Chaos ist überall - Eine Eigenschaft (nicht nur) amorpher Materialien

Größe: px
Ab Seite anzeigen:

Download "Chaos ist überall - Eine Eigenschaft (nicht nur) amorpher Materialien"

Transkript

1 Chaos ist überall - Eine Eigenschaft (nicht nur) amorpher Materialien Doris Ehrt Otto-Schott-Institut für Glaschemie Friedrich-Schiller-Universität Jena Jena,

2 Was ist Chaos? Unordnung Wirrwarr unberechenbar instabil Ungleichgewicht unsicher Angst negativ Ordnung geregelt berechenbar stabil Gleichgewicht sicher Zuversicht positiv

3 Was ist Chaos? Chaos (griechisch) = Gas In der griechischen Mythologie der ungeordnete Urzustand der Welt, aus dem sich der geordnete Kosmos entwickelt haben soll. Übertragen: wüstes, wirres Durcheinander, Unordnung, Wirrwarr aus dem Ordnung entsteht

4 Was ist Chaosforschung? Untersucht das Verhalten von komplexen Systemen in Abhängigkeit von der Zeit Datenanalyse und Zeitreihen Finden von positiven Unterscheidungsmerkmalen Zufällige oder chaotische Signale Messfehler und Genauigkeit Wie komplex ist das System? Kopplungseffekte nichtlinear

5 Was sind komplexe Systeme? Dynamische Systeme, die aus drei und mehr Komponenten bestehen, die miteinander (nichtlinear) wechselwirken (Rückkopplung) Dreierbeziehung Wetter Wirtschaft Verkehr Mensch Amorphe Zustände, Glas Nichtlineare Optik etc.

6 Stabilität von Systemen Zustand und Zustandsänderungen Zustandsfunktion Z = f (Zustandsvariable) Klass. Thermodynamik: stabil, metastabil, instabil Z (V, U, H, F, G, S); Variable (p, T, x i, O, σ, e u.a.); Zustandspostulat: Partielle Ableitungen der Zustandsfunktionen nach den Zustandsvariablen ergeben unmittelbar die Zusammenhänge zwischen den verschiedenen makroskopischen Eigenschaften des Systems berechenbares System für Gleichgewichtszustände (totales Differential, integrierbar, Variable unabhängig voneinander)

7 Determinismus und Weltsicht Ziel: Vorherwissen (Prognose) (Wahrsager, Zauberer, Priester, Wissenschaftler) Woher Wohin Ursache Wirkung starke Kausalität NEWTON (1687): Mechanik, Natur, Mensch LAPLACE (1776): Naturgesetze deterministisch MARX (19. Jh): Gesellschaft deterministisch mechanistischer Materialismus ~ 300 Jahre Siegeszug (westliche Weltsicht) Welt ist erkennbar und beherrschbar! Ende des 19. Jh. Erste Auflösungserscheinungen (Physik)

8 Zweifel am Determinismus POINCARÉ (1903): Eine sehr kleine Ursache, die wir nicht bemerken, bewirkt einen beachtlichen Effekt, den wir nicht übersehen können, und dann sagen wir, der Effekt sei zufällig. Wenn die Naturgesetze und der Zustand des Universums zum Anfangszeitpunkt exakt bekannt wären, könnten wir den Zustand dieses Universums zu einem späteren Moment exakt bestimmen. Aber selbst wenn es kein Geheimnis in den Naturgesetzen mehr gäbe, so könnten wir die Anfangsbedingungen doch nur annähernd bestimmen. Wenn uns dies ermöglichen würde, die spätere Situation in der gleichen Näherung vorherzusagen dies ist alles, was wir verlangen -, so würden wir sagen, daß das Phänomen vorhergesagt worden ist und daß es Gesetzmäßigkeiten folgt. Aber es ist nicht immer so; es kann vorkommen, daß kleine Abweichungen in den Anfangsbedingungen schließlich große Unterschiede in den Phänomenen erzeugen. Ein kleiner Fehler zu Anfang wird später einen großen Fehler zur Folge haben. Vorhersagen werden unmöglich, und wir haben ein zufälliges Ereignis.

9 Was ist Zufall? keine periodischen Wiederholungen (z.b. kreisende Kugel, Würfelspiel, Glücksspiele ) LAPLACE (1812): Analytische Theorie der Wahrscheinlichkeiten praktische Anwendung: Statistik MAXWELL, BOLTZMANN: Kinetische Gastheorie statistische Physik, statistische Thermodynamik erfolgreich: Aussagen über Verhalten sehr vieler für einzelne nur Wahrscheinlichkeit (Versicherungen) Normalverteilung keine innere Verbindung Vorgänge irreversibel thermodyn. Gleichgewicht größtmögliche Unordnung Wärmetod

10 Deterministisches Chaos kleine Ursache große Wirkung schwache Kausalität starke Abhängigkeit von den Anfangsbedingungen deterministisch: Wasserscheide zw. Rhóne und Rhein in Schweizer Alpen, Wassertropfen 100 m südlich Mittelmeer 100 m nördlich Nordsee Schwedenkönig OSCAR II. (1887) Preis 2500 Kronen Ist das Sonnensystem stabil? LAGRANGE, LAPLACE, POISSON Beweisversuche gewisse Näherungen für das allgemeine Problem besitzen stabile Lösung POINCARÉ (1890): Über das Dreikörper-Problem und die Gleichungen der Dynamik komplizierte Systeme sind nicht stabil! d.h. die Zukunft ist offen

11 Drei-Körper-Problem Beispiele für Bahnen (Trajektorien) eines Planeten in einem Doppelsternsystem mit zwei gleichschweren Sonnen: Der genaue Verlauf einer solchen Bahn hängt empfindlich von den Anfangsbedingungen ab. Eine geschlossene Lösung der Bewegungsgleichungen für das Drei-Körper-Problem existiert nicht.

12 Wetterprognosen LORENZ (1956) MIT (USA), Meteorologe/Mathematiker Primitivmodell der Konvektion in der Erdatmosphäre, drei nichtlinear gekoppelte Differentialgleichungen Computer (langsam) numerische Lösungen für alle möglichen Startwerte - Abspeichergenauigkeit > Druckgenauigkeit (Δ ~0,000127) minimale Abweichungen langfristig zu total unterschiedlichen Verhalten Schmetterlingseffekt ( Wenn in Hamburg ein Schmetterling mit den Flügeln schlägt, kann das im Indischen Ozean einen Taifun auslösen. ) d.h. empfindliche Abhängigkeit von den Anfangsbedingungen Existenz des deterministischen Chaos: Fast alle Systeme mehr als drei Elemente fast immer nichtlineare Relationen keine math. Lösung in geschlossener Form möglich Chaos ist überall

13 Schmetterlingseffekt Wettergeschehen auf der Erde sehr empfindlich von geringsten Störungen abhängig: Der Flügelschlag eines Schmetterlings über Brasilien kann einen Wirbelsturm über Texas auslösen. Symbol: Apollofalter über Wolkenwirbeln ( NASA, Aufnahme von Apollo 17)

14 Definition des Glaszustandes eingefrorene unterkühlte Flüssigkeit definierte Nah- und gestörte Fernordnung erhöhte Entropie und Energie Flüssigkeit mit Relaxationszeit, die nicht mehr beobachtbar KAUZMANN (1948): Im Glaszustand ist die Relaxationszeit einiger Freiheitsgrade im Vergleich mit der Dauer des Experiments groß. Tg (Glasübergangstemperatur) hängt damit wesentlich von der Dauer und der Art des Experiments ab, und was wir mit langer Zeit meinen. Glas ist ein eingefrorener Ungleichgewichtszustand (instabil) starke Abhängigkeit von der Temperatur-Zeit-Vorgeschichte Anfangsbedingungen kleine Änderungen große Wirkungen

15 Glasbildung - Phasenübergang Schmelze Glas Kristall Abkühlung einer Schmelze D (stabil): Kristallisation beim Schmelzpunkt F p Unterkühlung C (metastabil) Glasübergang B (instabil) Tammann sche Kurven (zeitabhängig) Viskosität beim Schmelzpunkt Keimzahl (KZ) Kristallwachstumsgeschwindigkeit (KG)

16 Struktur Glas Kristall Intensitätsverteilung der Röntgenstrahl-Streuung für Stoffe verschiedener Aggregatzustände SiO 4 -Tetraeder-Verknüpfung in amorphen und kristallinen SiO 2 Einbau von Na 2 O in Natriumsilicatglas ZACHARIASEN WARREN (1932/3)

17 Viskosität von Glasschmelzen viscosity ΔTg ~1000 K SiO 2 10 log ( dpa s) B 2 O 3 NS 2 BB Prinzipieller Verlauf (Fensterglas) mit technologischen Bereichen und Fixpunkten SCHOTT Katalog 0-2 Wasser P FP T ( C) Unterschiedliche Zusammensetzungen

18 Entmischung 1µm Elektronenmikroskopische Aufnahmen von entmischten Borosilicatgläsern Ausscheidung von CaF 2 - Mikrokristallen mit SE-Anreicherung in Kristallen

19 Kristallisation- REM Lanthanborate mit SE CuO an OF (metall. Glanz) Zinksilicate und -aluminate

20 Kristallisation - Mikroskopie Zn 2 SiO 4 - Nadeln Germanat-Nadeln OF-Kristalle (FP-Glas) (Ca,Sr) x (AlF y ) z (FA-Glas) TiO 2 (Rutil) Nadeln (OF)

21 Blasenbildung Videoausschnitt aus einer Schmelze bei 1500 C a) bei Unterdruck, 100 mbar b) nach Umschalten auf Normaldruck., 1000 mbar Der Blasenradius verringert sich etwa auf 1/3, das Blasenvolumen auf etwa 1/30.

22 Schlierenbildung Homogenitätsprüfung von Laborschmelzen (Fluorid-Phosphat-Gläser) mit Schattenverfahren

23 Photoaktive Gläser (OSI) Laser- und Verstärker- Gläser (fs, Petawatt) (Er, Yb, Nd) Photolumineszenz Eu3+ Eu2+ Tb3+ fs-laser-writing (Wellenleiter) UV-Laser induzierte Nano- Partikel (Mikrolinsen)

24 Strömungen Turbulenzen Mischen zäher Flüssigkeiten Behälter mit Glycerin + Tropfen einer grünen und roten Fl. Chaotische und nichtchaotische Strömungen durch Parallelverschiebung der Behälterwände Perioden Dehn- und Faltmuster: rot: chaotisch grün: nichtchaotische Insel Muster einer turbulenten Strömung Streifenmuster in Magmagestein (Vulkan) Diffusionsprozesse sehr langsam

25 Chaos und Fraktale Die Repräsentation der Dynamik eines chaotischen Systems im Zustandsraum ist eine fraktale geometrische Struktur. Selbstähnlichkeit : Vergrößerung einer Teilstruktur bringt stets wieder die ursprüngliche Struktur zum Vorschein z.b. Cantor-Menge (D = 0,631), Koch-Kurve (D = 1,262), Sierpinski-Dreieck (D = 1,585) Skalierungsgesetz a = s D (a Anzahl, s Skalierung, D Dimension) D = log a/log s (bei klass. Fraktal ist D gebrochene Zahl) Iteration

26 Wachstum von Fraktalen durch diffusionsbegrenzte Anlagerung Zn-Ablagerung in elektrolyt. Zelle Viskoses Verästelungsmuster einer Luftblase in Glycerin Zn-Cluster bei erhöhter Spannung (elektrolyt. Zelle) Elektrisches Entladungsmuster (Lichtenberg-Figur)

27 Computer-Simulation diffusionsbegrenzte Anlagerung ~ Teilchen wachsen zu Cluster Nicht-Gleichgewichtsprozess keine Umordnung

28 Gewöhnliches Chaos Dynamische Systeme: Wetter, Klima, Wirtschaft, Verkehr, biologische Systeme (Herzschlag-Herztod, Populationsdynamik Räuber-Beute-Zyklus, Denken), chemische Reaktionen, etc. Kleinste Unterschiede in den Ursachen können zu größten Unterschieden in den Wirkungen führen Vorhersagen über reale dynamische Systeme prinzipiell unmöglich! Strukturbildung weitab vom Gleichgewicht (Selbstorganisation, Dissipation = Entropieproduktion) PRIGOGINE: Ordnung durch Fluktuationen (Schwankungen)

29 Beispiele für dissipative Prozesse Kinetische Phasenübergänge, z.b. Glasbildung, spinodale Entmischung, Keimbildung u. Kristallisation Bildung wabenartiger Strukturen an OF einer Flüssigkeit (Konvektionszellen) Oszillierende chemische Reaktionen Biologische Strukturen EIGEN (1971) Evolution als Problem struktureller Stabilität Fluktuationen chemischer Prozesse Ohne Chaos keine komplexen Systeme, keine Evolution und kein Leben

30 Schlussfolgerungen - allgemein Wissenschaftliche Methode Iteration (kleine Schritte!) Alle komplexen Systeme verhalten sich chaotisch Vorhersagbarkeit eingeschränkt aber kausale Zusammenhänge offenbahrt, wo man vorher keine vermutet hat Chaos als versteckte Ordnung Komplexe Betrachtung gegen Reduktionismus Chaotisches Verhalten ist die Regel

31 GÖDELs Unvollständigkeitssatz Keine Theorie, die die gesamte Mathematik umfasst, ist a) endlich beschreibbar, b) widerspruchsfrei und c) vollständig KURT GÖDEL (24 Jahre, Doktorand)

32 To every complex problem, there is a simple solution. And it s always wrong. H. L. Mencken Journalist and satirist PHOTONICS SPECTRA Nov: 1998

33

34 Iteration (lat. Wiederholung) Mathematisch = schrittweises Rechenverfahren zur Annäherung an exakte Lösung Zeitreihen logistische Gleichung od. Verlustgleichung: y = ax ax 2 Oszillationen (Fluktuationen) Variation von a Übergang von linearen, zu nichtlinearen zu chaotischen Verhalten

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis Die Chaostheorie a) Geschichtliche Betrachtung i. Das mechanistische Naturbild ii. Zweikörperproblem iii. Dreikörperproblem iv. Lagrange-Punkte v. Entdeckung des Chaos b) Die Chaostheorie i. Eigenschaften

Mehr

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

Zugänge zur nichtlinearen Dynamik. W. Oehme, Universität Leipzig

Zugänge zur nichtlinearen Dynamik. W. Oehme, Universität Leipzig Zugänge zur nichtlinearen Dynamik W. Oehme, Universität Leipzig einfache physikalische Experimente Wirtschaft Wetter historische Bezüge Nichtlineare Dynamik Chaos und Ordnung Verkehrsstau Populationsdynamik

Mehr

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Auf dem Weg zu einem neuen Verständnis der Naturwissenschaften Deutsche Ausgabe bearbeitet von Eckhard Rebhan Mit 110 Abbildungen T) Piper

Mehr

Wie lang ist die Küste Großbritanniens?

Wie lang ist die Küste Großbritanniens? Wie lang ist die Küste Großbritanniens? Vortrag am 16.01.2009 Fach: Physik Deterministisches Chaos Ein Vortrag von Tina Rosner und Florian Sachs Werner-von-Siemens-Gymnasium Magdeburg Gliederung 1 Das

Mehr

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos Dynamisches Chaos 1. Einleitung: Determinismus und Chaos In der üblichen Betrachtungsweise ist der Zufall nur auf dem Mikroniveau erlaubt: - das Boltzmannsche molekulare Chaos; - die quantenmechanischen

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Aggregatzustände fest Kristall, geordnet Modifikationen Fernordnung flüssig teilgeordnet Fluktuationen Nahordnung gasförmig regellose Bewegung Unabhängigkeit ngigkeit (ideales Gas) Zustandsbeschreibung

Mehr

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität 6.1 Beispiele dissipativer Systeme Der Duffing Ozillator z.b. für (Ueda Oszillator) Potential Bewegungsgleichung: Nichtlinearität nur zwei Parameter Kartierung des Verhaltens in der (f,r)- Ebene äußerst

Mehr

GRUNDLEGENDE MODELLE. Caroline Herbek

GRUNDLEGENDE MODELLE. Caroline Herbek GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)

Mehr

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt.

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. 11. Nichtlineare Dynamik und Chaos Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. der Auslenkung Fadenlänge L, Masse m, Auslenkwinkel φ Rücktreibende Kraft: Beschleunigung:

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe

llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe Aus dem Englischen von Friedrich Griese Piper München Zürich Inhaltsverzeichnis

Mehr

Chaos Oder Mandelbrot und Peitsche

Chaos Oder Mandelbrot und Peitsche Chaos Oder Mandelbrot und Peitsche Warum kann man das Wetter nicht genau vorhersagen? Du kennst sicher das Problem: du planst mit deiner Familie ein Picknick, dass in letzter Minute abgesagt werden muss,

Mehr

8. Deterministisches Chaos

8. Deterministisches Chaos 8. Deterministisches Chaos Widerspruch: deterministisch chaotisch Schmetterlingseffekt: Der Flügelschlag eines Schmetterlings entscheidet über die Entwicklung eines Sturms. Allgemein: kleinste Änderungen

Mehr

Spezielle Kinetik MC 1.3. Prof. Dr. B. Dietzek. Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie. Wintersemester 2016/2017

Spezielle Kinetik MC 1.3. Prof. Dr. B. Dietzek. Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie. Wintersemester 2016/2017 Spezielle Kinetik MC 1.3 Prof. Dr. B. Dietzek Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie Wintersemester 2016/2017 B. Dietzek/D. Bender Spezielle Kinetik 1 Physikalische Chemie//Master

Mehr

4. Strukturänderung durch Phasenübergänge

4. Strukturänderung durch Phasenübergänge 4. Strukturänderung durch Phasenübergänge Phasendiagramm einer reinen Substanz Druck Phasenänderung durch Variation des Drucks und/oder der Temperatur Klassifizierung Phasenübergänge 1. Art Phasenübergänge

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Phasendiagramme Das Phasendiagramm zeigt die Existenzbereiche der Phasen eines Stoffes in Abhängigkeit von thermodynamischen Parametern. Das einfachste Phasendiagramm erhält man für eine symmetrische binäre

Mehr

Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme?

Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme? Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme? Thermodynamische Systeme: 1. Charakteristikum: - sehr große Anzahl von Freiheitsgraden: N = 6 10 23 Teilchen pro Mol - es

Mehr

Fraktale und Beispiele aus der Physik

Fraktale und Beispiele aus der Physik Fraktale und Beispiele aus der Physik Anschauung Warum beschäftigen Fraktale (auch) Naturwissenschaftler? kurze Wiederholung Konkretes Beispiel: Magnetpendel Das Experiment Mathematische Beschreibung Trajektorien

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik

Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Ausarbeitung zum Vortrag im Rahmen des Hauptseminars Big Data Science in und außerhalb der Physik an der Fakultät für Physik am Karlsruher Institut

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

Wozu brauchen wir theoretische Physik? Ziele der Physik

Wozu brauchen wir theoretische Physik? Ziele der Physik Wozu brauchen wir theoretische Physik? Wolfgang Kinzel Lehrstuhl für theoretische Physik III Universität Würzburg Ziele der Physik Die Physik sucht nach allgemeinen Naturgesetzen. Sie möchte die Natur

Mehr

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine:

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine: 4. Zweiter Hauptsatz der Thermodynamik 4.1. Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Thermischer Wirkungsgrad einer Arbeitsmaschine: Beispiel Ottomotor

Mehr

Klaus Stierstadt. Physik. der Materie VCH

Klaus Stierstadt. Physik. der Materie VCH Klaus Stierstadt Physik der Materie VCH Inhalt Vorwort Tafelteil hinter Inhaltsverzeichnis (Seiten TI-T XVII) V Teil I Mikrophysik - Die Bausteine der Materie... l 1 Aufbau und Eigenschaften der Materie

Mehr

FC3 - Duffing Oszillator

FC3 - Duffing Oszillator FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme

Mehr

Die Entdeckung des Chaos

Die Entdeckung des Chaos Die Entdeckung des Chaos Dieser Artikel beschreibt das sogenannte deterministische Chaos, das in berechenbaren Rückkopplungssystemen zutage tritt. Das per Emailkontakt verfügbare Programm Feigenbaum ermöglicht

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Thermodynamik und Statistische Mechanik WS2014/2015

Thermodynamik und Statistische Mechanik WS2014/2015 Thermodynamik und Statistische Mechanik WS2014/2015 Martin E. Garcia Theoretische Physik, FB 10, Universität Kassel Email: garcia@physik.uni-kassel.de Vorlesungsübersicht 1) Einführung: -Makroskopische

Mehr

1. Einleitung. 2. Zur Person

1. Einleitung. 2. Zur Person Moritz Schlick: Naturgesetze und Kausalität Seminar über philosophische Aspekte in der Physik WS 2007/08 Seminarleitung: Prof. Dr. G. Münster Dr. C. Suhm Vortragender: Johannes Greber 13. 11. 2007 1. Einleitung

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

Synergetik. Hermann Haken. Eine Einführung. Nichtgleichgewichts-Phasenübergänge und Selbstorganisation in Physik, Chemie und Biologie

Synergetik. Hermann Haken. Eine Einführung. Nichtgleichgewichts-Phasenübergänge und Selbstorganisation in Physik, Chemie und Biologie Hermann Haken Synergetik Eine Einführung Nichtgleichgewichts-Phasenübergänge und Selbstorganisation in Physik, Chemie und Biologie Übersetzt von A. Wunderlin Dritte, erweiterte Auflage Mit 168 Abbildungen

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

12. Ordnung-Unordnung 12.1 Überstrukturen

12. Ordnung-Unordnung 12.1 Überstrukturen 12. Ordnung-Unordnung 12.1 Überstrukturen B-Atome A-Atome Geordnete L1 Struktur mit A 3 B Überstruktur, z.b. Ni 3 Al Hochtemperaturbeständig, hohe Streckgrenze, resistent gegen Korrosion Schlechte Duktilität

Mehr

Theoretische Physik 6: Thermodynamik und Statistik

Theoretische Physik 6: Thermodynamik und Statistik Rainer J.Jelitto Theoretische Physik 6: Thermodynamik und Statistik Eine Einführung in die mathematische Naturbeschreibung 2. korrigierte Auflage Mit 82 Abbildungen, Aufgaben und Lösungen dulfc AU LA-Verlag

Mehr

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00 10 Informationen Anmeldung erforderlich: ab 1.3. 16:00 bis spätestens 8. 3. 09:00 online im TISS (i (tiss.tuwien.ac.at) i Tutorium: Fr. 10:00 11:00, 11:00, Beginn: 15.3.2013 Gruppeneinteilung wird auf

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Wiederholung Film Brownsche Bewegung in Milch (Fettröpfchen in Wasser)

Wiederholung Film Brownsche Bewegung in Milch (Fettröpfchen in Wasser) 2.Vorlesung Wiederholung Film Brownsche Bewegung in Milch (Fettröpfchen in Wasser) P.F.: Man weiß heute, dass das Brownsche Teilchen ein Perpetuum mobile zweiter Art ist, und dass sein Vorhandensein den

Mehr

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

Thermodynamik und Statistische Mechanik

Thermodynamik und Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand 1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand Wie erfolgt die Beschreibung des Zustands eines Systems? über Zustandsgrößen (makroskopische Eigenschaften, die den Zustand eines Systems kennzeichnen)

Mehr

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten http://farm2.static.flickr.com/1126/1106887574_afb6b55b4e.jpg?v=0 Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten 1-E Joseph Louis Lagrange (1736-1813), ein italienischer Mathematiker

Mehr

Chaos im getriebenen nicht-linearen Pendel

Chaos im getriebenen nicht-linearen Pendel Chaos im getriebenen nicht-linearen Pendel Alle drei Ingredienzen: Nichtlinearität, Reibung, treibende Kraft 2 d θ g dθ = sinθ q + F sin 2 dt L dt ( t) D Ω D Das ist ein so genanntes physikalisches Pendel

Mehr

Differentialgleichungen I

Differentialgleichungen I Differentialgleichungen I Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 5. Januar 2009 Beachtenswertes Die Veranstaltung

Mehr

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie.

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Die Hauptsätze der Thermodynamik Kurze Zusammenfassung der Hauptsätze 0. Hauptsatz: Stehen zwei

Mehr

Seltsame Attraktoren

Seltsame Attraktoren 1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?

Mehr

7. Wettervorhersage und Vorhersagbarkeit (aus der Theorie-Vorlesung von K. Fraedrich)

7. Wettervorhersage und Vorhersagbarkeit (aus der Theorie-Vorlesung von K. Fraedrich) 7. Wettervorhersage und Vorhersagbarkeit (aus der Theorie-Vorlesung von K. Fraedrich) Begriffe Vorhersagbarkeit Vorhersagbarkeit charakterisiert die sensitive Abhängigkeit (Wetter- und Klima) von Anfangs-

Mehr

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme"

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme" Dietmar Paschek SS 016 Gittermodell für Mischungen Grenzen der Bragg-Williams Näherung Das Ising Modell Quasi-Chemische

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

DAS VORHERGESAGTE CHAOS

DAS VORHERGESAGTE CHAOS DAS VORHERGESAGTE CHAOS Vorhersagen sind schwierig, besonders wenn sie die Zukunft betreffen, in erster Linie dann, wenn es sich um Wettervorhersagen handelt ein Zitat, das Berühmtheiten wie Nils Bohr

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung

Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung Grenzflächenphänomene 1. Oberflächenspannung Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie Grenzflächenphänomene Phase/Phasendiagramm/Phasenübergang Schwerpunkte: Oberflächenspannung

Mehr

+ + Personalmanagement Stuff-Turnover. Simulation im Excel. Organizational Headcount. Turnover. Recruitment

+ + Personalmanagement Stuff-Turnover. Simulation im Excel. Organizational Headcount. Turnover. Recruitment Personalmanagement Stuff-Turnover + Organizational Headcount Recruitment + + Turnover Simulation im Excel Schmetterlingseffekt 1 0,8 x 0,6 0,4 0,2 0 0 5 10 15 2 0 2 5 3 0 n Feigenbaum-Szenario Bifurkationspunkt:

Mehr

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

3. Mikrostruktur und Phasenübergänge

3. Mikrostruktur und Phasenübergänge 3. Mikrostruktur und Phasenübergänge Definition von Mikrostruktur und Gefüge Gefüge bezeichnet die Beschaffenheit der Gesamtheit jener Teilvolumina eines Werkstoffs, von denen jedes hinsichtlich seiner

Mehr

Vorwissen Lineare Modelle zweier Bevölkerungen

Vorwissen Lineare Modelle zweier Bevölkerungen Reiser Stephan 1 Ablauf Vorwissen Lineare Modelle zweier Bevölkerungen Das Konkurrenzmodell von Volterra Ein allgemeineres Konkurrenzmodell Periodische Bahnen für die allgemeine Volterra-Lotka- Gleichung

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper ist im Gleichgewicht,

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

Arnolds Katze im Wunderland

Arnolds Katze im Wunderland Der mathematische und naturwissenschaftliche Unterricht 45/1,3 (1992) (150) Arnolds Katze im Wunderland H. Joachim Schlichting, U. Backhaus. Universität Osnabrück Nichts ist gewiß aber alles kehrt wieder

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft

Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft Inhaltsverzeichnis I. Allgemeine Aussagen II. Subjektive Planzahlenbestimmung III. Extrapolierende Verfahren 1. Trendanalyse:

Mehr

Würfelt Gott oder würfelt er nicht? p.1/35

Würfelt Gott oder würfelt er nicht? p.1/35 Würfelt Gott oder würfelt er nicht? Die Rolle des Zufalls im Weltbild der Physik Claus Grupen Universität Siegen Dortmund, den 21. Mai 2005 Würfelt Gott oder würfelt er nicht? p.1/35 Eine uralte Frage...

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

Strukturell ungeordnete Materialien

Strukturell ungeordnete Materialien Strukturell ungeordnete Materialien Nichtstoichiometrische Verbindungen Plastische Kristalle, Mesokristalle Gele, Gläser, Keramik Nanokomposite Zusammensetzung Präparation, Verarbeitung Struktur Dynamik

Mehr

Physik für Ingenieure

Physik für Ingenieure Physik für Ingenieure von Prof. Dr. Ulrich Hahn OldenbourgVerlag München Wien 1 Einführung 1 1.1 Wie wird das Wissen gewonnen? 2 1.1.1 Gültigkeitsbereiche physikalischer Gesetze 4 1.1.2 Prinzipien der

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius Physik I Mechanik der Kontinua und Wärmelehre Thomas Universität Hamburg Wintersemester 2014/15 ORGANISATORISCHES Thomas : Wissenschaftler (Teilchenphysik) am Deutschen Elektronen-Synchrotron (DESY) Kontakt:

Mehr

Stochastische Prozesse Woche 1. Oliver Dürr. Winterthur, 24 Februar 2016

Stochastische Prozesse Woche 1. Oliver Dürr. Winterthur, 24 Februar 2016 Stochastische Prozesse Woche 1 Oliver Dürr Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften oliver.duerr@zhaw.ch Winterthur, 24 Februar 2016 1 Kontakt Oliver

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-regensburg.de/mathematik/mathematik-abels/aktuelles/index.html Schnupperstudium

Mehr

Onsagersche Gleichung. Energetische Beziehungen

Onsagersche Gleichung. Energetische Beziehungen Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,

Mehr

Der Urknall. Wie unser Universum aus fast Nichts entstand

Der Urknall. Wie unser Universum aus fast Nichts entstand Der Urknall Wie unser Universum aus fast Nichts entstand Die großen Fragen Woraus besteht das Universum? Wie sah das Universum am Anfang aus? Plasma! und vorher? Woraus haben sich Strukturen entwickelt?

Mehr

T.1 Kinetische Gastheorie und Verteilungen

T.1 Kinetische Gastheorie und Verteilungen T.1 Kinetische Gastheorie und Verteilungen T 1.1 Physik von Gasen T 1.2 Ideales Gas - Makroskopische Betrachtung T 1.3 Barometrische Höhenformel T 1.4 Mikroskopische Betrachtung: kinetische Gastheorie

Mehr

I N T E R M I T T E N Z U N D S T R U K T U R F U N K T I O N E N

I N T E R M I T T E N Z U N D S T R U K T U R F U N K T I O N E N Lars Knapik Geophysikalisch-Meteorologisches Seminar Zusammenfassung des Vortrags vom 26.06.2008 I N T E R M I T T E N Z U N D S T R U K T U R F U N K T I O N E N Selbstähnlichkeit Um Intermittenz zu erklären

Mehr

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900 Was ist Physik? Das Studium der uns umgebenden Welt vom Universum bis zum Atomkern, bzw. vom Urknall bis weit in die Zukunft, mit Hilfe von wenigen Grundprinzipien. Diese gesetzmäßigen Grundprinzipien

Mehr

PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test

PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Neutralisationswärme wird dieses Vorgespräch durch einen

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

ein eindrückliches Hilfsmittel zur Visualisierung im naturwissenschaftlichen Unterricht

ein eindrückliches Hilfsmittel zur Visualisierung im naturwissenschaftlichen Unterricht Atomarium ein eindrückliches Hilfsmittel zur Visualisierung im naturwissenschaftlichen Unterricht Das Atomarium ist ein Computerprogramm, das chemische und physikalische Phänomene auf atomarer Ebene simuliert

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 10.1 Systemdefinition Eine

Mehr

Strukturen in belebter und unbelebter Natur: Beispiele

Strukturen in belebter und unbelebter Natur: Beispiele Einführung Strukturen in belebter und unbelebter Natur: Beispiele Geordnet (Gleichgewicht) Quarz-Kristall (natürlich gewachsen) Eutektische Superlegierung mit Tantal-Karbid Fasern Schneeflocke (aus Wasserdampf

Mehr

Fraktale. Mathe Fans an die Uni. Sommersemester 2009

Fraktale. Mathe Fans an die Uni. Sommersemester 2009 Fraktale Mathe Fans an die Uni Ein Fraktal ist ein Muster, das einen hohen Grad Selbstähnlichkeit aufweist. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt

Mehr

Wettbewerbs- und Symbiose-Modelle Von Jakob Foss

Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbsmodell Das einfachste Wettbewerbsmodell für zwei Spezies lässt sich aus dem Lotka- Volterra Modell ableiten und sieht folgendermaßen aus: dn1

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

J. Breckow R. Greinert. Biophysik. Eine Einführung

J. Breckow R. Greinert. Biophysik. Eine Einführung J. Breckow R. Greinert Biophysik Eine Einführung Walter de Gruyter 1994 1 Differenzierungsprozesse und Bildung geordneter Strukturen... 1 1. Abgeschlossene Systeme. offene Systeme... 2 1.1. Allgemeines

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel).

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel). 3.7 Chaos Wir untersuchen weiter autonome Systeme der Form dy i dt = f i(y,y 2,..y N ), y i (0) = a i, i =...N () (f i hängt nicht explizit von der Zeit ab). Eindeutigkeit der Lösung: aus y(t) folgt genau

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr