Dynamische und statische Messung des Elastizitätsmoduls (M15)

Größe: px
Ab Seite anzeigen:

Download "Dynamische und statische Messung des Elastizitätsmoduls (M15)"

Transkript

1 Dynmische und sttische Messung des Elstizitätsmoduls (M15) Ziel des Versuches Die Ausbreitungsgeschwindigkeit von Schllimpulsen in Stäben us unterschiedlichem Mteril soll mittels eines Piezoelements und der computergestützten Messwerterfssung gemessen und drus der Elstizitätsmodul bestimmt werden. Zum Vergleich wird im zweiten Versuchsteil der Elstizitätsmodul sttisch us der Durchbiegung der einseitig eingespnnten Stäbe bei unterschiedlicher Belstung ermittelt, wobei uch die L 3 -Abhängigkeit des Biegepfeils verifiziert wird. Theoretischer Hintergrund In diesem Versuch werden elstische Eigenschften von Körpern untersucht, die bisher in der Näherung des strren Körpers vernchlässigt wurden. Es gibt ein gnzes Gebiet der Physik Mechnik der deformierbren Medien, ds sich mit Dehnung, Stuchung, Torsion und Kompressibilität von Stoffen beschäftigt. Mn spricht dnn von elstischer Verformung, wenn der estkörper nch Aufhören der Krfteinwirkung seine ursprüngliche orm wieder nnimmt, von plstischer Verformung, wenn sich eine bleibende ormänderung ergibt. Die wichtigsten elstischen Konstnten sind der Elstizitätsmodul E, der Torsionsmodul G, der Kompressionsmodul K. Die elstischen Konstnten sind im llgemeinen Tensorgrößen. Bleibt mn in einer Dimension und betrchtet z. B. einen gespnnten Drht, so ist im Bereich elstischer Verformung die Normlspnnung σ (Spnnung = Krft/Querschnitt) proportionl zur reltiven Längenänderung ε = l/l (Dehnung). Der Proportionlitätsfktor ist der Elstizitätsmodul E (hooksches Gesetz): σ = Eε. Ziel unseres Versuches ist es, den Elstizitätsmodul verschiedener Mterilien (Eisen, Messing, Aluminium und Polycrbont) sowohl dynmisch über die Messung der Schllgeschwindigkeit in diesen Medien ls uch sttisch über die Biegung dieser Mterilien zu bestimmen. Dzu stehen Ihnen im Versuch Stäbe dieser Mterilien zur Verfügung. Die Schllusbreitung in estkörpern ist wegen der stärkeren Kopplung der Atome untereinnder um ein Vielfches schneller ls z. B. die Schllusbreitung in der Luft (v Luft = 340 m/s bei 20 C). Während Schllwellen

2 2 in der Luft reine Longitudinlwellen sind, können sich im estkörper sowohl longitudinle ls uch trnsversle Schllwellen usbreiten. Bereits nschulich ist klr, dss die Schllusbreitung in estkörpern von deren elstischen Eigenschften und von der Dichte ρ des Mterils bhängen muss. Die Schllgeschwindigkeit longitudinler Deformtionswellen in dünnen, elstischen Stäben ist gegeben durch eine einfche Beziehung 1 v = (E/ρ). (1) Schlägt mn uf ds Ende eines zu untersuchenden Stbes so erzeugt mn eine Deformtion, die sich ls Schllimpuls oder Stoßwelle durch den Stb usbreitet und n beiden Stb enden mehrfch reflektiert wird. Mit einem geeigneten Schllwndler (Piezokristll) lssen sich diese Mehrfchreflexionen gut ufzeichnen und us derem zeitlichem Abstnd T lässt sich die Schllgeschwindigkeit ermitteln. Zur sttischen Bestimmung des Elstizitätsmoduls werden die Stäbe einseitig horizontl ls reiträger eingespnnt. Wird dbei ds freie Ende durch eine Krft belstet, so wird es um den sogennnten Biegungspfeil s bgesenkt. Bleibt der Biegungspfeil klein, so gilt ds hooksche Gesetz und die Querschnitte bleiben eben. Bei der Biegung werden die oberen Bereiche gedehnt und die unteren Bereiche gestucht und nur die Mittellinie neutrle ser gennnt bleibt in ihrer Länge erhlten. Ds interessnte Ergebnis ist, dss die Durchbiegung eines Trägers mit der dritten Potenz seiner Länge L zunimmt und dss der Biegepfeil s entscheidend vom Profil des Trägers bhängt, wobei ds Profil durch ds sogennnte lächenträgheitsmoment I beschrieben wird. Es gilt 1 Dünner Stb bedeutet: Stbdurchmesser ist klein gegen die Wellenlänge der Deformtionswellen λ = νt Abbildung 1: Biegepfeil s s s = 1 3 EI L3 (2) mit I = π 4 R4 für einen Stb (Vollmteril) mit dem Rdius R. Zur sttischen Bestimmung des Elstizitätsmoduls wird (2) verwendet. Theoretische Ergänzung: Theorie der Biegung (nur für Physikstudenten) Es sei der entlng der neutrlen ser gemessene Abstnd zweier Stbquerschnitte. Bei Belstung ist die neutrle ser mit dem Krümmungsrdius R gekrümmt. Dmit wird ber der Abstnd der beiden betrchteten Stbquerschnitte bhängig von der Distnz y zwischen Messlinie und neutrler ser. Nch dem Strhlenstz gilt dnn: R + y R = worus sich nch Umformung und Anwendung des hookschen Gesetzes ergibt: y R = σ(x, y) = ε =. (3) E Die im Querschnitt uftretenden Zug- und Druckkräfte ergeben ein Drehmoment

3 3 y * Neutr.ser R M(x) = yσ(x, y)da. (4) Setzt mn us (3) die Spnnung ein, so erhält mn M(x) = E y 2 da (5) R ls Grundgleichung der um 1700 ufgestellten Bernoulli-Eulerschen Biegungstheorie, wobei I = y 2 da (6) ls lächenträgheitsmoment bezeichnet wird und y der senkrechte Abstnd des lächenelements da von der neutrlen ser ist. Durch die äussere Krft entsteht n der Stelle x im Stb ein Drehmoment M(x) = (L x), ds dem im Stb wirkendem Drehmoment (5) gleich sein muss. Somit gilt (L x) = E R I. (7) Mit Hilfe der für große Krümmungsrdien R(x) geltenden differentilgeometrischen Beziehung d2 y = 1 lässt sich (7) wie folgt schreiben dx 2 R(x) d 2 y (L x) =. dx2 EI Durch zweimlige Integrtion dieser Differentilgleichung unter Bechtung der Anfngsbedingungen (bei x = 0 ist y = 0 und dy/dx = 0) ergibt sich eine Prbel dritter Ordnung ls Lösung y = EI ( Lx2 2 x3 6 ). Dmit ergibt sich n der Stelle x = L für den Biegungspfeil (2): s = 1 3 EI L3. Versuchsufbu und -durchführung Zur dynmischen Bestimmung des Elstizitätsmoduls über die Messung der Schllusbreitung einer Schockwelle stehen Ihnen Stäbe verschiedener Mterilien, ein Piezo-Schllwndler, ein Rechner mit einem externen CASSY- Interfce und die entsprechende CASSY-Softwre zur Verfügung. Ds Interfce verfügt über zwei Anlogeingänge A und B. Im Versuch benötigen

4 4 wir nur den nlogen Eingng A, um ds vom Schllwndler bgegebene Signl zu erfssen. Der zu untersuchende Stb soll senkrecht uf dem Piezo- Schllwndler stehen, der uf dem ußboden ohne weitere Dämpfungsmßnhmen pltziert werden knn. Zur impulsförmigen Anregung der Stoßwelle wird der zwischen zwei ingern locker festgehltene Stb dnn mit einem Holzstück uf seiner Oberseite gnz leicht, ber kurz ngeschlgen. Hier sollten Sie mehrfch probieren bis sich ein optimles Ergebnis einstellt. Vorher müssen Sie die Softwre CASSY strten. Klicken Sie dnn bei dem im enster bgebildeten CASSY-Interfce uf den gewählten Messknl, um die enster Einstellungen/Sensoreigenschften und Messprmeter zu öffnen. Vor llem die folgenden Einstellungen sind entscheidend für ds Gelingen Ihrer Messungen: 1. Messbereich (y-auslenkung in Volt: ±10 oder ±30 V), 2. Messintervll: möglichst klein (Zeituflösung z. B. 10 µs), 3. Messzeit über Anzhl der Messungen einstellen (Probieren Sie Messzeiten im Bereich von 20 bis 80 ms us). Es ist utomtische Messufnhme mit Triggerung und einer Schwelle von c. 2 bis 5 V einzustellen (Wrum?). Die Messung wird mit 9 oder durch ds Anklicken der Stoppuhr in der Symbolleiste gestrtet. Die Aufzeichnung des Signls erfolgt dnn nch Anschlgen des Stbes. Durch Anklicken des Bildes mit der rechten Mustste knn die Messkurve in Ausschnitten vergrößert werden Zoom und mit Mrkierung setzen und Differenz bilden knn die Zeitdifferenz, vorzugsweise zwischen mehreren Echos, m Bildschirm ermittelt werden. 2 Zur sttischen Messung des Elstizitätsmoduls spnnen Sie den zu untersuchenden Stb in die dfür vorgesehene Hlterung, die sich n der Wnd im Prktikum befindet, ein. Auf ds ndere Ende des Stbes setzen Sie die Muffe uf, n der sich unten zur Gewichtsufnhme ein Hken und oben ein Lserpointer befindet. Belsten Sie den Stb durch Anhängen von Gewichten und messen Sie mit Hilfe des Lichtzeigers n einem in c. 2-3 m Entfernung ufzustellenden Mßstb den entsprechenden Biegepfeil us. Bechten Sie dbei den Abbildungsmßstb. Zur Einstellung verschiedener Stblängen knn diese Muffe uf dem Stb verschoben werden. 2 Probieren Sie mehrfch, bis Sie ein optimles Ergebnis hben. Am Versuchspltz liegt zusätzlich eine Kurznleitung der CASSY-Softwre us. Aufgbenstellung 1. Messen Sie die Echos von Schllimpulsen in den vier Stäben (Eisen, Aluminium, Messing, Polycrbont) mit Hilfe des Schllwndlers und des CASSY-Systems. Interpretieren Sie die Messkurven (Verluf, weitere beobchtete Schwingungen, evtl. Übersteuerungen, n welcher Stelle und wrum gerde dort wurden die Lufzeiten von Ihnen bgelesen). 2. Bestimmen Sie us der Lufzeit mehrerer Echos die Schllgeschwindigkeit in den verschiedenen Mterilien (Größtfehler). 3. Bestimmen Sie die Dichte der Stäbe (Wiegen und Volumenbestimmung, Größtfehlerermittlung). 4. Berechnen Sie nch (1) die Elstizitätsmodule der einzelnen Mterilien (ehlerfortpflnzung für Größtfehler). 5. Messen Sie die Biegepfeile bei einseitiger horizontler Einspnnung und Belstung der Metllstäbe:

5 5 () Hlten Sie bei einem Stb die Länge fest und vriieren Sie die Belstung. L = 80 cm, Belstung in 50 g Schritten) (b) (Nur für Physikstudierende (V+Z)) Hlten Sie bei den nderen beiden Stäben die Belstung konstnt (500 g Mssestück) und vriieren Sie die Länge durch Verschieben der Muffe. Überprüfen Sie bei jeder Messung den Nullpunkt. 6. Stellen Sie grfisch dr: s = s() und für die Ergebnisse us Aufgbe 5b s = s(l 3 ) und ermitteln Sie us den Anstiegen der Ausgleichsgerden die entsprechenden Elstizitätsmodule nch (2) (Größtfehlerngben). 7. Vergleichen Sie die Ergebnisse untereinnder und mit Tbellenwerten. rgen zur individuellen Vorbereitung des Versuchs: Informieren Sie sich über Schllgeschwindigkeiten in Medien und schätzen Sie den Zeitbereich b, den Sie wählen müssen um die Mehrfchreflexionen (Echos) eines Schllimpulses in den Stäben zu beobchten? Überlegen Sie, wie mn den Stb nschlgen muss, dmit sich vorzugsweise longitudinle Wellen in Stblängsrichtung usbreiten? Überlegen Sie, welchen Einfluss die durch den Schlg mitngeregten Eigenschwingungen des Stbes uf Ihre Messung hben und in welchen Zeitbereichen diese uftreten? Wie funktioniert ein Piezoelement? Ws versteht mn unter Triggerung? Hinweise zur ehlerrechnung Dynmisches Verfhren E = v 2 ρ mit v = 2L t und ρ = m V = m π 4 d 2 L, wobei L die Stblänge und d der Stbdurchmesser sind. Somit gilt entsprechend den Hndregeln für die Größtfehlerfortpflnzung bei multipliktiver Verknüpfung: v L L = ± } v L L + t t und ρ ρ = ± m m + L L + 2 d d und E E = ± 2 v L + ρ ρ v L.

6 6 Sttisches Verfhren Die ortpflnzung der Größtfehler sei m Beispiel der Abhängigkeit der Durchbiegung s von der wirkenden Krft bei konstnter Länge L erläutert. Es gilt nch Gl. (2) und Einsetzen der Messgrößen ein linerer Zusmmenhng s = mit dem Anstieg L3 3E I = 4L3 3πE R 4 = 64 3π = 64 3π L 3 E d 4 für die unktion s = f (). Entweder wird der reltive Größtfehler E E von E = 64 3π L 3 sd 4 L 3 E d 4 = us der Summe der Absolutbeträge der reltiven Größtfehler ller Messgrößen bestimmt E E = ± 3 L L + s s d d oder unter Berücksichtigung des reltiven ehlers des Anstieges der unktion s = f (). Wegen E = 64 3π L 3 d 4 ergibt sich der reltive Größtfehler von E zu: E E = ± 3 L L d d. Letztere Methode ht den Vorteil, dss kleiner ist ls s s +, d bei der Anstiegsbestimmung bereits eine grfische Mittelung über etw sechs Wertepre s, erfolgte.

Dynamische und statische Messung des Elastizitätsmoduls (M15)

Dynamische und statische Messung des Elastizitätsmoduls (M15) Dynmische und sttische Messung des Elstizitätsmoduls (M15) Ziel des Versuches Die Ausbreitungsgeschwindigkeit von Schllimpulsen in Stäben us unterschiedlichem Mteril soll mittels eines Piezoelements und

Mehr

9.2.3 Durchbiegen eines Balkens ******

9.2.3 Durchbiegen eines Balkens ****** 9.2.3 ****** 1 Motivtion Ein einseitig eingespnnter Blken wird m offenen Ende belstet. Die Durchbiegung hängt von der Orientierung und dmit vom Flächenträgheitsmoment des Blkens b. 2 Experiment b b s 1

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgbe 1 (Seite 1 von 3) ) Ein ls msselos nzunehmender Blken, bestehend us einem dünnwndigen Z-Profil (t ), ist n der linken Seite eingespnnt und wird n seinem rechten Ende durch eine Krft F belstet, deren

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Lineare Abbildung des Einheitskreises

Lineare Abbildung des Einheitskreises Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel

Mehr

1. Aufgabe: (ca. 16 % der Gesamtpunkte)

1. Aufgabe: (ca. 16 % der Gesamtpunkte) Institut für Mechnik Prof. Dr.-Ing. hbil. P. Betsch Prof. Dr.-Ing. hbil. Th. Seelig Prüfung in Festigkeitslehre 0. März 05. Aufgbe: (c. 6 % der Gesmtpunkte) ) Wie viele unbhängige Spnnungskomponenten gibt

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

1. Aufgabe: (ca. 11 % der Gesamtpunkte)

1. Aufgabe: (ca. 11 % der Gesamtpunkte) Institut für Mechnik Prof. Dr.-Ing. hbil. P. Betsch Prof. Dr.-Ing. hbil. Th. Seelig Prüfung in estigkeitslehre 6. März 08. Aufgbe: (c. % der Gesmtpunkte) ) P C P B.5L P A L.5L EI L EI EI A B C Gegeben

Mehr

Technische Mechanik II

Technische Mechanik II Repetitorium Technische Mechnik II Version 3., 09.0.00 Dr.-Ing. L. Pnning Institut für Dynmik und Schwingungen Gottfried Wilhelm Leibniz Universität Hnnover Dieses Repetitorium soll helfen, klssische Aufgbentypen

Mehr

UNIVERSITÄT BREMEN FACHBEREICH PRODUKTIONSTECHNIK TECHNISCHE MECHANIK - STRUKTURMECHANIK PROF. DR.-ING. R. KIENZLER

UNIVERSITÄT BREMEN FACHBEREICH PRODUKTIONSTECHNIK TECHNISCHE MECHANIK - STRUKTURMECHANIK PROF. DR.-ING. R. KIENZLER UNIVERSITÄT BREMEN FACHBEREICH PRODUKTIONSTECHNIK TECHNISCHE MECHANIK - STRUKTURMECHANIK PROF. DR.-ING. R. KIENZLER Klusur Mechnik I/II vom 14.08.2012 Prüfer: Prof. Dr.-Ing. R. Kienler Teilbereich Mechnik

Mehr

B005: Baumechanik II

B005: Baumechanik II Sommersemester 05 Fkultät für uingenieurwesen und Umwelttechnik Dozent: nsgr Neuenhofer 005: umechnik II 3. März 05 Husübung -ösung ufgbe () Wie hoch könnten wir theoretisch eine Sthlstütze (konstnter

Mehr

2. Grundgleichungen der linearen FEM

2. Grundgleichungen der linearen FEM . Grundgleichungen der lineren FEM Fchbereich Prof. Dr.-Ing. Mschinenbu Abteilung Mschinenbu. Ekurs Mtrizenrechnung Zum weiteren Verständnis der FEM sind einige Grundkenntnisse in der Mtrizenlgebr erforderlich!

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

5.5.1 Wellenkette ******

5.5.1 Wellenkette ****** 5.5. ****** Motivtion Identische Hnteln sind n einem vertiklen Torsionsbnd befestigt. Durch Auslenkung einer Hntel wird eine lngsm verlufende Welle erregt, so dss sich die Welleneigenschften sehr gut beobchten

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengng Wirtschftsingenieurwesen (Bchelor) Prktikum Grundlgen der Elektrotechnik und Elektronik ersuch Spnnungsteiler Teilnehmer: Nme ornme Mtr.-Nr. Dtum der ersuchsdurchführung: Spnnungsteiler

Mehr

4. Der Cauchysche Integralsatz

4. Der Cauchysche Integralsatz 22 Andres Gthmnn 4. Der Cuchysche Integrlstz Es seien D C offen und f : D C eine stetige Funktion. Ht f in D eine Stmmfunktion, so hben wir im letzten Kpitel gesehen, dss Kurvenintegrle über f in D nur

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

ν 2ν Tangentiales Kontaktproblem

ν 2ν Tangentiales Kontaktproblem Tngentiles Kontktproblem Bisher hben wir bei Kontktproblemen ngenommen, dss die kontktierenden Körper bsolut gltte und reibungsfreie Oberflächen hben. Dementsprechend entstehen im Kontktgebiet keine Tngentilspnnungen.

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

$Id: potential.tex,v /12/14 15:55:24 hk Exp $ F (s) ds mit p, q U zu schreiben. Damit

$Id: potential.tex,v /12/14 15:55:24 hk Exp $ F (s) ds mit p, q U zu schreiben. Damit Mthemtik für Ingenieure III, WS 9/ Montg. $Id: otentil.te,v. 9// :: hk E $ Potentilfelder. Wegunbhängige Integrierbrkeit Definition.: Seien U R n offen und F : U R n ein stetiges Vektorfeld. Dnn heißt

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

7. März Korrektur

7. März Korrektur Institut für Technische und Num. Mechnik Technische Mechnik I Prof. Dr.-Ing. Prof. E.h. P. Eberhrd S / P 7. März Bchelor-Klusur in Technischer Mechnik I Nchnme, Vornme Mtr.-Nummer chrichtung ufgbe (6 Punkte)

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Optimale Lagerung von Balken

Optimale Lagerung von Balken P. Will Optimle Lgerung von Blken In der Präzisionsmessung ht die optimle Lgerung von lngen elstischen Montgelinelen oder Messblken einen entscheidenden Einfluss uf die Genuigkeit des Messresultts. Finden

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

0 2 Linsen und Linsensysteme

0 2 Linsen und Linsensysteme 0 2 Linsen und Linsensysteme. Augbenstellung. Bestimmen Sie die Brennweite einer dünnen Smmellinse us Gegenstndsund Bildweite (rechnerisch und grisch). Führen Sie dzu eine Größtehlerberechnung durch..2

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion KOMPETENZHEFT ZUM INTEGRIEREN, II. Aufgbenstellungen Aufgbe.. Wir untersuchen den Flächeninhlt unter der lineren Funktion f(t) = t + im Intervll [; x]. Kurz: F (x) = x f(t) dt Erkläre elementr, insbesondere

Mehr

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II EREBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern SS 2014, 02.08.2014 1. Aufgbe: (TMI,TMI-II,ETMI,ETMI-II) /2 /2 C B S /2 q 0 =

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11 Lösungsbltt zur Testklusur Festkörperphysik WS/ Aufgbe : ) Wie groß sind die Energien der drei niedrigsten Zustände in einem zweidimensionlen und einem dreidimensionlen Kstenpotentil? (Kntenlängen jeweils

Mehr

2.2.7 Messung der Wellenlänge des Lichts mit dem optischen Gitter; Auflösungsvermögen eines Gitterspektrographen

2.2.7 Messung der Wellenlänge des Lichts mit dem optischen Gitter; Auflösungsvermögen eines Gitterspektrographen 2.2.7 Messung der Wellenlänge des Lichts mit dem optischen ; Auflösungsvermögen eines spektrogrphen Hupt- und Nebenmxim m Der Doppelsplt ht zwei große Nchteile: Durch die beiden Splte geht nur wenig Licht,

Mehr

Werkstoffmechanik SS2011 Baither/Schmitz. 13. Vorlesung

Werkstoffmechanik SS2011 Baither/Schmitz. 13. Vorlesung . Vorlesung 05.07. 6.. Die Hftkrft F mx Wie groß ist F mx, wenn Fremdtome ls Hindernis wirken? Wir betrchten ls Beispiel Fremdtome mit einem größeren Volumen ls dem der Mtrixtome in Ww mit Stufenversetzungen

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Chemisches Gleichgewicht: Dissoziation von N 2 O 4

Chemisches Gleichgewicht: Dissoziation von N 2 O 4 Stnd: 3/11 I.6.1 Chemisches Gleichgewicht: Dissozition von N O 4 Ziel des Versuches ist die Anwendung des Mssenwirkungsgesetzes uf ds Dissozitionsgleichgewicht von N O 4. Aus der emerturbhängigkeit der

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) ottfried Wilhelm Leibniz Universität Hnnover Seite 1/ rge 1 ( Punkte) Musterlösungen (ohne ewähr) Eine homogene Wlze (ewicht ) lehnt n einer gltten Wnd. Die Wlze wird, wie in der Zeichnung drgestellt von

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

Werkstoffmechanik SS2011 Baither/Schmitz. 12. Vorlesung

Werkstoffmechanik SS2011 Baither/Schmitz. 12. Vorlesung Werkstoffmechnik SS0 Bither/Schmitz. Vorlesung 8.6.0 5.0 Versetzungsufstu Lufen viele Versetzungen uf einer Gleitebene und stößt die führende Versetzung uf ein Hindernis, so kommt es zu einem chrkteristischen

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mthemtik Olympide 1. Stufe (Schulolympide) Klsse 12 Sison 1961/1962 Aufgben und Lösungen 1 OJM 1. Mthemtik-Olympide 1. Stufe (Schulolympide) Klsse 12 Aufgben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern SS 011, 06.08.011 1. Aufgbe: ( TM I, TM I-II, ETM I, ETM I-II) E D g q 0 F y

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Aufgabe 1 (8 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik I Profs. P. Eberhard / M. Hanss / J. Fehr WS 2016/17 P I

Aufgabe 1 (8 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik I Profs. P. Eberhard / M. Hanss / J. Fehr WS 2016/17 P I Institut für Technische und Num. Mechnik Technische Mechnik I Profs. P. Eberhrd / M. Hnss / J. ehr WS 2016/17 P I 20. ebrur 2017 Bchelorprüfung in Technische Mechnik I Nchnme, Vornme E-Mil-Adresse (Angbe

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Übungsaufgaben Partielle Differentialgleichung Wellengleichung

Übungsaufgaben Partielle Differentialgleichung Wellengleichung Kllenrode, www.sotere.uos.de Übungsufgben Prtielle Differentilgleichung Wellengleichung 1. Ein n einer Seite eingespnnter Stb soll ls schwingende Site mit einem offenen Ende ngenähert werden. ösen Sie

Mehr

Aufgabe 1 - Lagerreaktionen

Aufgabe 1 - Lagerreaktionen KLAUSUR Technische Mechnik (. Semester 19.07.011 Prof. Volker Ulricht Duer: 10 min. Aufge 1 3 4 5 Σ Punkte 5 1 6 8 5 36 Aufge 1 - Lgerrektionen D F D Gegeen: Längen, =, Streckenlst, Krft F D, Moment Lgerrektionen

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern WS 1/13, 16.0.013 1. Aufgbe: (TM I) ) A g 3 6 ( q() = q 0 9 G B 60 F = q 0 m

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt.

2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt. 00 A I Lösung.0 Gegeben sind die reellen Funktionen f : x x x x mit ID f IR.. Ermitteln Sie in Abhängigkeit von die Anzhl, Lge und Vielfchheiten der Nullstellen von f. IR und ( BE) f x x x x 0 x 0; x ;

Mehr

x x x Eine solche Verzweigung ist als Verzweigung der vom Signal getragenen Information

x x x Eine solche Verzweigung ist als Verzweigung der vom Signal getragenen Information 73 3.4.4 Signlflußplndrstellung Neben dem bisher behndelten rein mthemtischen Modellen in Gleichungsform zur Beschreibung des Signlübertrgungsverhltens dynmischer Systeme eistiert noch eine bildliche und

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

1. Querkraftschub in offenen Profilen

1. Querkraftschub in offenen Profilen 1. Querkrftschub in offenen Profilen 1.1 Schubfluss 1.2 Schubmittelpunkt Prof. Dr. Wndinger 5. Dünnwndige Profile TM 2 5.1-1 Geometrie: Die Profilkoordinte s wird entlng der Profilmittellinie gemessen.

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Aufgabensammlung I 2 P 1

Aufgabensammlung I 2 P 1 A3 Aufgbensmmlung Üb. 3.1: Die gerden Leiter einer 3-Leiternordnung liegen in den Ecken eines gleichseitigen Dreiecks mit den Seitenlängen = 30 cm. Ermitteln Sie den Betrg der mgnetischen Feldstärke im

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

311 Leistungsanpassung

311 Leistungsanpassung Physiklisches Grundprktikum 311 Leistungsnpssung 1. Aufgben 1.1 Mit einem Wechselspnnungsgenertor ist ein Verbrucher (Schiebewiderstnd) zu speisen. Dessen Leistungsufnhme P ist in Abhängigkeit seines Widerstndswertes

Mehr

ρ(t) + Krümmung (Gl. 2)

ρ(t) + Krümmung (Gl. 2) 1 Expnsion des Universums, negtiver Druck des Vkuums und Energieerhltung Ich möchte versuchen, ein wenig zur Klärung obiger Begriffe beizutrgen, d im Forum immer wieder Frgen hierzu uftreten. Ausgngslge

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

Dehnungsmessstreifen E3d

Dehnungsmessstreifen E3d Dehnungsmessstreifen E3d Dehnungsmessstreifen E3d Physiklisches Prktikum für Mschinenbuer Lehrstuhl für Messtechnik und Sensorik 1 Aufgbenstellung Der Versuch soll zunächst mit den grundsätzlichen Problemen

Mehr

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist. 7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer

Mehr

Übungsaufgaben Vektoranalysis

Übungsaufgaben Vektoranalysis Kllenrode, www.sotere.uos.de Übungsufgben Vektornlysis. Bestimmen ie die Quellen des Feldes A B. Lösung: Rechenregeln (Produktregel) verwenden, du die Abkürungen C A und D B : ( A B) ( C D) D ( C) C (

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1: 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Integralrechnung 29. f(x) dx = F (x) + C

Integralrechnung 29. f(x) dx = F (x) + C Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der

Mehr

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt 1 4 Hperel 4.1 Die Hperel ls Kegelschnitt Wird ein Kreiskegel mit dem hlen Öffnungswinkel α von einer Eene σ geschnitten, die mit der Kegelchse einen Wink β < α einschliesst, so entsteht ls Schnittkurve

Mehr

Diplomvorprüfung Technische Mechanik II

Diplomvorprüfung Technische Mechanik II INSTITUT FÜR MECHANIK Technische Universität Drmstdt Diplomvorprüfung Technische Mechnik II Prof. D. Gross Prof. P. Hgedorn Prof. W. Huger m 01. März 2004 Prof. R. Mrkert (Nme) (Vornme) (Mtr.-Nr.) (Studiengng)

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Integrale

Übungen mit dem Applet Grundfunktionen und ihre Integrale Grundfunktionen und ihre Integrle 1 Übungen mit dem Applet Grundfunktionen und ihre Integrle 1 Ziele des Applets... 2 2 Begriffe und ihre Drstellung mit dem Applet... 2 b 2.1 Bestimmtes Integrl I (b) =

Mehr

Newton im Propellerschiff

Newton im Propellerschiff Abgbedtum: 30. 04. 006 Newton im Propellerschiff Stiftlnd-Gymnsium Tirschenreuth Mterilien für den Unterricht Vision-Ing eine Inititive des Seite von 8 Abgbedtum: 30. 04. 006 Mteril für den Unterricht

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr