Vom Strahlensatz zum Strahlensatz Motive und Phänomene

Größe: px
Ab Seite anzeigen:

Download "Vom Strahlensatz zum Strahlensatz Motive und Phänomene"

Transkript

1 Hans Walser Vom Strahlensatz zum Strahlensatz Motive und Phänomene GDM Jahresversammlung 2015 Basel ebruar 2015 Zusammenfassung Ausgehend von einem didaktischen ehler ergibt sich eine Gedankenreise, welche beim Strahlensatz beginnt und über verschiedene Stationen wie Parabel, projektive Geometrie, Symmetrie, altgeometrie und rechte Winkel wieder zum Strahlensatz führt.

2 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 2 / 15 1 altgeometrie Auf der Rückseite eines Blattes (Querformat) tragen wir am unteren Rand zwei mal drei Marken ein (Abb. 1a). Dann wenden wir das Blatt und wählen einen Punkt (Abb. 1b). Abb. 1: Zwei mal drei Marken. Punkt wählen Nun falten wir die erste Markierung auf den Punkt ein und wieder zurück (Abb. 2). Abb. 2: Erster altschritt Nun falten wir die zweite Markierung auf den Punkt ein und wieder zurück (Abb. 3). Abb. 3: Zweiter altschritt Schließlich erhalten wir zwei Scharen von je drei altlinien (Abb. 4a). Die wechselseitigen Schnittpunkte teilen jeweils auf jeder Schar im gleichen Verhältnis (Abb. 4b). Das ist auch das Verhältnis der ursprünglich gewählten Marken (Abb. 1a).

3 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 3 / 15 Abb. 4: altlinien. Teilverhältnisse Diese Situation erinnert an den Strahlensatz. 2 Strahlensatz In der Strahlensatzfigur (Abb. 5) haben wir aber einerseits eine Schar von parallelen Geraden und andererseits eine Schar von Geraden durch einen Punkt. Das sind begrifflich asymmetrische Vorgaben. Die Satzaussage ist aber symmetrisch: in beiden Geradenscharen sind je entsprechende Teilverhältnisse gleich. Abb. 5: Strahlensatzfigur Die altfigur der Abbildung 4b ist begrifflich symmetrisch. Ebenso erhalten wir eine begrifflich symmetrische igur mit Winkeleisen (Abb. 6). Dazu verfahren wir wie folgt.

4 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 3 4 / 15 Winkeleisen Abb. 6: Winkeleisen: Anschlagwinkel und Spenglerwinkel Wir beginnen mit einem Punkte und einer nicht durch verlaufenden Geraden t. Nun passen wir gemäß Abbildung 7 zwei Sets von je drei rechten Winkeln (rote und blaue Winkeleisen ) ein so, dass die Scheitel der rechten Winkel auf t liegen und jeweils ein Schenkel durch verläuft. Die anderen Schenkel schneiden sich wechselseitig. t Abb. 7: Winkeleisen Diese Schnittpunkte unterteilen die roten Schenkel im gleichen Verhältnis. Im Beispiel der Abbildung 7 ist es das Verhältnis 2:1. Ebenso unterteilen sie die blauen Schenkel im gleichen Verhältnis. Im Beispiel der Abbildung 7 ist es das Verhältnis 5:2. Wir sind geneigt in unserem Anschauungsraum die igur räumlich zu interpretieren. Dann allerdings haben wir das Gefühl, dass die auf uns zukommende Ebene nach unten hängt. Das hängt damit zusammen, dass die igur keine perspektivische Darstellung ist. 4 Beweis Wir legen ein Koordinatensystem gemäß der Abbildung 8 zugrunde. Als x-achse wählen wir die Gerade t. Der Punkt habe die Koordinaten (0, 1). Wir wählen exemplarisch einen roten Winkel mit dem Scheitelpunkt (a, 0) und einen blauen Winkel mit dem Scheitelpunkt (b, 0).

5 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 5 / 15 y (0, 1) (b, 0) S (a, 0) t x Abb. 8: Koordinaten Der zweite rote Schenkel hat die Gleichung y = ax a 2, der zweite blaue Schenkel die Gleichung y = bx b 2. ür den Schnittpunkt S der beiden Schenkel ergeben sich die Koordinaten S a + b, ab ( ). Summe und Produkt, die beiden einfachen Gottesgaben. Die drei roten Winkel und die drei blauen Winkel der Abbildung 1 nummerieren wir mit i { 1,2,3} beziehungsweise j { 1,2, 3}. Die Scheitel dieser Winkel seien bei ( a i,0) beziehungsweise ( b j,0). Der Punkt S ij als Schnittpunkt des i-ten roten Schenkels mit dem j-ten blauen Schenkel ( ). hat die Koordinaten S ij a i + b j, a i b j Nun berechnen wir das Teilverhältnis auf dem i-ten roten Schenkel: ür die Strecke S i1 S i2 erhalten wir: S i1 S i2 = a i + b 2 (( ) ( a i + b 1 )) 2 + ( a i b 2 a i b 1 ) 2 = ( b 2 b 1 ) a i ( b2 b 1 ) 2 = b 2 b 1 1+ a i 2 Analog ergibt sich für die Strecke S i2 S i3 : S i2 S i3 = b 3 b 2 1+ a i 2 Bei der Verhältnisbildung kürzt sich der Wurzelfaktor heraus: S i1 S i2 :S i2 S i3 = b 2 b 1 : b 3 b 2 Wir sehen, dass das Teilverhältnis unabhängig vom Index i ist, das heißt, es ist auf allen roten Schenkeln gleich. Es ist zudem gleich dem Teilverhältnis der Scheitel der drei blauen Winkel. Aus Symmetriegründen gilt das Analoge für die Teilverhältnisse auf den blauen Schenkeln. Im Abschnitt 14.1 eine Beweisvariante, die mit Sehnenvierecken arbeitet.

6 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 6 / 15 5 Link zum Strahlensatz Wir modifizieren die igur der Abbildung 7, indem wir mit dem Punkt gegen die Gerade t streben. Die beiden Winkelscharen behandeln wir aber ungleich, um die für den Strahlensatz nötige Asymmetrie zu erreichen. Bei den blauen Winkeln lassen wir die Scheitelpunkte auf t fest. Diese Winkel werden also gedreht. Bei den roten Winkeln lassen wir die Richtungen fest. Diese Winkel werden parallel verschoben. Da die Teilverhältnisse bei den Winkelscheiteln sich nicht verändern, bleiben auch die Teilverhältnisse auf den Schenkeln invariant. Die Abbildung 9 illustriert diesen Modifikationsprozess in mehreren Schritten. Im Grenzfall mit auf t stehen die blauen Schenkel senkrecht auf t, sind also untereinander parallel. Die roten Schenkel verlaufen durch. Wir haben den gewöhnlichen Strahlensatz. t t t t t 6 Motivation Abb. 9: Modifikation Auf einem Arbeitsblatt (8. Schuljahr) ist zu lesen: Eigenschaften der Trapeze Jedes Trapez hat ein Paar gegenüberliegender paralleler Seiten. Beide Mittellinien halbieren sich. Da wurde moniert, das sei zwar fachlich richtig, aber didaktisch falsch. Die erste Zeile sei definierend für die Trapeze, die zweite Zeile gelte aber für jedes Viereck (Abb. 10a). Vielleicht sollte hier speziell auf die Mittellinien hingewiesen werden, weil eine davon nachher für die lächenformel gebraucht wird.

7 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 7 / 15 Abb. 10: Mittellinien halbieren sich Die Halbierungseigenschaft kann über das diagonalenparallele Parallelogramm nachgewiesen werden, welches durch die Seitenmitten des allgemeinen Viereckes aufgespannt wird (Abb. 10b). Dieser didaktische ehler erwies sich als sehr anregend: was ist, wenn Mitte und halbieren durch Drittel und dritteln ersetzt wird? 7 Dritteln Dritteln sich Drittellinien gegenseitig? Der Sonderfall des Trapezes erweist sich als einfach, da wir den Strahlensatz anwenden können (Abb. 11a). Abb. 11: Sonderfall Trapez. Allgemeines Viereck Wir vermuten aufgrund der Zeichnung (Abb. 11b), dass sich auch im allgemeinen all die Drittellinien gegenseitig dritteln. Wie ist es mit anderen Teilverhältnissen? Im Abschnitt 14.2 ein elementarer Beweis für die Drittelung im allgemeinen Viereck. Die Abbildung 12 zeigt die Situation bei Viertelung und Achtelung. Wir können Parallelogramme einpassen.

8 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 8 / 15 Abb. 12: Viertel-Linien und Achtel-Linien Die Parallelogramme liegen allerdings nicht schön in einer lucht. 8 Zwischenspiel: Perspektive Die Abbildung 13 zeigt das projektive Bild eines Schachbrettes, ein so genanntes Moebiusnetz. Abb. 13: Schachbrett und Weg des Läufers Im Unterschied zur Abbildung 12 sind die blauen Vierecke keine Parallelogramme. Dafür sind sie stimmig. 9 Beweis für den allgemeinen all Wir teilen zwei gegenüberliegende Seiten des Vierecks im Verhältnis λ, die beiden anderen Seiten im Verhältnis μ. Wir verbinden dann die Teilpunkte gegenüberliegender Seiten. Zu zeigen ist: diese Verbindungslinien teilen sich gegenseitig in den Verhältnissen λ und μ. Wir verwenden die Bezeichnungen der Abbildung 14. C C D H D H µ µ I B I G µ G µ µ µ E E A A a) b) Abb. 14: Beweisidee Zunächst teilen wir die Seiten AB und DC im gleichen Verhältnis λ. Es ist also:!!! " AE = λ AB und D = λ DC In der Abbildung 14 ist λ = 0.2. Dann teilen wir die Strecken AD, BC und E im gleichen Verhältnis μ: AG = µad,! BH = µbc, EI = µe B

9 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 9 / 15 In der Abbildung 14 ist μ = Zu zeigen ist: Die Punkte G, I und H sind kollinear, also GI = ηgh Das ist eine Vektorerei. Es ist:!!! " AG = µ ( AB + BC + CD )!!! " EI = µ ( 1 λ)ab + BC + ( 1 λ)cd Weiter ist: Und weiter: Somit ist: ( )!!! "!!! "!!! "!!! " AI = λ AB + EI = λ AB + µab λµab + µbc + µcd λµcd!!! " AH = AB + µbc Somit sind die Punkte G, I und H kollinear. 10 Viereckraster!!! "!!! " GI = AI AG = λ AB λµab λµcd GH =! AH! AG!!! "!!! " = AB µab µcd GI = λgh ür ganze Zahlen λ und μ erhalten wir ein Viereckraster wie folgt. Wir verlängern die Viereckseiten und tragen Vielfache der Seitenlängen ab (Abb. 15a). Abb. 15: Erster Schritt. Ergänzung zum Viereckraster

10 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 10 / 15 Anschließend ergänzen wir zum Viereckraster (Abb. 15b). Jede Rasterlinie der einen Schar wird von den Rasterlinien der anderen Schar in gleichmäßigen Abständen geschnitten. Wir sehen, dass sich beim Überschneiden der Linien was Spannendes anbahnt. 11 Parabel Wenn wir das Viereckraster fortsetzen, überschneiden sich die Rasterlinien. Als Enveloppe entsteht eine Kurve (Abb. 16). Die Kurve sieht aus wie eine Parabel, es könnte aber auch eine Ellipse sein. Was nun? 12 Sichtumkehr: Beginn mit Parabel Abb. 16: Parabel Wir zeichnen zweimal drei Tangenten an eine Parabel und bestimmen exemplarisch die Teilverhältnisse zwischen den wechselseitigen Schnittpunkten (Abb. 17).

11 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 11 / 15 2:1 2:1 2:1 5:2 5:2 Abb. 17: Tangenten an Parabel Wenn wir dasselbe Spielchen mit einem Kreis machen (Abb. 18a), haben wir zwar wieder Winkeleisen wie in der Abbildung 7, aber keine konstanten Teilverhältnisse. Mit einer Ellipse kann es daher auch nicht funktionieren, das sich eine Ellipse mit einer affinen Abbildung unter Erhaltung der Teilverhältnisse auf einen Kreis abbilden lässt. 5:2 1.80:1 1.91:1 2.05:1 1.76:1 1.66:1 1.78:1 2.17:1 3.06:1 2.58:1 2.31:1 2.21:1 1.52:1 Abb. 18: Mit dem Kreis und Hperbel funktioniert es nicht Auch mit der Hyperbel (Abb. 18b) ist nichts zu wollen. Die Parabel, der Exot unter den Kegelschnitten, ist also der interessante all. 13 Zirkel und Lineal Die Kegelschnitte können punktweise mit Zirkel und Lineal konstruiert werden. ür die Parabel benötigen wir eine Gerade (Leitlinie) und einen Punkt (Brennpunkt). Die Abbildung 19 illustriert exemplarisch die Konstruktionen von zwei Punkten. Die jeweils gleichfarbigen Abstände sind gleich groß.

12 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 12 / 15 Brennpunkt Leitlinie Abb. 19: Konstruktion von Parabelpunkten Die Tangenten ergeben sich als Mittelsenkrechte (Abb. 20). Brennpunkt Leitlinie Abb. 20: Tangenten als Mittelsenkrechte In unserem Beispiel aus der altgeometrie (Abb. 4) spielen der Punkt die Rolle des Brennpunktes und die untere Papierkante die Rolle der Leitlinie. Die rechten Winkel in der Abbildung 20 liegen auf der Scheiteltangente der Parabel (Abb. 21). Dabei erkennen wir auch wieder die Winkeleisen der Abbildung 7.

13 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 13 / 15 Brennpunkt Scheiteltangente Leitlinie Damit schließt sich der Gedankenkreis. 14 Ergänzungen und Variationen Abb. 21: Scheiteltangente und Winkeleisen Im olgenden einige Ergänzungen, die mir von Kolleginnen und Kollegen zugekommen sind Sehnenvierecke Der im Abschnitt 4 vorgestellte Beweis lässt sich auch mit Sehnenvierecken durchführen. Die Idee dazu verdanke ich Emese Vargyas, Mainz. Die Abbildung 22 entspricht der Abbildung 8; das Koordinatensystem ist weggelassen. Wegen der rechten Winkel bei A und B ist das Viereck SAB ein Sehnenviereck (Abb. 22a). In der Abbildung 22b ist zusätzlich das Sehnenviereck CAB eingezeichnet. In diesem Viereck gilt ab = fs. Dabei ist s auch der Abstand von S von der Geraden AB. f b a B A t B s s A S C S C Abb. 22: Sehnenviereck In der Abbildung 23 sind nun drei blaue rechte Winkel eingetragen.

14 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 14 / 15 f B 1 B 2 B 3 A s1 S 1 S 2 s 2 b 3 s 3 S 3 a Dabei gilt: Abb. 23: Drei blaue rechte Winkel ab i = fs i s i = a f b i s 1 : s 2 : s 3 = b 1 :b 2 :b 3 Somit ist auch: AS 1 : AS 2 : AS 3 = s 1 : s 2 : s 3 = b 1 :b 2 :b 3 S 1 S 2 : S 2 S 3 = B 1 B 2 : B 2 B 3 Das Teilverhältnis auf dem roten Schenkel ist also unabhängig von der Position des Punktes A. ür diese Überlegungen benötigen wir die gewöhnlichen Strahlensätze Dritteln Der Nachweis, dass sich Drittellinien gegenseitig dritteln (Abb. 11b) lässt sich mit folgender Überlegung von Hans Humenberger, Wien, führen. R S T P Q Abb. 24: Drittellinien

15 Hans Walser: Vom Strahlensatz zum Strahlensatz. Motive und Phänomene 15 / 15 Die schwarzen Linien in der Abbildung 24 sind parallel zu den Viereckdiagonalen. Auf Grund der gewöhnlichen Strahlensätze ist die Strecke PQ doppelt so lang wie die Strecke RS. Daher drittelt der Schnittpunkt T die Strecken PS und QR ( X-igur ). Analog für die übrigen Schnittpunkte der roten und blauen Strecken. Last modified: 20. ebruar 2015

Vom Strahlensatz zum Strahlensatz

Vom Strahlensatz zum Strahlensatz Hans Walser Vom Strahlensatz zum Strahlensatz Arbeitstagung SLA 1 PH St. Gallen, 14. November 2015 www.walser-h-m.ch/hans/vortraege/vortrag89_3 Zusammenfassung Ein altspiel und ein Spiel mit rechten Winkelhaken

Mehr

Vom Strahlensatz zum Strahlensatz

Vom Strahlensatz zum Strahlensatz Hans Walser Vom Strahlensatz zum Strahlensatz Arbeitstagung SLA 1 PH St. Gallen, 14. November 2015 www.walser-h-m.ch/hans/vortraege/vortrag89_3 Zusammenfassung Der Strahlensatz ist ein ästhetisches Ärgernis.

Mehr

Vom Strahlensatz zum Strahlensatz

Vom Strahlensatz zum Strahlensatz Hans Walser Vom Strahlensatz zum Strahlensatz www.walser- h- m.ch/hans Faltgeometrie Faltgeometrie: Marken am unteren Rand Drei Marken (Beispiel 1:1) Drei Marken (Beispiel 4:1) Faltgeometrie: Wenden und

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich:

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich: Elementargeometrie Der. Strahlensatz Geschichte: In den Elementen des Euklid wird im 5.Buch die Proportionenlehre behandelt, d.h. die geometrische Theorie aller algebraischen Umformungen der Proportion.

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Begründen in der Geometrie

Begründen in der Geometrie Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten

Mehr

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt: Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:

Mehr

Wird ein Kreiskegel von einer Ebene geschnitten, welche zu einer Mantellinie des Kegels parallel ist, so entsteht als Schnittkurve eine Parabel.

Wird ein Kreiskegel von einer Ebene geschnitten, welche zu einer Mantellinie des Kegels parallel ist, so entsteht als Schnittkurve eine Parabel. 1 3 Die Parabel 3.1 Die Parabel als Kegelschnitt Wird ein Kreiskegel von einer Ebene geschnitten, welche zu einer Mantellinie des Kegels parallel ist, so entsteht als Schnittkurve eine Parabel. Sei SP

Mehr

Lösungen zu den Aufgaben 7. Klasse

Lösungen zu den Aufgaben 7. Klasse Lösungen zu den Aufgaben 7. Klasse Beachte: Einheit bei allen Geometrieaufgaben: 1 Kästchenlänge 1 cm 1. Achsen- und Punktsymmetrie Achsenspiegelung: Punktspiegelung: 1 Lösungen zu den Aufgaben 7. Klasse

Mehr

Musterlösungen Klausur Geometrie

Musterlösungen Klausur Geometrie Musterlösungen Klausur Geometrie Aufgabe 1 (Total: 8 Punkte). Seien A, B, C die Eckpunkte eines nichtentarteten Dreiecks in der euklidischen Ebene. Seien D, E, F derart gewählt, dass folgende Teilverhältnisse

Mehr

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel ELEMENTE DER MATHEMATIK BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel Vektoren Geraden im Raum. Kartesisches Koordinatensystem

Mehr

Seminar für LAGym/LAB: Analytische Geometrie

Seminar für LAGym/LAB: Analytische Geometrie Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme

Mehr

1 Begriffe und Bezeichnungen

1 Begriffe und Bezeichnungen 1 Begriffe und Bezeichnungen Verbindet man vier Punkte A, B, C, D einer Ebene, von denen keine drei auf einer Geraden liegen, der Reihe nach miteinander, können unterschiedliche Figuren entstehen: ein

Mehr

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort

Mehr

2 Das Bild In Schulbüchern und Arbeitsblättern sieht man oft Würfel -Darstellungen wie etwa in der Abbildung 1. Abb. 1: Was ist denn das?

2 Das Bild In Schulbüchern und Arbeitsblättern sieht man oft Würfel -Darstellungen wie etwa in der Abbildung 1. Abb. 1: Was ist denn das? Hans Walser, [20131013], [20160331], [20160401] Quetschwürfel 1 Worum geht es? Es wird auf die Problematik der in Schulen weitverbreiteten Schrägbilder eingegangen. 2 Das Bild In Schulbüchern und Arbeitsblättern

Mehr

Geometrische Anmerkungen zu den Gedankenstrichen in documenta_landschaft_kunst Hannover

Geometrische Anmerkungen zu den Gedankenstrichen in documenta_landschaft_kunst Hannover Geometrische Anmerkungen zu den Gedankenstrichen in documenta_landschaft_kunst Hannover Albert Schmid-Kirsch Die vor kurzem vorgelegte Konzeptstudie zu einer dokumenta-landschaft-kunst in Hannover durch

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Schulmathematik Geometrie und Vektorrechnung Blatt 1

Schulmathematik Geometrie und Vektorrechnung Blatt 1 Hans HUMENBERGER WS 05/6 Blatt Aufg.. a) Finden Sie eine Aufgabe aus einem Schulbuch der 5. Klasse, in der es um das Aufstellen, Interpretieren, Berechnen von Vektortermen (Addition, Subtraktion, Multiplikation

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Hans Walser, [ a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P.

Hans Walser, [ a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P. Hans Walser, [007067a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P. Problemstellung Wir lösen die Gleichung: x px + q = 0 Die Gleichung ist in einer in den Schulen unüblichen

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Der Eckenschwerpunkt: Wir gehen von der Modellvorstellung von gleichen Massen in den Ecken aus und fragen nach dem Schwerpunkt.

Der Eckenschwerpunkt: Wir gehen von der Modellvorstellung von gleichen Massen in den Ecken aus und fragen nach dem Schwerpunkt. Hans Walser Schwerpunkt Zusammenfassung: Beim Schwerpunkt treffen Geometrie und Physik aufeinander. Dies eröffnet interessante Einsichten und Querverbindungen. Es kommen Beispiele am Dreieck und Viereck

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Vierecke Kurzfragen. 2. Juli 2012

Vierecke Kurzfragen. 2. Juli 2012 Vierecke Kurzfragen 2. Juli 2012 Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Ecken: Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben?

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Elementare Geometrie Vorlesung 16

Elementare Geometrie Vorlesung 16 Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Konstruktion von Kreistangenten

Konstruktion von Kreistangenten Konstruktion von Kreistangenten 1 Gegeben sind die Punkte A und B mit AB = 5cm Konstruiere die Geraden durch B, die von A den Abstand 3cm haben! 2 Eine Ecke einer Rasenfläche, an der die geraden Ränder

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Dualität in der Elementaren Geometrie

Dualität in der Elementaren Geometrie 1 Dualität in der Elementaren Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de url: www.wias-berlin.de/people/stephan FU Berlin,

Mehr

Name und des Einsenders

Name und  des Einsenders Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec Andreas.Ulovec@univie.ac.at Verwenden von Dynamischer

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie, Einführung

Geometrie, Einführung Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten

Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

1.1 Sonderfall Quadrat Wir halbieren die Seiten eines Quadrates und verbinden gemäß Abbildung 1. Abb. 1: Unterteilung eines Quadrates

1.1 Sonderfall Quadrat Wir halbieren die Seiten eines Quadrates und verbinden gemäß Abbildung 1. Abb. 1: Unterteilung eines Quadrates Hans Walser, [20111220a] Rechtecksunterteilung Anregung: F. E., V. Ein Rechteck wird in dazu ähnliche Rechtecke unterteilt. Neben dem Quadrat gibt das DIN-Rechteck einige schöne Beispiele her. Auch die

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Geometrie der Polygone Konstruktionen Markus Wurster 1

Geometrie der Polygone Konstruktionen Markus Wurster 1 Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.00, RPO vom 4.08.00 Einführung in die Geometrie Wintersemester 1/1, 1. Februar 01 Klausur zur ATP, Modul, Einführung

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr

lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0

lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 1 7. Der Graph einer quadratischen Funktion lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 Es wird im Folgenden untersucht,

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

Elementare Geometrie Vorlesung 19

Elementare Geometrie Vorlesung 19 Elementare Geometrie Vorlesung 19 Thomas Zink 28.6.2017 1.Gleichungen von Kreisen Es sei OAB ein kartesisches Koordinatensystem der Ebene E. Für einen Punkt P mit den Koordinaten (x, y) schreiben wir auch

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

a) b) Abb. 1: Schiefer Drachen

a) b) Abb. 1: Schiefer Drachen Hans Walser, [20161123] Viereck-Viertelung Anregung: Heinz Klaus Strick, Leverkusen 1 Problemstellung Welche Vierecke lassen sich von einem inneren Punkt aus mit geraden Verbindungen zu den vier Ecken

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Winkeldreiteilung. Michael Schmitz

Winkeldreiteilung. Michael Schmitz www.mathegami.de Februar 2010 Winkeldreiteilung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Dreiteilung eines beliebigen Winkels mit Hilfe von Zirkel und Lineal. Da eine solche

Mehr

Über gewisse Parabelreihen. 593

Über gewisse Parabelreihen. 593 592 A. Kiefer. Kreis geht dnrch den Halbierungspunkt C' der Höhe CF, weil FC' eine Lage von t ist; weil FA = 2 C' N, so läuft der von C' ausgehende Durchmesser C' CI des Kreises nach der Mitte von FA und

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

II. BUCH VIERECKE. 6. Das VARINGNON INKREISMITTEN VECTEN

II. BUCH VIERECKE. 6. Das VARINGNON INKREISMITTEN VECTEN II. BUCH VIERECKE 6. Das VARINGNON INKREISMITTEN VECTEN Die Seitenmitten eines beliebigen Vierecks bilden ja immer ein sog. Varignon-Parallelogramm 1 der halben Fläche, denn die Mittelparallelen der beiden

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Download Jens Conrad, Hardy Seifert

Download Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Dieser Download

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 05 Schnecken und Spiralen Lernumgebung Hans Walser: Modul 05, Schnecken und Spiralen. Lernumgebung ii Inhalt 1 Spiralen in der Umwelt... 1 Archimedische

Mehr

Kegelschnitte im Schülerseminar

Kegelschnitte im Schülerseminar Schülerseminar Klasse 8 10, Universität Stuttgart, Seite 1 Kegelschnitte im Schülerseminar Die nachfolgend aufgeführten 6 Stundenentwürfe wurden im Schülerseminar für die Klassenstufen 8 10 an der Uni

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr

Die Kreispotenz und die Sätze von Pascal und Brianchon

Die Kreispotenz und die Sätze von Pascal und Brianchon 1 Die Kreispotenz und die Sätze von Pascal und Brianchon 26. September 2007 1 Kreispotenz Zur Konstruktion der Potenzlinie zweier Kreise k 1 und k 2, die sich nicht schneiden, wähle man sich einen Hilfskreis

Mehr

Mathematik II (Geometrie)

Mathematik II (Geometrie) Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der

Mehr

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 %

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 % 5 Prozentrechnen Übung 50 Der ganze Streifen entspricht 100 % = 1 000 = 1. Welche Prozent- und Promillesätze stellen die unterschiedlich getönten Flächen dar? Abb. 27 1. 2. 3. Übung 51 Der volle Winkel

Mehr

Kurven. Mathematik-Repetitorium

Kurven. Mathematik-Repetitorium Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Aufgabe 50. Projektivspiegelung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Projektive Geometrie WS 2010/11 Lösungen zu Aufgabenblatt 12 (24.

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Geometrie Jahrgangsstufe 5

Geometrie Jahrgangsstufe 5 Geometrie Jahrgangsstufe 5 Im Rahmen der Kooperation der Kollegen, die im Schuljahr 1997/98 in der fünften Jahrgangstufe Mathematik unterrichteten, wurde in Gemeinschaftsarbeit unter Federführung von Frau

Mehr

1. Winkel- und Seitensymmetralen (Südpolsatz) 2. An und Inkegelschnitte. 3. Zweite und erste Steinergerade

1. Winkel- und Seitensymmetralen (Südpolsatz) 2. An und Inkegelschnitte. 3. Zweite und erste Steinergerade Übungen zu GeoGebra F. Hofbauer Auf den folgenden Seiten sind Konstruktionsübungen zu finden, die mit einer dynamischen Geometriesoftware (Geogebra) durchgeführt werden können. Man kann auf diese Weise

Mehr

Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7

Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7 Inhaltsverzeichnis Prolog. Die Elemente des Euklid... 1 1. Euklid 2. Axiome 3. Über die Sprache der Geometrie Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung... 5 1. Affine Ebenen...

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

2. Strahlensätze Die Strahlensatzfiguren

2. Strahlensätze Die Strahlensatzfiguren 2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Eine Visualisierung des Kosinussatzes

Eine Visualisierung des Kosinussatzes Hans Walser blau + blau + grün = rot Eine Visualisierung des Kosinussatzes SLA-Herbsttagung 2008 St. Gallen Hans Walser: Eine Visualisierung des Kosinus-Satzes 2/15 Inhalt 1 Worum es geht...3 2 Bildsprache...3

Mehr

Mathematik Klasse 11 Maximilian Ernestus 1

Mathematik Klasse 11 Maximilian Ernestus 1 QUADRATISCHE FUNKTIONEN UND PARABELN Mathematik Klasse 11 Maximilian Ernestus 1 1. Geraden und ihre Gleichungen Zu jeder Geraden lässt sich in einem Koordinatensystem eine Gleichung angeben. Diese Gleichung

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz

Mehr