Mathematik für die Sekundarstufe 1

Größe: px
Ab Seite anzeigen:

Download "Mathematik für die Sekundarstufe 1"

Transkript

1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 206 Regelmäßige Vielecke

2 Hans Walser: Modul 206, Regelmäßige Vielecke ii Inhalt 1 Regelmäßige Vielecke Das regelmäßige Dreieck Parkette Ganzzahlige Koordinaten der Eckpunkte? Näherungsverfahren mit Falten Falten und Schneiden Das Quadrat Quadrat als Gelenkmodell Das regelmäßige Fünfeck und das Pentagramm Knoten Der Goldene Schnitt Fünfeck und Quadratraster Das regelmäßige Sechseck Das Hexaflexagon Papiersterne Das regelmäßige Siebeneck Konstruktionen mit Zirkel und Lineal Scherengeometrie Das regelmäßige Achteck Kirchenbau Castel del Monte Oktogon aus DIN A Das regelmäßige Zwölfeck Modul 206 für die Lehrveranstaltung Mathematik für die Sekundarstufe 1 Sommer 1999 Erste Fassung (Einzelblätter) Sommer 2001 Überarbeitung und Erweiterung Sommer 2003 Neue Moduleinteilung, Fehlerbereinigung, Ergänzungen Sommer 2005 Technische Überarbeitung. Ergänzungen und Straffung Sommer 2007 MathType. Geändertes Layout. Erweiterung Frühjahr 2009 Fehlerkorrekturen Frühjahr 2011 Keine Änderung last modified: 2. Januar 2014 Hans Walser Mathematisches Institut, Rheinsprung 21, 4051 Basel

3 Hans Walser: Modul 206, Regelmäßige Vielecke 1 1 Regelmäßige Vielecke In einem regelmäßigen Vieleck sind alle Seiten und alle Winkel gleich groß. In einem regelmäßigen n-eck misst ein Außenwinkel 360, demzufolge ein Innenwinkel n und für die Innenwinkelsumme erhalten wir n n ( ). Im folgenden sei s die Seitenlänge, r der Umkreisradius, ρ der Inkreisradius, A der Flächeninhalt eines regelmäßigen n-eckes. Regelmäßige Vielecke 2 Das regelmäßige Dreieck Das regelmäßige Dreieck wird in der Regel als gleichseitiges Dreieck bezeichnet, da seine Winkel automatisch alle gleich groß sind, nämlich 60. (Man beachte, dass ein gleichseitiges Viereck (Rhombus) nicht regelmäßig zu sein braucht!) Im regelmäßigen Dreieck gilt: h = 3 2 s, r = 3 3 s, ρ = 3 6 s, A = 3 4 s2 2.1 Parkette Mit dem regelmäßigen Dreieck kann ein Parkett gemacht werden. Das ist aber nichts besonderes, da man mit jedem Dreieck ein Parkett bauen kann. Dreiecksparkette

4 Hans Walser: Modul 206, Regelmäßige Vielecke Ganzzahlige Koordinaten der Eckpunkte? Hingegen ist es nicht möglich, ein gleichseitiges Dreieck so in ein Quadratraster einzupassen, dass alle drei Eckpunkte auf Rasterpunkte zu liegen kommen. Es ist also nicht möglich, dass in einem kartesischen Koordinatensystem alle drei Eckpunkte eines gleichseitigen Dreieckes ganzzahlige oder auch nur rationale Koordinaten haben. Der Beweis geht indirekt: Wir nehmen an, es gebe ein solches Dreieck. Bei rationalen Koordinaten müssen wir zunächst mit dem kleinsten gemeinsamen Vielfachen aller Nenner multiplizieren. Falls nun nicht schon alle Koordinaten geradzahlig sind, verdoppeln wir das Dreieck. Damit hat auch der Mittelpunkt M c der Seite c ganzzahlige Koordinaten. B C M c A Gezinkte Beweisfigur Nun kann die halbe Dreiecksseite wie auch die Höhe durch die waagrechten beziehungsweise senkrechten Netzlinien je in eine ganze Anzahl gleich langer Teile unterteilt werden. Das heißt nun aber, dass das Verhältnis der Höhe zur halben Seitenlänge rational ist. Dieses Verhältnis ist aber 3, also eine irrationale Zahl. Damit haben wir einen Widerspruch. Aus unserer gezinkten Beweisfigur können wir 3 12 = ablesen, was immerhin 7 eine nicht allzu schlechte Näherung für 3 = ist. 2.3 Näherungsverfahren mit Falten Wir falten einen Papierstreifen beliebig und halbieren dann ebenfalls mit Falten fortlaufend den stumpfen Winkel zwischen dem Streifenrand und der letzten Faltlinie.

5 Hans Walser: Modul 206, Regelmäßige Vielecke 3 Fortlaufendes Winkelhalbierende durch Falten Wie das Beispiel zeigt, kommen wir bald zu Dreiecken, die als Näherungen von gleichseitigen Dreiecken dienen können. Warum ist das so? 2.4 Falten und Schneiden Herstellung von dreieckigem Origami Papier. Ausgegangen wird von einem DIN A4 Papier. Falten und Schneiden

6 Hans Walser: Modul 206, Regelmäßige Vielecke 4 3 Das Quadrat Das regelmäßige Viereck ist das Quadrat, neben dem Kreis wohl die bekannteste und wichtigste geometrische Figur. In ein Quadratraster können schräge Quadrate eingezeichnet werden. Quadrat im Quadratraster 3.1 Quadrat als Gelenkmodell Aus drei Strecken gleicher Länge, die an den Enden gelenkig verbunden werden, ergibt sich ein starres gleichseitiges Dreieck. Aus vier Strecken ergibt sich ein nicht starrer Rhombus. Lässt sich auch ein (starres) Quadrat konstruieren? Im Gelenkmodell der folgenden Figur links (aus [Gardner, p. 54]) sind alle Strecken gleich lang. Das Modell ist starr. Ist der getönte Rhombus ein Quadrat? Ist der Rhombus ein Quadrat? Beweisfigur Das getönte Dreieck in der Figur rechts ist aus Symmetriegründen rechtwinklig. Die Hypotenuse hat die Länge 3, die kurze Kathete die Länge 1. Daraus ergibt sich für die Diagonale des fraglichen Rhombus die Länge 2 ; der Rhombus ist also ein Quadrat.

7 Hans Walser: Modul 206, Regelmäßige Vielecke 5 4 Das regelmäßige Fünfeck und das Pentagramm 4.1 Knoten 4.2 Der Goldene Schnitt Das Pentagon als Knoten Pentagon und Pentagramm

8 Hans Walser: Modul 206, Regelmäßige Vielecke 6 Konstruktion des goldenen Schnittes Konstruktion des goldenen Schnittes Anwendung: Regelmäßiges Zehneck 1 Konstruktion des regelmäßigen Zehneckes und auch des Fünfeckes

9 Hans Walser: Modul 206, Regelmäßige Vielecke Fünfeck und Quadratraster Es gibt kein regelmäßiges Fünfeck im Quadratraster. Wir führen den Beweis indirekt, indem wir annehmen, es gäbe ein solches Fünfeck, und zeigen, dass diese Annahme zu einem Widerspruch führt. Dazu benötigen wir einen Hilfssatz: Zu zwei Rasterpunkten P und Q gibt es zwei weitere Rasterpunkte R und S derart dass PQRS ein Quadrat wird Zum Beweis denken wir uns ein Koordinatensystem, in welchem die Rasterpunkte genau die Punkte mit ganzzahligen Koordinaten sind. P Q Einbau eines rechten Winkels Aus PQ = x Q x P y P y Q ergibt sich QR = PQ =. Daraus erhalten wir für den y Q y P x Q x P Punkt R die ganzzahligen Koordinaten R( x Q + y P y Q, y Q + x Q x P ); der Punkt R ist also ebenfalls ein Rasterpunkt. Analog überlegen wir für den vierten Punkt S. Eine Strecke PQ kann also zu einem Quadrat PQRS ergänzt werden. Daraus folgt aber auch, dass eine Strecke PQ zu einem halben Quadrat, also einem rechtwinklig gleichschenkligen Dreieck PQR mit rechtem Winkel bei Q ergänzt werden kann. Für unseren indirekten Beweis nehmen wir nun an, wir hätten ein regelmäßiges Fünfeck A 0 A 1 A 2 A 3 A 4, dessen Ecken alle Rasterpunkte sind. Wir ergänzen nun jede Fünfecksseite A i 1 A i zu einem rechtwinklig gleichschenkligen Dreieck A i 1 A i B i mit dem rechten Winkel bei A i (Figur). Dadurch erhalten wir ein regelmäßiges Fünfeck B 0 B 1 B 2 B 3 B 4, das ganz im Innern des Fünfeckes A 0 A 1 A 2 A 3 A 4 liegt, und dessen Ecken ebenfalls Rasterpunkte sind. A 4 A 0 B 4 B 3 B 2 A 3 B 0 B 1 A 1 A 2 Kleineres regelmäßiges Fünfeck

10 Hans Walser: Modul 206, Regelmäßige Vielecke 8 Wir können also zu jedem regelmäßigen Fünfeck in der Rastergeometrie ein kleineres finden, dessen Ecken ebenfalls Rasterpunkte sind. Durch Iteration dieses Verfahrens erhalten wir aber eine Folge von immer kleiner werdenden Fünfecken (Figur), so dass schließlich ein Fünfeck so klein ist, dass es durch die Maschen des Quadratrasters fällt. Dies steht im Widerspruch dazu, dass seine Eckpunkte Rasterpunkte sein müssten. Folge von regelmäßigen Fünfecken Es gibt also kein regelmäßiges Fünfeck im Quadratraster. Dieses Beweisverfahren wird als reductio ad absurdum (Rückführung auf einen Widerspruch) bezeichnet. Dieses Beweisverfahren lässt sich auf alle regelmäßigen Vielecke mit einer Eckenzahl n 5 anwenden. Im Quadratraster können also nur Quadrate gezeichnet werden; Dreiecke haben wir oben schon ausgeschlossen. 5 Das regelmäßige Sechseck 5.1 Das Hexaflexagon Hexaflexagon

11 Hans Walser: Modul 206, Regelmäßige Vielecke 9 Hexaflexagone wurden 1939 von Arthur H. STONE entdeckt [Gardner 1959]. In [Hilton/Pedersen 1994] und [Hilton/Pedersen/Walser ] finden sich Beschreibungen und Bauanleitungen verschiedener Flexagone. Das Hexaflexagon wird aus einem Papierstreifen mit 10 gleichseitigen Dreiecken hergestellt. Die Faltlinien zwischen den Dreiecken wechseln zwischen Talfalten und Bergfalten. Bergfalt Talfalt Der Streifen Der Streifen wird nun gemäß den Faltrichtungen zum Hexaflexagon gefaltet und an den beiden überlappenden Enden verklebt. Schülerinnen und Schüler zeichnen gleich Dekorationen auf das Hexaflexagon, welche sich beim Flexen verändern. 5.2 Papiersterne Aus dreieckigem Origami-Papier können Sechseckssterne hergestellt werden. 6 Das regelmäßige Siebeneck Papiersterne Regelmäßiges Siebeneck

12 Hans Walser: Modul 206, Regelmäßige Vielecke Konstruktionen mit Zirkel und Lineal Das regelmäßige Siebeneck kann nicht mit Zirkel und Lineal konstruiert werden. GAUSS, FERMAT, C. F. GAUSS ( ) hat bewiesen, dass jedes regelmäßige n-eck, das einem Kreis mit dem Radius r einbeschrieben werden soll, allein mit Zirkel und Lineal genau dann konstruierbar ist, wenn n eine Zweierpotenz oder ein Produkt aus einer Zweierpotenz und/oder verschiedenen FERMATschen Primzahlen ist. FERMATsche Primzahlen sind Primzahlen von der Form: ( ) F k = 2 2k +1 Dabei gibt es nicht für jedes k eine Primzahl. Es ist: F 0 = 3 F 1 = 5 F 2 =17 F 3 = 257 F 4 = Primzahl Primzahl Primzahl Primzahl Primzahl F 5 = = = , die Fermatsche Zahl F 5 ist also keine Primzahl (EULER). Mithilfe ausgedehnter Computerrechnung konnte gezeigt werden, dass auch F 6 bis F 32 nicht prim sind. Es ist unbekannt, ob weitere FERMATsche Zahlen F k Primzahlen sind.

13 Hans Walser: Modul 206, Regelmäßige Vielecke 11 Danach sind mit Zirkel und Lineal konstruierbar das regelmäßige Dreieck Quadrat Fünfeck 15-Eck Sechseck Achteck Zehneck 30-Eck Zwölfeck 16-Eck 20-Eck 60-Eck 24-Eck 32-Eck 40-Eck 120-Eck 48-Eck 64-Eck 80-Eck 240-Eck 96-Eck 128-Eck 160-Eck 480-Eck usw. usw. usw. usw. Die nächsten Folgen von regelmäßigen Vielecken, die mit Zirkel und Lineal konstruierbar sind, beginnen mit dem 17-Eck, dem 51-Eck, dem 85-Eck und dem 255-Eck. Nicht konstruierbar sind demnach das regelmäßige Siebeneck, Neuneck, Elfeck, 13- Eck, 14-Eck, 18-Eck usw. 6.2 Scherengeometrie Zwei Strecken der Länge eins werden an zwei inneren Punkten gelenkig verbunden. Die folgende Figur zeigt links eine symmetrische, rechts eine asymmetrische Schere. Scheren Wir setzen nun symmetrische Scheren gelenkig zusammen, die beiden Anfangspunkte setzen wir variabel auf eine vertikale Schiene.

14 Hans Walser: Modul 206, Regelmäßige Vielecke 12 Zusammensetzung von symmetrischen Scheren Bewegen wir einen der beiden Anfangspunkt auf der Schiene, wird das Gelenkmodell in horizontaler Richtung geradlinig verlängert oder verkürzt. Es gibt verschiedene technische Anwendungen solcher Scheren, etwa bei Greifarmen oder Hebebühnen. Bei Verwendung von asymmetrischen Scheren krümmt sich das Gelenkmodell. Krümmung bei asymmetrischen Scheren Wir können nun die Anfangspunkt so weit zusammendrücken, bis sich das Gelenkmodell schließt. Durch Verbinden der Anfangs- und Endpunkte ergibt sich eine starre regelmäßige Sternfigur. Die Figur zeigt die Version für einen Siebenstern, bei welcher sieben Scheren benötigt werden. Das Beispiel ist darum bemerkenswert, weil in der

15 Hans Walser: Modul 206, Regelmäßige Vielecke 13 EUKLIDischen Geometrie das regelmäßige Siebeneck nicht mit Zirkel und Lineal konstruiert werden kann. Allgemein ergibt sich mit n Scheren ein regelmäßiger n-stern. 7 Das regelmäßige Achteck Siebenteilige Sternfigur 7.1 Kirchenbau Das regelmäßige Achteck erscheint häufig im Kirchenbau. Decke der Kirche Wilchingen Die Wilchinger Kirche ist eine ganz und gar reformierte Kirche. Im Erbe der Reformation hat es hier auch keine Bilder oder irgendwelche Kunstwerke, die man den Besuchern und Besucherinnen zeigen könnte, und doch ist da etwas, das die Aufmerksamkeit auf sich zieht, und das ist die große Holzdecke mit ihrer Struktur der beiden Achtecke. Es sind nicht nur zwei Achtecke, die das Maß unserer oktogonalen Kirche darstellen, sondern es sind zweimal acht Achtecke, und es ist als Bild wiederum eine große 8, die da über dieser Kirche liegt. Woher kommt die Achtzahl und was bedeutet sie? Ein Vers aus der Bibel hilft uns weiter (1. Petrus 3,20): «In der Arche wurden nur wenige, nämlich acht Menschen, durch

16 Hans Walser: Modul 206, Regelmäßige Vielecke 14 das Wasser gerettet. Dem entspricht die Taufe, die jetzt euch rettet.» Mitten im Untergang der Sintflut gibt es eine Rettung, und diese steht unter dem Zeichen der Acht und wird in der Taufe den Menschen zugesprochen. Damit erinnert die Taufe an die Beschneidung im Alten Testament, die am achten Tag vorgenommen wurde. Doch eigentlich liegt der Ursprung der Achtzahl noch weiter zurück: In der Schöpfungsgeschichte wird erzählt vom Rhythmus der sieben Tage, in denen die ganze Welt erschaffen wird. Und diese sieben Tage wiederholen sich dann immer wieder, bis einmal die Zeit erfüllt ist und der ewige, der achte Tag kommen kann, der uns erlöst aus dem Kreislauf der Zeit. Wer die sieben Tage seines Lebens hinter sich gebracht hat, geht ein in den achten Tag, der kein Ende hat. Weil die Acht als Zeichen auch kein Ende hat, wurde sie in der Mathematik das Symbol für die Unendlichkeit, wenn man sie liegend zeichnet. Gleichzeitig sind es zwei Pole, die einander gegenüberstehen und in der Mitte durch das Kreuz verbunden sind, wie diese und jene Welt. Und so wird der Sonntag in der Kirche gefeiert als der Tag der Auferstehung, als der achte Tag. (Markus Sieber, Pfarrer in Wilchingen) 7.2 Castel del Monte Wir treffen das regelmäßige Achteck aber auch im Festungsbau an, zum Beispiel im Castel del Monte [Götze 1986], [Götze 1991]. 7.3 Oktogon aus DIN A4 Ein regelmäßiges Achteck lässt sich auch durch Falten aus einem Papier vom Format DIN A4 herstellen? Faltvorgang Wir beginnen mit einem leeren Papier vom Format DIN A4 (oder einem anderen DIN A Format) im Querformat. DIN A4 Dann falten wir die senkrechte Mittellinie und falten wieder zurück.

17 Hans Walser: Modul 206, Regelmäßige Vielecke 15 Mittellinie senkrecht Nun falten wir alle vier Ecken an diese Mittellinie und falten wieder zurück. Ecken einbiegen und wieder zurückfalten Als nächstes falten wir zwei zur Mittellinie parallele Linien durch die Schnittpunkte der Faltlinien des letzten Schrittes. Parallelen durch die Schnittpunkte Diese Parallelen bilden zusammen mit Oberkante und Unterkante des Papiers ein Quadrat. Das Quadrat liegt eingemittet auf dem Papier. Nun falten wir die waagerechte Mittellinie. Waagerechte Mittellinie Wir falten alle vier Ecken an diese waagerechte Mittellinie und falten wieder zurück.

18 Hans Walser: Modul 206, Regelmäßige Vielecke 16 Ecken einbiegen und wieder zurückfalten Damit haben wir das Oktogon. Oktogon Durch geeignetes Einbiegen oder durch Abschneiden erhalten wir das materielle Oktogon. Ansicht von beiden Seiten 2 Das Seitenverhältnis des DIN A Formates ist wesentlich. Aus einem Rechteck mit 1 einem anderen Seitenverhältnis ergibt sich ein Achteck, das zwar gleichwinklig ist, aber nicht gleichseitig.

19 Hans Walser: Modul 206, Regelmäßige Vielecke 17 Falsche Seitenverhältnisse bei den Rechtecken Das lässt sich wie folgt einsehen. Wir verwenden ein Ausgangsrechteck mit der Länge a und der Breite b. Die gleichwinkligen, aber eben nicht gleichseitigen Achtecke haben in jedem Fall eine vierstrahlige Drehsymmetrie. a b d Abstände zwischen den Seiten Es geht jetzt noch darum, ob die Abstände b zwischen den Seiten parallel zu den Papierseiten gleich groß sind wie die Abstände d zwischen den schrägen Seiten. Es ist: d = a 2 Die Bedingung d = b führt auf a = b 2, also das DIN A Format.

20 Hans Walser: Modul 206, Regelmäßige Vielecke 18 8 Das regelmäßige Zwölfeck Regelmäßiges Zwölfeck

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 206 Regelmäßige Vielecke Lernumgebung Hans Walser: Modul 206, Regelmäßige Vielecke. Lernumgebung ii Modul 206 für die Lehrveranstaltung Mathematik für

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

Hans Walser, [ a], Das DIN Rechteck 1/29

Hans Walser, [ a], Das DIN Rechteck 1/29 Hans Walser, [0050930a], Das DIN Rechteck /9 Hans Walser Das DIN Rechteck DIN-Format Inhalt Internationale Papierformate (ISO/DIN)... Schnittpunkte...4 3 Drehstreckung...6 4 Oktogon aus einem DIN Rechteck...

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

1 Der Goldene Schnitt

1 Der Goldene Schnitt Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Hans Walser, [ a] Polygone im Raum Anregung: Chr. W., B.

Hans Walser, [ a] Polygone im Raum Anregung: Chr. W., B. Hans Walser, [20080316a] Polygone im Raum Anregung: Chr. W., B. 1 Worum es geht Wir untersuchen die Winkelsumme von geschlossenen räumlichen Polygonen. Diese Winkelsumme ist kleiner oder gleich der Winkelsumme

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I

Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Robert Geretschläger Graz, Österreich, 2010 Hinweis: Die Blätter 1, 2, 3 und 4 sind für Schüler und Schülerinnen

Mehr

FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011

FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 1 FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 A Name:... 1. Teil: Winkelberechnungen Aufgabe W-1: In nebenstehendem Sehnenviereck sei = 80º und = 70º. Wie gross sind dann

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon.

Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. 38 11. Reguläre Vielecke und Körper Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. Schon Euklid von Alexandria hat sich

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 203 Zusammensetzung von Geradenspiegelungen Symmetriegruppen Hans Walser: Modul 203, Zusammensetzung von Geradenspiegelungen. Symmetriegruppen ii Inhalt

Mehr

Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon

Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon Hans Walser, Studie [20040320a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon 1 Spielregeln 1.1 Gleichschenklige Dreiecke Regelmäßiges Zwölfeck Das regelmäßige Zwölfeck soll in gleichschenklige

Mehr

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Horst Steibl TU Braunschweig GDM-Tagung Berlin 2007 1 Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Wie Tim und Tom, die

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Fächerverbindender Unterricht Renaissance

Fächerverbindender Unterricht Renaissance Fächerverbindender Unterricht Renaissance Bereich Mathematik THEMA: Der Goldene Schnitt Zeit: Schüler bestimmen das Arbeitstempo selbst, müssen aber alle Aufgaben fertig stellen Bei 14 Tagen FvU haben

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe Modul 205 Schnecken und Spiralen Hans Walser: Modul 205, Schnecken und Spiralen ii Inhalt Radiales Netz... 2 Drehstrecksymmetrie... 2 2. Ein rundes Quadratnetz...

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Die Konstruktion regulärer n-ecke

Die Konstruktion regulärer n-ecke Die Konstruktion regulärer n-ecke Axel Schüler Grimma, 14. September 2007 Gliederung I. Die Quadratur des Kreises und das Delische Problem II. Die zwei Konstruktionsaufgaben III. Geschichtliches zum regulären

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

(Max Bill) . Gilt A 0 A 4 A 2

(Max Bill) . Gilt A 0 A 4 A 2 19 3. Reguläre Polygone (Max Bill) Definitionen: 1. Ein Polygon ist ein Streckenzug. Dieser kann geschlossen oder offen sein. (Wir betrachten nur ebene Polygone.) Die Ecken werden aufeinander folgend nummeriert:

Mehr

Hans Walser, [ a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G.

Hans Walser, [ a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G. Hans Walser, [20090928a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G. 1 Worum geht es? In der ebenen Geometrie scheinen sich Quadrat und regelmäßiges Dreieck zu beißen. Es ist

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Beispiellösungen zu Blatt 114 (Klasse 5 8)

Beispiellösungen zu Blatt 114 (Klasse 5 8) µ κ Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 114 (Klasse 5 8) Indem wir ein Blatt Papier zweimal falten, können wir eine seiner Seiten vierteln. Um

Mehr

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Dreieckskonstruktionen

Dreieckskonstruktionen Dreieckskonstruktionen 1. Quelle: VER C 2008 Lösung: ja, nein, ja, ja, nein 2. Wähle aus den vorgegebenen Größen jeweils drei aus und überlege anhand einer Skizze, ob aus den ausgewählten Größen ein Dreieck

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Daten des aktuellen regelmäßigen 6-Ecks

Daten des aktuellen regelmäßigen 6-Ecks Wie groß ist der Umfang eines regelmäßigen 6-Ecks, das einen Flächeninhalt von 200 cm² hat? Geben Sie die Eckenzahl 6 ein und klicken Sie "Bestätige Eckenzahl". Wählen Sie als bekannte Größe die Fläche.

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Geometrie, Einführung

Geometrie, Einführung Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende

Mehr

Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen

Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen 3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrische Grundkonstruktionen

Geometrische Grundkonstruktionen Geometrische Grundkonstruktionen Strecken...2 Halbierung einer Strecke und Mittelsenkrechte...2 Teilung einer Strecke in eine bestimmte Anzahl gleicher Teile...2 Halbierung eines Winkels...3 Tangente an

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

Wie heißen die römischen Zahlzeichen für 1, 5, 10, 50, 100, 500 und 1000?

Wie heißen die römischen Zahlzeichen für 1, 5, 10, 50, 100, 500 und 1000? Wie heißen die Teile der Addition? Summand plus Summand = Summe Wie heißen die Teile der Subtraktion? Minuend minus Subtrahend = Differenz Wie heißen die Teile der Multiplikation? Multiplikand mal Multiplikator

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? Dreiecke Viereck d) Quadrat b) Kreis Quadrate Dreiecke Rechteck c) Rechtecke f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. Nimm vier gleich lange Stäbe.

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Kongruenz und Symmetrie

Kongruenz und Symmetrie Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Platonische Körper falten

Platonische Körper falten Platonische Körper falten Dr. Markus Junker Mathematisches Institut, Albert Ludwigs Universität Freiburg, Eckerstraße 1, 79104 Freiburg markus.junker@math.uni-freiburg.de Oktober 2009 Ziel: Aus jeweils

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 1987 Runde 1 In der Figur sind die drei herausgehobenen Punkte die Mittelpunkte der Kreisbögen. Bestimme durch geometrische Überlegungen die Größe des Winkels α, der von den beiden sich schneidenden Strecken

Mehr

Hans Walser. Das DIN-Format

Hans Walser. Das DIN-Format Hans Walser Das DIN-Format Kolloquium über Mathematik, Informatik und Unterricht Donnerstag, 0. November 04, 7:5 Uhr ETH Zürich, Hörsaal HG G Zusammenfassung Das DIN-Format ist mehr als ein Stück Papier

Mehr

Geometrie Jahrgangsstufe 5

Geometrie Jahrgangsstufe 5 Geometrie Jahrgangsstufe 5 Im Rahmen der Kooperation der Kollegen, die im Schuljahr 1997/98 in der fünften Jahrgangstufe Mathematik unterrichteten, wurde in Gemeinschaftsarbeit unter Federführung von Frau

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Didaktik der Elementargeometrie

Didaktik der Elementargeometrie Humboldt-Universität zu Berlin Sommersemester 2014. Institut für Mathematik A. Filler Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 2 Konstruieren im Geometrieunterricht Konstruieren

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Sekundarschule, Teil 2 Übungsheft Lektion 7 Konstruktionen 1 Lektion 7 Konstruktionen 1 1. Konstruiere ein Dreieck mit folgenden ngaben:

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

6. Die Gruppe der Euklidischen Kongruenztransformationen

6. Die Gruppe der Euklidischen Kongruenztransformationen 6. Die Gruppe der Euklidischen Kongruenztransformationen Eine Fahne in der euklidischen Ebene besteht aus einem Tripel (P, g, H), wobei P ein Punkt, g eine Halbgerade mit Anfangspunkt P, und H eine Halbebene

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Anlage 4: Claudia Schmidt: Viele Ecken, viele Winkel und ihre Summe

Anlage 4: Claudia Schmidt: Viele Ecken, viele Winkel und ihre Summe Anlage 4: Claudia Schmidt: Viele Ecken, viele Winkel und ihre Summe Mathe-Koffer Raum und Form (Karte 4) durchgeführt in den Erweiterungskursen 7 und 8 der Europaschule Dortmund MK Raum und Form Einsatz:

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Winkeldreiteilung. Michael Schmitz

Winkeldreiteilung. Michael Schmitz www.mathegami.de Februar 2010 Winkeldreiteilung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Dreiteilung eines beliebigen Winkels mit Hilfe von Zirkel und Lineal. Da eine solche

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr