Glas oder Kunststoff als Lichtleiter.

Größe: px
Ab Seite anzeigen:

Download "Glas oder Kunststoff als Lichtleiter."

Transkript

1 Glasfaserkabel Glas oder Kunststoff als Lichtleiter. 17. Physikalische Übertragung 17.1 Übertragungsmedien Kein Übersprechen zu Nachbarfasern. Wellenlängenmultiplex möglich. Meist mehrere Fasern in äusserer Ummantelung: - Schutz vor Beschädigung, - Absorption durch Mantel, - Schutz gegen Streulicht. 1 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

2 Brechungsgesetz nach Snellius: Am schnellsten läuft ein Lichtstrahl im Vakuum (3 km/sec). An Trennfläche zwischen Materialien ändert der Strahl seine Richtung. Dichtes Material, hoher Brechungsindex, niedrige Geschwindigkeit. Die Wellenfront ist "durchgängig": Formel: R sin α = λ ; R sin β = λ A B Material B β R = λa sin α = λb sin β α λ BrechungsI ndex = o λ B λ β R B Br. IndexA α sin sin β α = λ λ A = Br. Index B λ A β α Material A 2 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

3 Lichtstrahl in einer Faser: Hülle mit niedrigem Brechungsindex. sinβ = sinα Br - Index Br - Index A B Totalreflexion beim Übergang Kern/Hülle falls sin β >= 1. Beispiel sin β =1: - Brechungsindex A = Brechungsindex B = sin α =.8 - sin β = 1. Oder sin α >,8 ======> Material B β α α Material A 3 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

4 Multimode Faser mit Stufenindex: Zwei verschiedene Glassorten: - Einzelne Faser in Luft würde keine Hülle brauchen, - Im Bündel jedoch, dichterer Kern, leichtere Hülle, "Multimode": - Kern µ, Hülle µ. - Unterschiedliche Pfadlänge für verschiedene Einstrahlwinkel (Modi), - Für lange Übertragungsstrecken ergibt sich eine Pulsverbreiterung, - Pulsverbreiterung bestimmt die möglichen Datenrate. - elektrisches Signal an Mantel Laserdiode optisches Signal oder LED Hülle Kern Photodiode liefert ein elektrisches Signal 4 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

5 Single Mode Glasfaser Enger Einstrahlungswinkel bewirkt gleiche Pfadlänge für alle Strahlen. Diese enge Einstrahlung ist nur mit kohärentem Laserlicht möglich. Kernradius in der Grössenordnung einer Wellenlänge, 2 8 µ. Kleinere Pulsverbreiterung, Kleinere Dämpfung. Wellenlängen 85, 13 oder 15 nm. Modulation mit bis zu 1 GHz. - Erbium dotiertes Glas ermöglicht eine Verstärkerwirkung, - Laser als kohärente Sender erforderlich, - Photodioden als Empfänger. Kern Hülle 5 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

6 Koaxialkabel Vorzugsweise für LANs & CATV, mittlere Datenraten und Distanzen. Metallische Ummantelung gegen Störungen und Abstrahlungen. Verluste wachsen mit derwurzel der Frequenz => 2 bis 1 GHz. Signalausbreitung im Dielektrikum zwischen den Leitern. Wellenwiderstand 5/75 Ω, praktisch kein Feld ausserhalb: Stanniol oder Drahtgeflecht Kunststoff- Ummantelung Kunststoff- Isolation Kupfer evtl. hohl 6 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

7 Hohlleiter (Waveguide) Heute noch als Zuleitung für Richtfunkanlagen. Metallischer Hohlkörper: - gefüllt mit Luft oder Stickstoff, rund, elliptisch oder rechteckig - Abzweigungen und Resonanzkörper integrieren. Geführte Ausbreitung: - vgl. 'Gartenschlauch-Telefon', - sehr hohe Frequenzen (Mikrowellen) möglich, 2GHz - 11 GHz. - fortlaufende Reflektion der elektromagnetische Wellen, - hohe Sendeleistungen 7 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

8 Telefonkabel (Twisted Pairs) Wenig Abschirmung nötig für kurze Distanzen und kleine Datenraten. Mehradrig, verdrillt & abgeschirmt für hohe Anforderungen (SAN). Vieladrig für grössere (Telefon-)Installationen. Relativ hoher Wellenwiderstand: - Vorteilhaft für den Leitungstreiber, - Twisted Pair 12, - FM Bandkabel 3 - Telefonfreileitung 6 Paarweise Verdrillung reduziert die Abstrahlung: - Feld der Doppelader nimmt ab mit 1/R2: - Verdrillungslänge << Wellenlänge, 1 R 2 8 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

9 Funkübertragung Einsatzbereiche: - Satelliten als Relaisstationen (Iridium, Inmarsat, GPS ), - Öffentliche Mobilfunknetze (GSM-Netze ), - Mikrowellenrichtfunk im Fernmeldenetz, - Paketfunknetze (Modacom), - Betriebs- & Bündelfunk, - (IR-Strecken). Reduzierte Zuverlässigkeit: - Behinderung durch Schnee & Regen, - Abschattungen und Überlagerung, - Atmosphärische Störungen, - Mehrwegausbreitung: 9 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

10 17.2 Signalausbreitung Wellenwiderstand & Reflexionen Unendlich lange Leitung bietet den Wellenwiderstand Z W = U in/i in. Es handelt sich nicht um einen um einen Ohmschen Widerstand, sondern um eine elektromagnetische Leitungseigenschaft... U in, I in Es wird ein bestimmtes Verhältnis von Strom und Spannung gemessen, die eingespeiste Energie ist jedoch elektromagnetischer Natur, baut ein Feld auf und wird nicht in Wärme umgewandelt. Bei nicht-idealer Leitung entstehen Ohmsche Verluste, die aber nichts mit dem Wellenwiderstand zu tun haben. 1 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

11 Abschlusswiderstand: Gedankenexperiment: - Leitung aufschneiden und abgeschnittenen Teil ersetzen durch einen Widerstand Z T ("Termination", Abschluss):... Z W U in / I in =Z W Z T Falls Z T =Z W keine Änderung der Verhältnisse am Eingang. Leitung muss mit passendem Abschlusswiderstand versehen werden: - Sonst Rückwirkungen auf den Eingang, sogenannte Reflexionen. - Abschlußwiderstand Z T absorbiert die gesamte Energie, wenn Z T =Z W. Extremfälle: - Fernes Ende kurzgeschl.: Reflektierte Spannung negativ überlagert ( U in/i in = ). - Fernes Ende offen: Reflektierter Strom negativ überlagert ( I in/u in = ), 11 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

12 Laufzeit Lichtgeschwindigkeit setzt eine obere Grenze von 3. km/sec. Kommunikation zwischen Rechnern erträgt oft keine Verzögerung. Eventuell zusätzliche Verzögerungen im Vermittlungsrechner. Maßnahmen zum Abgleichen der Laufzeiten auf parallelen Leitungen. Frequenzabhängige Laufzeit und deren Kompensierung (Equalisation). Signalverzögerung beim Telefonieren über Satelliten: 36 Km 12 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

13 Wellengleichung: Signalamplitude a zur Zeit t am Ort d: a(t,d) = A cos 2π( f t - d λ ) = A cos( ϕ ) - Phase ϕ für ein bestimmtes t und d auf einer Übertragungsleitung: ϕ = Phase = 2π ( f t - d λ ) = ϕ (f,t,d) c = Ausbreitungsgeschwindigkeit λ = Wellenlänge c f = Frequenz = λ Amplitude a Distanz d π 4π Phase ϕ 13 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

14 Linearität des Phasenganges Der Phasengang ist linear, wenn die Ausbreitungsgeschwindigkeit c und die Wellenlänge λ von der Frequenz f unabhängig ist, also: Linear in f: ϕ( f ) f Oder nichtlinearer Phasengang in f: ϕ( f ) f Wenn nicht alle Frequenzkomponenten gleichzeitig ankommen, ergeben sich Verformungen und Schwierigkeiten bei der Signalerkennung und bei der Taktgewinnung im Empfänger. 14 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

15 Verzerrungen Lineare Verzerrungen: - Frequenzabhängige Dämpfung. - Frequenzabhängige Laufzeiten. - Nichtlinearer Phasengang. Nichtlineare Verzerrungen: - Leitungsverstärker übersteuert, - Nichtlineare Verstärkerkennlinie => - Mischprodukte. Störspannungen - Störpegel in dbmv. - Thermisches Rauschen (--> kühlen). - "Elektrische Umweltverschmutzung". - Halbleiterrauschen. - Einschaltspitzen. - Übersprechen. - Reflexionen. 1 Volt 1 Volt 15 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

16 17.3 Frequenzspektrum eines Signals Joseph Fourier, 1822: Jedes periodische Signal kann als Summe von äquidistanten Sinus und Cosinustermen dargestellt werden: s(t) = 1 2 a + a n cos(n ωt) + bn sin(n ωt) n= 1 n= 1 a, a n, b n sind die Fourierkoeffizienten. a ist der Gleichstromanteil. Berechnung mittels Fourieranalyse: a n ω = π T s(t) cos(n ωt)dt 1 T=1/f b n ω = π T s(t) sin(n ωt)dt -1 t 16 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

17 Signal & Frequenzspektren: periodische Sinusschwingung: a - eine Frequenzkomponente, - diskretes Spektrum: t A f f periodisches Rechtecksignal: - mehrere Frequenzkomponenten, - diskretes Spektrum: a t A f f 3f 5f 7f aperiodisches Signal: - endlich viele Frequenzkomponenten, - kontinuierliches Spektrum: a t A f 17 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

18 Unmodulierte Sinusschwingung: Leider überträgt ein unmodulierter Dauerton keine Information ( Bit/s). Dauerton, sinusförmig: - einfachster Fall, - eine diskrete Spektrallinie, - z.b. Navigation, Frequenznormal, - plazieren, wo minimale Dämpfung: Ρ(ω) Dauerton ω opt Übertragungsfunktion des Kanales ω Frequenzumtastung: - suboptimale Plazierung der F.-Anteile, - Verbreiterung der einzelnen Linien: Ρ(ω) Das Leistungsspektrum Ρ(ω) ergibt sich aus der Fourierzerlegung des Signales. ω1 ω2 Übertragungsfunktion des Kanales ω 18 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

19 Filterung z.b. Übertragungsleitung als Filter - Hochpass, Tiefpass, Bandpass,. - dämpft unterschiedliche Frequenzen verschieden, - Verzögerungswirkung auf Frequenzen, - Reaktion auf Phasen. Lineare Schaltkreise und Sinuswellen - verändern Frequenzen nicht, - können relative Amplituden ändern, - können relative Phase verschieben. Phasenverschiebung um π/4 => sin(x) + 1/3 sin(3x) + 1/5 sin(5x) => sin(x+ /4) + 1/3 sin(3x) + 1/5 sin(5x) t Unterschiedliche Laufzeit verschiedener Frequenzanteile wird als Dispersion bezeichnet. 19 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

20 Effekte bei der Übertragung: Originalsignal 1 1 Dämpfung Bandbreitenbeschränkung Verzögerung Rauschen Übertragungsfehler! Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

21 Abschwächung des Signals. - Abstrahlungsverluste in den Raum. - Ohmsche Verluste als Wärme. - Dielektrische Verluste. - Reflexionen. - Skineffekt Dämpfung Skin Effekt: - höhere Frequenz => Selbstinduktion, - höhere Impedanz im Drahtzentrum, - Strom fließt an der Oberfläche, I - erhöhte Abstrahlung. Dielektrische Verluste: - Energieverlust im Isolator, - isolierte Drähte oder Platten bilden 'Kondensator' - Umpolarisierung geht nicht ohne Verluste. 21 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

22 Masseinheit für Dämpfung Abschwächung des Signals aus physikalischen Gründen. Dämpfung U in,p in U, out P out Dezibel als Maßeinheit der Dämpfung G: G = 1 log( P in / P out ) [db] = 2 log( U in / U out ) [db] Unabhängig davon ob wir Leistung oder Spannung vergleichen, ergibt sich dasselbe Dämpfungsmass. Dämpfung in db ist additive Eigenschaft einzelner Leitungsabschnitte. Dezibel-Millivolt (dbmv) ist eine Pegelangabe, bezogen auf den Referenzpegel von 1mV. 22 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

23 Bandbreite Z.B. Telephonfernleitung: Intervall zwischen unterer oberer Grenzfrequenz. Dazwischen einigermaßen gleichmäßige Dämpfung und linearer Phasengang gewünscht. Dämpfung [db] und Frequenz [Hz] Bandbreite eines Signals umfasst alle Frequenzkomponenten des Signals. Bandbreite/Übertragungsfunktion eines Kanals: A(ω) = A(ω) e jϕ(ω) 23 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

24 Einschränkung der Bandbreite Signal mit 2 bit/s: Bandbreite 5 Hz Bandbreite 9 Hz Bandbreite 13 Hz Bandbreite 17 Hz Bandbreite 25 Hz Bandbreite 4 Hz 24 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

25 Problemstellung 17.5 Signaldimensionierung Jeder Übertragungskanal hat nur eine beschränkte Bandbreite: - Hi-Fi Stereo Anlage 2 * 3 Hz.. 2 Hz. - Telefonleitung z.b Hz, - Fernsehkanal 7 MHz, Auf einem vorgegebenen Kanal sollen möglichst viele Datenbits bzw. Codesymbole übertragen werden. Energie auf Frequenzen außerhalb des übertragenen Bandes ist verloren. Das Energiespektrum des übertragenen Signals muß also dem Übertragungskanal angepaßt werden. Die ausgestrahlte Leistung sollte wesentlich größer sein, als das Grundrauschen im Kanal. 25 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

26 Abtasttheorem von Nyquist Problemstellung: - Wie oft müssen wir abtasten, um ein frequenzbeschränktes Signal aus den Abtastwerten eindeutig rekonstruieren zu können? Signal(t) t Antwort für Abtast-Rate: R = 2 * f max Abtastwerte pro Sekunde (obere Frequenzgrenze f max ) Plausible Begründung, kein Beweis: - Betrachte Signal mit Periode 1 sec, =>Spektrallinienabstand 1 Hz, f max =1 Hz, - ~f max Sinus- und f max Cosinus-Koeffizienten genügen zur Signal-Rekonstruktion, - N-fache Bandbreite verlangt N-mal mehr Abtastwerte im gleichen Zeitraum, - N-fache Periode verlangt N mal mehr Abtastwerte im N-fachen Zeitraum, - Keine Änderung für sehr lange Periode. 26 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

27 Inverse Fragestellung beim Datentransfer: Wieviele Symbole können pro Sekunde über einen nach oben frequenzbeschränkten Kanal übertragen werden? X(f) Der Kanal überträgt alle durch f max beschränkten Fourierspektren. Diese werden je durch einen Satz von Fourierkoeffizienten beschrieben: - endliche Menge bei periodischer Fkunktion., - unendliche Menge bei aperiod. Fkt. Mehr Spektren können nicht übertragen werden. Mehr Koeffizienten können nicht übertragen werden. => Eine Signalquelle kann maximal 2*f max Symbole pro Sekunde übertragen (wenn sie auch in der Lage ist, alle Fourierspektren zu fmax erzeugen). f max f 27 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

28 Shannon Limit Das Abtasttheorem spricht von Symbolen, bzw. Abtastwerten. Diese können mehrwertig sein (1 Byte, 12 Bit ): 1, 11, 11, 11, 1, 1,, 11, 1... t Eine Abtastrate misst sich in Baud bzw. Symbolen/sec, nicht Bits/sec. Enthält ein Symbol mehrere Bits, so erhöht sich die Informationsmenge. Das Signal/Rauschverhältnis S/R bestimmt die Anzahl Bits pro Symbol. 28 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

29 Verrauschtes Signal: Verrauschte Symbole sind nicht mehr sicher erkennbar. Original(t) Kanalrauschen(t) Verrauschtes Signal t t t Übertragbare Bits pro Sekunde: Shannon Limit = 2 * f max * log 2 ( 1 + S/R ) z.b. f max = 1: - S/R = : keine Information - S/R = 1 : ~2 Bit/sec - Faktor 2 ist unscharf. 29 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

30 Bandbegrenzte Pulsformen Für jedes Symbol einen Impuls schicken. Welche Impulsform füllt das Übertragungsband (ω max = ω o ) gleichmässig? Spektrum des gesuchten Impulses: Integration über alle spektralen Anteile: 1 s(t) = cos( ωt)dω = ω ω [ 1 ω o sin( ωt) ω t Kurvendiskussion: s(t)=1: sin(ε) / ε = 1 ( ε > ) fuer t= s(t)=: für ωo t ={ π, 2π, 3π, 4π...} bzw. bzw. t t = { π/ωo, 2π/ω o, 3π/ω o...} n T = Abtastzeitpunkte = = 2 Amplitude( ω ) ] ω Fläche = 1 n 2f sin( ω = ω t ω o t) Frequenz ω 3 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

31 Impulsform (sin x) / x : Viele Impulse bzw. Symbole überlagern. Keine Symbolinterferenz: - In einem bestimmten Abtastzeitpunkt liefert immer nur ein Impuls einen Beitrag. Beiträge anderer Impulse sind jeweils null: - aber nur wenn die Abtastzeitpunkte exakt sind, - oder sich positive und negative Restamplituden ausmitteln. Konvergiert also nicht bei Abtastzeit-Fehlern. Es gibt also im Prinzip eine Signalform, welche die Nyquist-Grenze im frequenzbeschränkten Kanal erreicht. Das Herstellen optimaler Pulsformen ist aber schwierig. t= T/2 t 31 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

32 Impulsform mit Cosinusspektrum: "Raised cosine spectrum": Amplitude( ω ) Konvergiert auch bei ungenauen Abtastzeiten. Spektrale Verteilung: 1 ω ο A( ω) = F = 1 1 2ω πω (cos 2ω + 1) 2ω Frequenz ω Impulsform (ähnlich oben): A( ω) = 1 2ω 2ω (cos πω 2ω + 1) cos( ωt)dω A( ω) = sin(2ωt) 2 t 2ωt(1 T 2 ) bzw. sin(2πτ) A( ω) = 2 2πτ(1 τ ) T = 1/ 2f o ; τ = t/t (normiert) Doppelte Bandbreite für gleiche Symbolrate! 32 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

33 Meist symmetrische Beeinflussung (z.b. twisted Pairs): Übersprechen Unerwünschte Signale vom Nachbarkanal: - parallel verlaufende Kabeladern, - Nachbarfrequenzen... Übersprechen und Signaldämpfung: - Fern-Nebensprechen ("Far-End Crosstalk"), - Nah-Nebensprechen ("Near-End Xross-Talk", "NEXT"): N E X T 33 Rechnernetze II, So 24, VS Infvormatik, Uni Ulm, P. Schulthess

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren

Mehr

Bitübertragungsschicht

Bitübertragungsschicht Bitübertragungsschicht Theorie der Datenübertragung Fourier-Zerlegung, Abtasttheorem Übertragungsmedien Kupferdraht, Koaxialkabel, Lichtwellenleiter, Funk Multiplexverfahren Frequenz-, Wellenlängen-, Zeitmultiplex

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16

Mehr

1. 2 1.1. 2 1.1.1. 2 1.1.2. 1.2. 2. 3 2.1. 2.1.1. 2.1.2. 3 2.1.3. 2.2. 2.2.1. 2.2.2. 5 3. 3.1. RG58

1. 2 1.1. 2 1.1.1. 2 1.1.2. 1.2. 2. 3 2.1. 2.1.1. 2.1.2. 3 2.1.3. 2.2. 2.2.1. 2.2.2. 5 3. 3.1. RG58 Leitungen Inhalt 1. Tastköpfe 2 1.1. Kompensation von Tastköpfen 2 1.1.1. Aufbau eines Tastkopfes. 2 1.1.2. Versuchsaufbau.2 1.2. Messen mit Tastköpfen..3 2. Reflexionen. 3 2.1. Spannungsreflexionen...3

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

13. Elektromagnetische Wellen

13. Elektromagnetische Wellen 13. Elektromagnetische Wellen 13.1 Erzeugung elektromagnetischer Wellen 13.2 Eigenschaften elektromagnetischer Wellen 13.3 Ausbreitung elektromagnetischer Wellen 13.4 Reflexion und Brechung 13.5 Interferenz

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Sinneswahrnehmungen des Menschen

Sinneswahrnehmungen des Menschen Sinneswahrnehmungen des Menschen Tastsinn Gleichgewicht Geruch Sehen Gehör Sprache Aktion Multimedia - Kanäle des Menschen Techniken für Medien im Wandel Multimediale Kommunikation Text : Bücher, Zeitschriften

Mehr

Übung 1 - Informationsübertragung

Übung 1 - Informationsübertragung Dr. Gütter LV Rechnernetzpraxis Übungsaufgaben WS 09 Übung 1 - Informationsübertragung 1. Signale a. Was unterscheidet Information und Signal? b. Wieviel Stufen muß ein Signal mindestens haben, um 3 bit

Mehr

Summation der I und Q Signale

Summation der I und Q Signale Offset QPSK (OQPSK) Bildquelle: William Stallings, Data and Computer Communications, Seventh Edition, 2004 Grundlagen der Rechnernetze Physikalische Schicht 52 Summation der I und Q Signale Carrier + Shifted

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Licht als Medium zur Informationsübertragung

Licht als Medium zur Informationsübertragung Universität Dortmund Licht als Medium zur Informationsübertragung Andreas Neyer Universität Dortmund Fakultät für Elektrotechnik Arbeitsgebiet Mikrostrukturtechnik 1 Übersicht Einleitung: Wo finden wir

Mehr

λ = c f . c ist die Es gilt die Formel

λ = c f . c ist die Es gilt die Formel Elektromagnetische Wellen, deren Wellenlänge viel größer als der Durchmesser der Gitterlöcher ist (z.b. die Mikrowellen), können das Metallgitter nicht passieren. Ist die Wellenlänge wie bei Licht dagegen

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen Faraday-Rotation I. Rückmann, H. Bieker, P. Kruse Universität Bremen Bad Honnef 2014 I. Rückmann, H. Bieker, P. Kruse (Uni-Bremen) Faraday-Rotation Bad Honnef 2014 1 / 18 Faraday-Rotation magnetfeldinduzierte

Mehr

Verkabelung und Vermittlung. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 57

Verkabelung und Vermittlung. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 57 Verkabelung und Vermittlung Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 57 Link-Klassen und Kabelkategorien Der Standard EN 50173 definiert Link-Klassen (A...F), die verschiedene Bandbreiten

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Modul 4: Übertragungsmedien und Verkabelung

Modul 4: Übertragungsmedien und Verkabelung BonnRheinSieg Modul 4: Übertragungsmedien und Verkabelung 4.1 Grundlagen Übersicht 4.2 Eigenschaften elektrischer Übertragungsmedien 4.3 Beispiel: LANVerkabelung M. Leischner Rechnernetze SS 2004 Folie

Mehr

Themen. Bitübertragungsschicht. Kabel. Glasfaser. Funk / Satellit. Modem / DSL / Kabelmodem. Multiplexverfahren

Themen. Bitübertragungsschicht. Kabel. Glasfaser. Funk / Satellit. Modem / DSL / Kabelmodem. Multiplexverfahren Themen Kabel Glasfaser Funk / Satellit Modem / DSL / Kabelmodem Multiplexverfahren OSI-Modell: TCP/IP-Modell: Physical Layer Netzwerk, Host-zu-Netz Aufgaben: Umwandlung von Bits in Übertragungssignale

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Elektrische Schwingungen und Wellen. Wechselströme. Elektrischer Schwingkreis i. Wiederholung Schwingung ii. Freie Schwingung iii. Erzwungene Schwingung iv. Tesla Transformator 3. Elektromagnetische Wellen

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

7.1 Rechner-Verbindungen

7.1 Rechner-Verbindungen 7 Rechnernetze Bis in die frühen 80er Jahre waren Computer große und teure Anlagen, zu denen nur wenige Personen direkten Zugang besaßen. Betriebe und Universitäten hatten Rechenzentren eingerichtet, welche

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]:

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: Beispiel: Leistungsgröße P out [dbw] bei Leistungsgröße P in [dbw] und Dämpfung L [db] Leistungsgröße P out [W] Grundlagen

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Messwerte bei Kupfer- und Glasfaserkabeln

Messwerte bei Kupfer- und Glasfaserkabeln Messwerte bei Kupfer- und Glasfaserkabeln Alexander Rothbauer E2IT1 19.01.2003 1. Messwerte bei Glasfaser- und Kupferkabeln...3 2 Die Einflüsse und Messwerte im Einzelnen...3 2.1 Dämpfung...3 2.2 Rückflußdämpfung

Mehr

Problem 1: Die Parabelmethode von Joseph John Thomson

Problem 1: Die Parabelmethode von Joseph John Thomson Problem 1: Die Parabelmethode von Joseph John Thomson Bei einer Internetrecherche für eine Arbeit über Isotope haben Sie den folgenden Artikel von J. J. Thomson gefunden, der in den Proceedings of The

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung)

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) 20. Vorlesung III Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) Versuche: Aluring (Nachtrag zur Lenzschen Regel, s.20)

Mehr

Strom kann nur in einem geschlossenen Kreis fließen.

Strom kann nur in einem geschlossenen Kreis fließen. 1. Elektrischer Stromkreis Strom kann nur in einem geschlossenen Kreis fließen. Kurzschluss: Der Strom kann direkt vom einen Pol der Energiequelle (Batterie) zum anderen Pol fließen. Gefahr: Die Stromstärke

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

Brechung (Refrak/on) von Lichtstrahlen. wahre Posi/on

Brechung (Refrak/on) von Lichtstrahlen. wahre Posi/on Brechung (Refrak/on) von Lichtstrahlen wahre Posi/on Brechung des Lichts, ein kurze Erklärung Fällt Licht auf die Grenzfläche zweier durchsich/ger Körper, so wird nur ein Teil reflek/ert während der Rest

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur

Mehr

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null.

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. WECHSELSTROMLEHRE Wechselgrössen Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. Zeigerdarstellung Mittelwerte (Gleichwert, Gleichrichtwert

Mehr

Kabel und Steckverbindungen. Kabel und Steckverbindungen

Kabel und Steckverbindungen. Kabel und Steckverbindungen Kabel und Steckverbindungen 1 Kabeleigenschaften 2 Aufbau einer Übertragungsstecke Z i Z L ~ Sender Leitung Empfänger d a Zweidrahtleitung d D Koaxialleitung 3 Leitungskenngrößen R, L, G und C R/2 L/2

Mehr

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = Maschenregel Σ ( ) = Ersatzquellen Überlagerungsprinzip Voraussetzung:

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

IO2. Modul Optik. Refraktion und Reflexion

IO2. Modul Optik. Refraktion und Reflexion IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005 Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

Elektrotechnik I MAVT

Elektrotechnik I MAVT Prof. Dr. Q. Huang Elektrotechnik MAVT Prüfung H07 BSc 23.08.2007 1. [30P] DC-Aufgaben (a) [9P] Betrachten Sie die Schaltung in Abbildung 1 und lösen Sie die nachfolgenden Aufgaben. Vereinfachen Sie die

Mehr

Analytische Betrachtung der Roomcap-Antenne Felix Meyer, 8. Juli 2014

Analytische Betrachtung der Roomcap-Antenne Felix Meyer, 8. Juli 2014 Analytische Betrachtung der Roomcap-Antenne copyright @ Felix Meyer, 8. Juli 2014 Die RoomCap-Antenne (RCA) ist eine neue Kurzantenne, welche die Leistungsfähigkeit grosser Antennen erreicht. Die RCA besteht

Mehr

7.1 Rechner-Verbindungen

7.1 Rechner-Verbindungen 7 Rechnernetze Bis in die frühen 80er Jahre waren Computer große und teure Anlagen, zu denen nur wenige Personen direkten Zugang besaßen. Betriebe und Universitäten hatten Rechenzentren eingerichtet, welche

Mehr

Lichtleitung in Glasfasern

Lichtleitung in Glasfasern Fortgeschrittenenpraktikum III: Lichtleitung in Glasfasern Tutor: Prof. Mitschke Version 19. Oktober 2006 Überblick Früher wurden Nachrichten im Normalfall über Kupferkabel als elektrische Signale transportiert.

Mehr

Kondensator und Spule

Kondensator und Spule Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------

Mehr

Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel

Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel Metamaterialien mit negativem Brechungsindexeffekt Vortrag im Rahmen des Hauptseminars SS8 Von Vera Eikel Brechungsindex n 1 n Quelle: http://www.pi.uni-stuttgart.de Snellius sches Brechungsgesetz: sin

Mehr

6 Elektromagnetische Schwingungen und Wellen. E y. E(z=0) Polarisation Richtung des E-Vektors gibt die Polarisation an.

6 Elektromagnetische Schwingungen und Wellen. E y. E(z=0) Polarisation Richtung des E-Vektors gibt die Polarisation an. 6 Elektromagnetische Schwingungen und Wellen E y E(z=0) E 0 z E y E 0 t Abbildung 6.10: (a) E(z, t = t 1 ): Momentaufnahme für t = t 1. (b) E(z = z 1, t): Zeitabhängigkeit an festem Ort z = z 1. Polarisation

Mehr

Praktikum Versuch Bauelemente. Versuch Bauelemente

Praktikum Versuch Bauelemente. Versuch Bauelemente 1 Allgemeines Seite 1 1.1 Grundlagen 1.1.1 db-echnung Da in der Elektrotechnik häufig mit sehr großen oder sehr kleinen Werten gerechnet wird, benutzt man für diese vorzugsweise die logarithmische Darstellung.

Mehr

Digital-Wandlung. Transferierung von Daten aus der realen (analogen) Welt in die (digitale) Welt des Rechners.

Digital-Wandlung. Transferierung von Daten aus der realen (analogen) Welt in die (digitale) Welt des Rechners. AD-Wandlung: Transferierung von Daten aus der realen (analogen) Welt in die (digitale) Welt des Rechners. DA-Wandlung: Transferierung von Daten aus dem Rechner in die reale Welt 1 Wichtige Begriffe: analog

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP 13. Vorlesung EP I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge Versuche: Stimmgabel mit u ohne Resonanzboden Pfeife Echolot und Schallgeschwindigkeit in Luft Heliumstimme Bereich hörbarer

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

Technischer Hintergrund

Technischer Hintergrund Technischer Hintergrund zu Modul 01: Lichtsignale Heutzutage können wir uns das Leben ohne Computer nicht mehr vorstellen. Nachrichten an Freunde schreiben, im Internet surfen, Musik und Videos runterladen

Mehr

Uebungsserie 2.2. Abbildung 1: CR-Glied. Gegeben sei der Zweipol aus Abb. 1. Bestimmen Sie die Frequenzgangfunktion U 2 /U 1

Uebungsserie 2.2. Abbildung 1: CR-Glied. Gegeben sei der Zweipol aus Abb. 1. Bestimmen Sie die Frequenzgangfunktion U 2 /U 1 29. Oktober 205 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 2.2 Aufgabe. CR-Glied Abbildung : CR-Glied Gegeben sei der Zweipol aus Abb.. Bestimmen Sie die Frequenzgangfunktion /U a) direkt durch

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Elektromagnetische Wellen in Materie

Elektromagnetische Wellen in Materie Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Ergänzungen zur Physik I: Wellen (Zusammenfassung)

Ergänzungen zur Physik I: Wellen (Zusammenfassung) Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2

Mehr

Modul 2: Übertragungsmedien und Verkabelungssysteme

Modul 2: Übertragungsmedien und Verkabelungssysteme Modul 2: Übertragungsmedien und Verkabelungssysteme Folie 1 Bilder von typischen Medien S/STP PiMF Koaxialkabel UTP PiMF = Paar in Metallfolie S/STP (Screened Shielded Twisted Pair) = geflecht- und paargeschirmtes

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

2 Einführung in die physikalischen Grundlagen

2 Einführung in die physikalischen Grundlagen 16 Elektromagnetische er im Alltag LfU 2 Einführung in die physikalischen Grundlagen 2.1 Elektrische und magnetische er Ein elektrisches entsteht überall dort, wo auf Grund getrennter Ladungsträger eine

Mehr

Versuch Polarisiertes Licht

Versuch Polarisiertes Licht Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise

Mehr

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Modulation Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Datenfernübertragung I Über kurze Entfernungen können Daten über Kupferkabel übertragen werden, indem jedes Bit mit einer positiven

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel

Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel 1.3.8.5 Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel Zwei induktiv gekoppelte LC-Kreise verhalten sich analog zu zwei gekoppelten Federn/Pendeln. Wie in der Mechanik kommt

Mehr

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1 Hochfrequenz-Resonatoren Prof. Dr. H. Podlech 1 Maxwellgleichungen Bedeutung?? Prof. Dr. H. Podlech 2 Maxwellgleichungen im Vakuum Prof. Dr. H. Podlech 3 Wellengleichungen 2. Maxwell-Gl. Wellengleichung

Mehr

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu 1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen 4-1 Elektromagnetische Wellen Träger der Information entstehen durch Wechselströme zeitliche Verlauf gleicht einer Sinuskurve. Strom Zeit 4-2 Amplitude Höhe der Schwingung Maximum des Stroms oder der Spannung

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

Umwandlung elektrische Energie mit Leistungselektronik

Umwandlung elektrische Energie mit Leistungselektronik Umwandlung elektrische Energie mit Leistungselektronik Félix Rojas Technische Universität München Prof. Dr. Ing. Ralph Kennel. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Übung 2

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

DER SCHALL ALS MECHANISCHE WELLE

DER SCHALL ALS MECHANISCHE WELLE DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.

Mehr

Bild 1 mechanische Schwingung / elektromagnetische Schwingung

Bild 1 mechanische Schwingung / elektromagnetische Schwingung 1 Elektromagnetische Schwingungen und Felder Auf keinen Fall soll dies eine ausgewachsene Physikvorlesung werden über Schwingungen und Wellen. Das ist weder Absicht, noch ist dafür die dann notwendige

Mehr