,y R? x+ z x+4y Geben Sie ggf. die Dimension und eine Basis an! x a), x R = x, x R Es handelt sich um die lineare Hülle des Vektors, also handelt es sich um einen Unterraum. Die Dimension ist, Basis z.b. dieser Vektor. x x 2 x +x 2 x b) + =, x R 2 c) Da die Addition aus der Menge heraus führt, handelt es sich um keinen Unterraum. x, x,y R = x +y, x,y R y Es handelt sich um die lineare Hülle von zwei Vektoren, also handelt es sich um einen Unterraum. Da die beiden Vektoren linear unabhängig sind, ist die Dimension 2. Eine Basis wird z.b. von diesen beiden Vektoren gebildet:,. x d) 2x, x R = x 2, x R x Es handelt sich um die lineare Hülle des Vektors 2, also handelt es sich um einen Unterraum. Die Dimension ist, Basis z.b. dieser Vektor. x x x +x 2 x e) x +2 + x 2 +2 = (x +x 2 )+4 x+2, x R x + x 2 + (x +x 2 )+6 x+ Da die Addition aus der Menge heraus führt, handelt es sich um keinen Unterraum.

4 Höhere Mathematik I. Aufgabenkomplex 2. November 29 4 f) x y, x,y,z R = R z Es handelt sich um den R selbst. Dieser ist defintionsgemäß Unterraum von sich selbst. Die Dimension ist, Basis z.b. die kanonische Basis,,. x g) 2y, x,y R = x +y 2, x,y R x+4y 4 Es handelt sich um die lineare Hülle von zwei Vektoren, also handelt es sich um einen Unterraum. Da die beiden Vektoren linear unabhängig sind, ist die Dimension 2. Eine Basis wird z.b. von diesen beiden Vektoren gebildet:, a) Für welche Werte von c ist der Vektor für welche nicht? c 7 Linearkombination von 5 und, b) In welchen Fällen handelt es sich bei den Mengen 7 c +α +γ 5, α,β,γ R und c 6 +α +γ 5, α,β,γ R um Unterräume des R? Was stellen die Mengen geometrisch dar? a) Damit der Vektor Linearkombination der beiden anderen ist, muss es Parameter λ und µ c 7 c= 7λ µ geben, für die gilt 5 =λ 5 +µ, d.h., es muss gelten 5=5λ + µ = λ +2µ Aus der zweiten Gleichung folgt µ = 5 5λ, durch Einsetzen in die dritte Gleichung erhält man 4=λ λ, d.h. 4= 7λ, λ = 2 und damit µ = 5. Aus der ersten Gleichung folgt schließlich c= 29. Also ist der erste Vektor genau dann Linearkombination der beiden anderen, wenn c = 29 ist. 7 c b) Da die 5 und offensichtlich linear unabhängig sind und der Vektor 5 genau 2 4 dann Linearkombination der beiden Vektoren ist, wenn c= 29 ist, sind die drei Vektoren für c 29 linear unabhängig. Sie spannen damit den R auf, d.h., jeder Vektor des R ist als Linearkombination der drei Vektoren darstellbar. x x Sei y ein beliebiger Vektor des R. Dann sind auch z y z x 4 und y 6 Vektoren z 5

5 Höhere Mathematik I. Aufgabenkomplex 2. November 29 5 aus dem R und damit als Linearkombination der drei Vektoren darstellbar. Folglich gibt es x 7 c Parameter α, β und γ, so dass gilt y = +α +γ 5 bzw. z 2 4 x 4 7 c y = 6 +α +γ 5. z Folglich handelt es sich im Falle c 29 in beiden Fällen um einen Unterraum, nämlich den kompletten Raum R selbst. (Wenn man den von drei linear unabhängigen Vektoren aufgespannten kompletten Raum um einen gewissen Vektor verschiebt, bleibt es der komplette Raum.) c 7 Im Falle c= 29 gilt wegen a) 5 = , so dass es sich bei den beiden 4 2 x 7 zu betrachtenden Mengen um die Mengen der Vektoren y = + α 5 + β z 2 x 4 7 bzw. y = 6 + α 5 + β mit α =α 2 und β =β+5 handelt. z 5 2 Eine Ebene ist genau dann Unterraum des R, wenn sie den Koordinatenursprung enthält. Deshalb wird geprüft, ob der Koordinatenursprung den Ebenen angehört: = 7 α β =7 α+5 α, α =, β = = 5 α + β β = 5 α =+ α + 2 β =, Widerspruch =4+7 α β =4+7 α+8+5 α, α =, β = =6+5 α + β β = 6 5 α =5+ α + 2 β für α = β = erfüllt Also enthält im Falle c= 29 die erste Ebene nicht den Koordinatenursprung, bei ihr handelt 4 7 sich um keinen Unterraum. Die zweite Ebene wird wegen 6 = 5 + durch x y = α 5 + β mit α = α+, β = β + beschrieben. Als lineare Hülle von z 2 zwei Vektoren ist sie ein Unterraum. Es handelt sich um eine Ebene durch den Koordinatenursprung.. In einer Großbäckerei werden drei Sorten Kuchen mit Äpfeln hergestellt. Dafür werden drei Grundteige verwendet. Für ein Blech Quark-Apfel-Kuchen werden je 6 g der Grundteige A, B und C, 8 g Quark und 4 Äpfel benötigt; für ein Blech Apfel-Quark-Kuchen g Grundteig B, 8 g Grundteig C, 4 g Quark und 7 Äpfel; für ein Blech Apfelkuchen g Grundteig A, je 5 g Grundteig B und C und Äpfel. Die Grundteige werden in der Teigmischmaschine hergestellt. Für einen Backtrog mit 2 kg Teig werden neben anderen Zutaten benötigt beim Grundteig A kg Mehl, 2 kg Zucker und 6 kg Margarine; beim Grundteig B kg Mehl, 25 kg Zucker und 7 kg Margarine und beim Grundteig C 2 kg Mehl, 5 kg Zucker und 4 kg Magarine.

6 Höhere Mathematik I. Aufgabenkomplex 2. November 29 6 a) Geben Sie die Aufwandsmatrizen für den Bedarf an Mehl, Zucker und Margarine je Backtrog Grundteig, den Bedarf an Grundteig je Blech Kuchen sowie für den Bedarf an Quark und Äpfeln je Blech Kuchen an! b) Stellen Sie dar, wie sich aus diesen Matrizen die Aufwandsmatrix für den Bedarf an Mehl, Zucker und Margarine je Blech Kuchen errechnet und führen Sie diese Berechnung aus! c) Es sind 2 Bleche Quark-Apfel-Kuchen, 8 Bleche Apfel-Quark-Kuchen und Bleche Apfelkuchen zu backen. Ermitteln Sie unter Verwendung der Matrizen aus a) und b) den hierfür entstehenden Bedarf an den genannten Ausgangsstoffen! a) Bedarf je Blech Quark-Apfel-Kuchen Apfel-Quark-Kuchen Apfelkuchen g Grundteig A 6 g Grundteig B 6 5 g Grundteig C g Quark 8 4 Stück Äpfel 4 7 Bedarf je Backtrog Grundteig A Grundteig B Grundteig C kg Mehl 2 kg Zucker kg Margarine Aufwandsmatrizen: 2 Bedarf an Mehl, Zucker und Margarine je Backtrog Grundteig: A = Bedarf an Grundteig je Blech Kuchen: A 2 = ( ) 8 4 Bedarf an Quark und Äpfeln je Blech Kuchen: A = 4 7 b) Ist a der Bedarf an Mehl, Zucker und Margarine in g, t der Bedarf an Grundteig in Backtrögen á 2 kg und b die zu backende Kuchenblechzahl, so gilt a=a t und 2 t=a 2 b. Somit ist a=a t = A 2 A 2 b = 2 A A 2 b, damit ist die Aufwandsmatrix für den Bedarf an Mehl, Zucker und Margarine je Blech Kuchen in g A 4 = 2 A A 2 = = = c) Der Bedarf an Mehl, Zucker und Margarine in g beträgt a=a 4 b= = Der Bedarf an Quark in g und Äpfeln beträgt A b= ( ) 2 8 = ( )

7 Höhere Mathematik I. Aufgabenkomplex 2. November 29 7 Somit werden 7,2 kg Mehl, 75 kg Zucker, 59,5 kg Margarine, 28 kg Quark und 24 Äpfel benötigt. 2 ( ) 2 ( ) 4. Sei A =, B =, c =, d =. 2 Berechnen Sie folgende Ausdrücke, sofern diese existieren: a) AB d, b) dba T, c) d c T + A T, d) A d + c, e) B c+ d, f) B d + c T, g) c T A d, h) (A d) T A! 2 a) AB d = ( 2 )( ) = 2 ( ) = b) Produkt von Matrizen vom Typ 2, 2 2 und 2 existiert nicht wegen 2. ( ) ( ) ( ) ( ) c) d c T + A T = (2 ) + = + 6 ( ) 2 = 7 2 d) Ad 2 ( ) c = + = 6 + = 5 2 e) Erster Summand Produkt von Matrizen vom Typ 2 2 und : existiert nicht wegen 2. f) Erster Summand Produkt von Matrizen vom Typ 2 2 und 2, d.h. vom Typ 2, zweiter Summand vom Typ, Summe existiert nicht. g) c T Ad 2 ( ) = (2 ) = (2 ) 6 = 2 2 h) (Ad) 2 ( ) T 2 2 T A = = ( 6 2) = ( 2 7) 5. Was bewirkt die Multiplikation einer dreizeiligen Matrix von links mit a) 2, b), c) bzw. d) ( )? a a 2... a a 2... a) 2 a 2 a = d.h., die 2. Zeile wird mit 2 und 2a 2 2a 22..., die. Zeile mit multipliziert. a a 2... a a 2... a a 2... a a 2... b) a 2 a = a 2 a 22..., d.h.,. und. Zeile werden vertauscht. a a 2... a a

8 Höhere Mathematik I. Aufgabenkomplex 2. November 29 8 a c) a a a 2 a 2 +a a 2 a = a 2 a a a a 2... a 2..., a a 2... d.h., zur. Zeile wird das Dreifache der 2. Zeile addiert, außerdem wird die letzte Zeile dupliziert, d.h. als 4. Zeile nochmals angefügt. d) ( ) a a 2... a 2 a = ( a a 2 a a 2 a 22 a 2... ), a a 2... d.h., es entsteht eine einzeilige Matrix, deren Elemente durch Subtraktion des 2. und. Elements jeder Spalte von deren. Element entstehen.

Aufgabenkomplex 3: Vektoren und Matrizen

Aufgabenkomplex 3: Vektoren und Matrizen Technische Universität Chemnitz 15. November 010 Fakultät für Mathematik Höhere Mathematik I.1 Aufgabenkomplex : Vektoren und Matrizen Letzter Abgabetermin: 9. Dezember 010 in Übung oder Briefkasten bei

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

63.5 Das Vektorprodukt - Übungen (2)

63.5 Das Vektorprodukt - Übungen (2) Mathematik mit Mathcad MK.. Vektorprodukt_Ueb_.xmcd. Das Vektorprodukt - Übungen () Aufgaben () Gegeben sind zwei Vektoren a, die ein Parallelogramm aufspannen. () Gegeben sind die drei Eckpunkte A( -;

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Technische Universität Chemnitz 3. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Letzter Abgabetermin:. Juni (in Übung

Mehr

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i TU Dresden Fakultät Mathematik Institut für Numerische Mathematik Lösung zur Aufgabe (b des Übungsblattes Ermitteln Sie on der folgenden Matrix alle (komplexen Eigenwerte und zu jedem Eigenwert einen zugehörigen

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 212 Determinanten Hans Walser: Modul 212, Determinanten ii Modul 212 für die Lehrveranstaltung Mathematik 2 für Naturwissenschaften Sommer 2003 Probeausgabe

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Bearbeiten

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

D-CHAB Frühlingssemester 2018

D-CHAB Frühlingssemester 2018 D-CHAB Frühlingssemester 2018 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 4 1) Nur für die folgenden Wahlen kann man das Produkt bilden: A A mit Dimension (2, 2) (2, 2) (2, 2): 1 2 A Y mit Dimension

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung Technische Universität Chemnitz 4. April 2011 Fakultät für Mathematik Höhere Mathematik I.2 Aufgabenkomple 1: Funktionen, Interpolation, Grenzwerte, Ableitung Letzter Abgabetermin: 2. April 2011 (in Übung

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik =

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik = H 6. Die Matrizen A, B, C und D seien gegeben durch 5 A =, B =, C = 4 5 4, D =. 5 7 5 4 4 Berechnen Sie (sofern möglich) alle Matrizenprodukte X Y mit X, Y {A, B, C, D}. Zu zwei Matrizen A R m n und B

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Ingenieurmathematik I Lernstandserhebung 2 24./

Ingenieurmathematik I Lernstandserhebung 2 24./ Ingenieurmathematik I Lernstandserhebung 4./5..7 Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:............................................................................ Vorname:.........................................................................

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

m 2 m 3 m 5, m m 2

m 2 m 3 m 5, m m 2 Musterlösung zum 8. Blatt 7. Aufgabe: Seien die folgenden Vektoren im R 4 gegeben: 2m 5 + 2 2m 2 2m 7 + m 2 m 3 m 5 v = m 5, v 2 = m 2, v 3 = m 7 m 2 m 3 m 5 m 2 m 3 m 5, m 5 + m 2 m 7 2m + m 2 m 4 2m

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Matrizenrechnung. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Matrizenrechnung. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Matrizenrechnung Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra: Matrizenrechnung

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo Fachbereich Mathematik Prof. J. Lehn Hasan Gündoğan, Nicole Nowak Sommersemester 8 4./5./8. April 4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo Gruppenübung Aufgabe G9 (Multiple Choice Bei

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1 Vortrag: Lineare Gleichungen am 11. März 2009 von Maximilian Wahner Technische Universität Dortmund Fakultät für Mathematik Proseminar Lineare

Mehr

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

A = α α 0 2α α

A = α α 0 2α α Aufgabe 8. Berechnen Sie abhängig von α R die Dimension dim(f(r 4 )) und die Dimension dim(kern(f)) sowie je eine Basis von f(r 4 ) und Kern(f) der linearen Abbildung f : R 4 R 4, x Ax mit der Matrix A

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen 9 Aus der linearen Algebra Themen: Der à n Lineare Abbildungen Darstellung durch Matrizen Der à n besteht aus den n-tupeln mit x i Ã. x 1 x 2 x = (x 1, x 2,...,x n ) oder x =. x n Der à n besteht aus den

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Wintersemester 2014/15 Klausur zur Mathematik I (Modul: Lineare Algebra I) 18.02.2015 Sie haben 60 Minuten Zeit zum

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Mathematik für Wirtschaftswissenschaftler, SS 2010 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, SS 2010 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, SS 00 Musterlösungen zu Aufgabenblatt Aufgabe 77: Die Matrix A R sei darstellbar als A U D U mit 0 0 U, D 0 0. a) Verifizieren Sie, dass U eine orthogonale Matrix

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr