1 Einleitung 3. 3 Die Methode der Pfadregeln Drei Pfadregeln Anwendungen von drei Pfadregeln... 6

Größe: px
Ab Seite anzeigen:

Download "1 Einleitung 3. 3 Die Methode der Pfadregeln Drei Pfadregeln Anwendungen von drei Pfadregeln... 6"

Transkript

1 Mrkow-Ketten JUAN LU AUSARBEITUNG ZUM VORTRAG IM Blockseminr Stochstik (WINTERSEMESTER 28/9, LEITUNG PD DR. GUDRUN THÄTER) Zusmmenfssung: Eine Mrkow-Kette ist eine spezielle Klsse von stochstischen Prozessen. Ds Spezielle einer Mrkow-Kette ist die Eigenschft, dss durch Kenntnis einer begrenzten Vorgeschichte ebensogute Prognosen über die zukünftige Entwicklung möglich sind wie bei Kenntnis der gesmten Vorgeschichte des Prozesses. In diesem Vortrg werden die Mittelwertsregeln eingeführt, mit deren Hilfe viele Probleme, die ls bsorbierende Mrkov-Kette gesehen werden, einfch gelöst werden können.

2 Inhltsverzeichnis 1 Einleitung 3 2 Wichtige Definitionen Abzählbr unendliche Whrscheinlichkeitsräume Mrkow-Ketten Anwendung nhnd eines Beispiels Bestimmung des Zustndsrums Übergngswhrscheinlichkeit Anfngsverteilung Absorbierende Mrkow-Kette Die Methode der Pfdregeln Drei Pfdregeln Anwendungen von drei Pfdregeln Die Mittelwertsregeln Die Mittelwertsregeln Anwendungen von Mittelwertsregeln Resümee 12 Abbildungsverzeichnis 2.1 Wegnetz Ds Glücksrd Ds kühne Spiel Die Lplce-Münze Irrfhrt Irrfhrt Die Lplce-Münze Die Lplce-Münze Würfe

3 1 Einleitung In der Whrscheinlichkeitsrechnung versucht mn oft mittels stochstischer Modelle Vorhersgen über zukünftige Entwicklungen zu treffen. Dbei knn es vorkommen, dss sich der stochstische Prozess zyklisch verhält. Eine vergleichsweise einfche Beschreibung solcher Zusmmenhänge ist dem russischen Mthemtiker Andrei Andrejewitsch Mrkow ( ) gelungen. Mit sogennnten Mrkow-Ketten können bestimmte stochstische Prozesse ohne größeren Aufwnd über einen längeren Zeitrum betrchtet werden, ws sie für Berechnungen über zukünftige Entwicklungen sehr interessnt mcht. 2 Wichtige Definitionen 2.1 Abzählbr unendliche Whrscheinlichkeitsräume Ein bzählbr unendlicher Whrscheinlichkeitsrum ist ein Pr (Ω, P), wobei Ω eine bzählbr unendliche Menge und P eine uf den Teilmengen von Ω definierte reellwertige Funktion mit folgenden Eingenschften ist: ) (Nichtnegtivität) P(A) für lle A Ω b) (Normiertheit) P(Ω) = 1 c) (Additivität) P(A + B) = P(A) + P(B), wenn A B = φ 2.2 Mrkow-Ketten Mrkow-Ketten sind besondere stochstische Prozesse. Mn betrchtet sie nur mit diskreten Zeitprmetern und meistens ist uch der Zustndsrum diskret. Mrkow-Ketten in stetiger Zeit werden meistens ls Mrkow-Prozess bezeichnet. Die Besonderheit der Mrkow-Kette liegt drin, dss die Whrscheinlichkeit eines Übergngs zum Zustnd X n+1 nur vom vorherigen Zustnd X n bhängt und nicht von den früheren Zuständen. Ein stochstischer Prozess {X t, t X } mit bzählbrem Zustndsrum E heisst Mrkow- Kette genu dnn, wenn P(X n+1 = k X = e, X 1 = e 1,..., X n = e n ) = P(X n+1 = k X n = e n ) für lle n N und lle k, e,..., e n E. Eine Mrkow-Kette wird durch ihren Zustndsrum, ihre Anfngsverteilung und ihre Übergngswhrscheinlichkeiten bestimmt. Diese Begriffe werden im folgenden Beispiel erklärt. 2.3 Anwendung nhnd eines Beispiels Ein Käfer kriecht durch ds in Abbildung 2.1 drgestellte Wegnetz. Er entscheidet sich n jeder Weggbelung zufällig für einen Weg in Pfeilrichtung, stehen bleiben drf er nicht Bestimmung des Zustndsrums Mn knn dieses Beispiel wie die meisten Mrkow-Ketten überhupt uf unterschiedliche Art und Weise drstellen. Zuerst muss ber immer die Frge geklärt werden, welche Zustände es gibt, lso welche Elemente der Zustndsrum M enthält. In Abbildung 2.1 knn mn 3

4 Abbildung 2.1: Wegnetz vier Knotenpunkte erkennen, die mn dnn ls Zustände definiert, dher ist M = {e 1, e 2, e 3, e 4 }. Mn muss immer dfür sorgen, dss die Zustände unbhängig sind. Dies ist gewährleistet, d der Käfer sich immer nur n einem Punkt befinden knn. Die Reihenfolge der Zustände knn mn selbst festlegen: e 1 sei der linke, e 2 der untere, e 3 der obere und e 4 der rechte Punkt Übergngswhrscheinlichkeit Als nächstes müssen nun die Übergngswhrscheinlichkeiten gesucht werden. Die Übergngswhrscheinlichkeit P(e 1 e k ) = P(e k e i ) = p ik ist die Whrscheinlichkeit für den Übergng us dem Zustnd e i in den Zustnd e k, lso eine bedingte Whrscheinlichkeit, weil ds System sich zunächst im Zustnd e i befinden muss. Wenn ein Übergng von e i nch e k nicht möglich, ist p ik =. In diesem Beispiel können die Übergngswhrscheinlichkeiten leicht bestimmt werden, denn wenn der Käfer sich zufällig entscheidet, sind sie der Kehrwert der Anzhl der möglichen Wege. Drus ergibt sich: p 11 = p 21 = 1 3 p 12 = 1 2 p 22 = p 13 = 1 2 p 23 = 1 3 p 14 = p 24 = 1 3 usw. Die Summe der Übergngswhrscheinlichkeiten von einem Zustnd us, muss genu eins ergeben, weil irgendein Zustnd eintreten muss. Es gilt lso für jedes i: N p ik = 1 4

5 2.3.3 Anfngsverteilung Wie bereits erwähnt, benötigt mn neben dem Zustndsrum und der Übergngswhrscheinlichkeit die Anfngsverteilung, um eine Mrkow-Kette zu betrchten. Es empfiehlt sich die Anfngsverteilung ls Zeilenvektor p() zu schreiben, lso in der Form p() = ((p 1 (), p 2 (), p 3 (),...), wenn p j die die Whrscheinlichkeit dfür ist, dss die Mrkow-Kette im Zustnd e j beginnt. Die Summe der Elemente des Anlufvektors ist nch der Überlegung im Abschnitt genu eins. Allgemein bezeichnet mn bei Mrkow-Ketten einen Vektor (p 1, p 2, p 3,...) mit p i und p i = 1 ls Anfngsverteilung. Wenn mn bei dem Beispiel mit dem Käfer eine zufällige Anfngsverteilung möchte, ist p() = ( 1 4, 1 4, 1 4, 1 4 ), weil die Whrscheinlichkeit für den Beginn der Mrkow-Kette in einem Zustnd e j (mit j = 1,..., N) bei einer zufälligen Anfngsverteilung 1 ist. N Möchte mn hingegen in einem bestimmten Zustnd e j beginnen, so ist p j = 1 und lle nderen Anfngswhrscheinlichkeiten sind Null. Wenn der Käfer in e 1 strten sollte, wäre 2.4 Absorbierende Mrkow-Kette p() = (1,,, ). Ein Zustnd e i heißt bsorbierend, wenn er nicht mehr verlssen werden knn, lso wenn p ii = 1. Die Menge R ller bsorbierenden Zustände wird ls Rnd von M bezeichnet. Als innere Zustände werden lle nicht-bsorbierende Zustände bezeichnet. Die Menge I der inneren Zustände ist dher I = M \ R. Eine Mrkow-Kette heißt bsorbierend, wenn R nicht leer ist und wenn mn von jedem inneren Zustnd R erreichen knn. 3 Die Methode der Pfdregeln Jede Mrkow-Kette lässt sich ls Irrfhrt uf einem gerichteten Grphen deuten. Ein Teilchen bewegt sich uf dem Zustndsrum M mit dem Rnd R. Wenn es in e i M ist, dnn entscheidet ds Glücksrd in Abbildung 3.1 wohin der nächste Schritt geht. Sobld ds Teilchen den Rnd trifft, wird die Irrfhrt gestoppt. 5 i 1

6 Abbildung 3.1: Ds Glücksrd 3.1 Drei Pfdregeln Es gibt drei Pfdregeln, die wir vorher schon geknnt hben. (1) Die Whrscheinlichkeit eines Pfdes ist gleich dem Produkt ller Whrscheinlichkeiten längs des Pfdes. (2) Die Whrscheinlichkeit p i von e i us irgendeine Teilmenge T des Rndes R zu treffen ist gleich der Summe der Whrscheinlichkeiten ller Pfde, die von e i nch T führen. (3) Die mittlere (erwrtete) Duer m i der Irrfhrt von einem Zustnd i nch R ist ds gewichtete Mittel der Längen ller Pfde von e i nch R. Jede Pfdlänge x k wird mit ihrer Whrscheinlichkeit q k gewichtet, d.h. m i = x k q k. k Die Regeln sind uf endliche W-Räum zugeschnitten. Bei Mrkow-Ketten sind die Pfdregeln unbequem, d es von einem Zustnd bis zur Absorption unendlich viele Pfd geben knn. Die beiden nächsten Beispiele zeigen die Art der uftretenden Schwierigkeiten. 3.2 Anwendungen von drei Pfdregeln 1. Beispiel: Ds kühne Spiel. (Ds ist ein Wettspiel. Gewinnt mn eine Runde bekommt mn seinen Einstz doppelt zurück, verliert mn ist er weg.) Ich besitze 1 Euro und ich bruche dringend 5 Euro. Mein Ziel knn ich durch ein fires Glücksspiel erreichen. Ich entscheide mich für die Kühne Strtegie : In jeder Runde setze ich soviel von meinem Geld ein, dss ich im Fll eines Gewinns möglichst nhe n mein Ziel komme. Wie groß ist die Gewinnwhrscheinlichkeit? Ds kühne Spiel übersetzen wir in einen Grphen (Abbildung 3.2). Jedem möglichen Spielbluf entspricht ein Pfd, der in e 1 beginnt und uf dem Rnd R = {e, e 5 } endet. 6

7 Abbildung 3.2: Ds kühne Spiel Strt 1 11 Abbildung 3.3: Die Lplce-Münze 1 Lösung. Wegen des Zyklus e 1 e 2 e 4 e 3 e 1 gibt es unendlich viele Pfde von e 1 nch e 5. Die 1. und 2. Pfdregeln liefern p 1 = ( ) ( ) ( ) 3 + = = = 1 5 Die Gewinnwhrscheinlichkeit ist dnn Beispiel: Wir wollen eine Lplce-Münze mit den Seiten und 1 solnge werfen, bis eines der Wörter 1111 oder 11 ufgetreten ist. Sie gewinnen, wenn 1111 zuerst uftritt, sonst gewinne ich. Ds Spiel ist fir, d beide Wörter die Whrscheinlichkeit 1 hben. Hbe ich recht? 16 Jedem Spielbluf entspricht ein Pfd in Abbildung 3.3, der bei START beginnt und bei 1111 oder 11 endet. Der Grph enthält eine Schleife und vier Zyklen. Mit den Pfdregeln kommen wir nicht weit. Dher ersetzen wir sie durch zwei einfchere und mächtigere Regeln. 7

8 i i1 i2 i3 in n n Abbildung 4.1: Irrfhrt 1 4 Die Mittelwertsregeln 4.1 Die Mittelwertsregeln Wir hben eine bsorbierende Mrkow-Kette mit dem Zustndsrum M = {e 1, e 2,..., e n }. Uns interessiert die Whrscheinlichkeit in einer bestimmten Teilmenge T des Rndes R bsorbiert zu werden (T R), und die mittlere Duer der Irrfhrt bis zur Absorption. In der Regel wird T us einem einzigen bsorbierenden Zustnd bestehen. Um dieses Problem für jeden Strtzustnd zu lösen, definieren wir uf M eine Whrscheinlichkeitsfunktion e i p i und eine Mittelwertsfunktion e i m i : p i = Whrscheinlichkeit von e i us in T R bsorbiert zu werden. m i = mittlere Duer der Irrfhrt von e i us bis zur Absorption in R. Durch Anwendung der 2. Pfdregel uf Abbildung 4.1 erhlten wir: (1) für lle e i M \ R: n p i = p ik p k, (2) p i = 1 für lle e i T ; p i = für lle e i R \ T. Wir wollen (1) in Worte fssen ls 1. Mittelwertsregel: Whrscheinlichkeit eines inneren Zustnds = gewichtetes Mittel der Whrscheinlichkeiten seiner Nchbrn. Eine Funktion mit der Mittelwertseigenschft (1) heisst hrmonische Funktion. Sie ist durch ihre Rndwerte eindeutig bestimmt. Die Mittelwertsfunktion e i m i ist bestimmt durch (3) für lle e i M \ R: n m i = 1 + p ik m k, 8

9 i 1 2 k n Abbildung 4.2: Irrfhrt 2 (4) m i = für lle e i R. Die Eigenschft (3) fssen wir in Worte ls 2. Mittelwertsregel: Erwrtungswert eines inneren Zustnds = 1 + gewichtetes Mittel der Erwrtungswerte seiner Nchbrn. Beweis. Nch der 3. Pfdregel ist m i gleich dem gewichteten Mittel der Längen ller Pfde, die von e i nch R führen. Wir betrchten zuerst den Beitrg M k der über e k führenden Pfde (Abbildung 4.2). Die Pfd von e k nch R seien durch die folgende Tbelle beschrieben: Länge x 1 x 2 x 3 Whrscheinlichkeit p 1 p 2 p 3 mit Die mittlere Lufzeit von e k zum Rnd ist p n = 1. n 1 m k = x 1 p 1 + x 2 p 2 + x 3 p 3 + Die von e i über e k nch R führenden Pfde sind durch die folgende Tbelle gegeben: Länge 1 + x x x 3 Whrscheinlichkeit p ik p 1 p ik p 2 p ik p 3 Der Beitrg dieser Pfd zu m i ist M k = (1 + x 1 )p ik p 1 + (1 + x 2 )p ik p 2 + (1 + x 3 )p ik p 3 + = p ik + p ik m k = p ik (1 + m k ) 9

10 Strt b Abbildung 4.3: Die Lplce-Münze 2 Dmit ist m i = n M k = n p ik + n p ik m k Nch der Definition der Übergngswhrscheinlichkeit ist n p ik = 1 und dher m i = 1 + n p ik m k. 4.2 Anwendungen von Mittelwertsregeln () Wir nehmen ds 2. Beispiel im Abschnitt 2.2 wieder uf. Abbildung 4.3 stimmt mit Abbildung 3.3 überein. Lösung. In jedem Kreis steht die Whrscheinlichkeit, dss ich von dort us gewinne. Die Rndwerte sind p 1111 =, p 11 = 1. Ich führe zwei Unbeknnten und b ein und setze m =, m = b. und b sollen bestimmt werden. Die übrigen Kreise wurden mit Hilfe der 1. Mittelwertsregel usgefüllt. Wendet mn dieselbe Regel uf die Zustände und n, so ergibt sich b = 1 2 b ( ) = b mit der Lösung = 4, b = D. h. vom Strt gewinne ich mit Whrscheinlichkeit = Ds Spiel ist nicht fir! In Abbildung 4.4 steht in jedem Kreis die mittlere Duer des Spiels, wenn mn dort strtet. Die Rndwerte sind m 1111 = m 11 =. Ich führe zwei unbeknnten und b ein und setze m =, m = b. und b sollen bestimmt werden. Die übrigen Kreis wurden mit Hilfe der 2. Mittelwertsregel usgefüllt. Wendet mn dieselbe Regel uf die Zustände und n, so ergibt sich b = b ( 2 + 1) 1

11 Strt b Abbildung 4.4: Die Lplce-Münze 3 Abbildung 4.5: Würfe 11

12 = b ( ) mit der Lösung = 54. Die mittlere Spielduer vom Strt ist (b) Ein Würfel wird wiederholt geworfen. Wie groß ist die Whrscheinlichkeit, dss 1 und 3 vor 2 oder 4 oder 6 erscheinen? Lösung. Wir übersetzen ds Spiel in einen Grphen (Abbildung 4.4). Ds zuerst uftretende Element der Menge {1, 3} wurde mit bezeichnet. Ds ndere Element ist dnn 4. Denn für = 1 ist 4 = 3, für = 3 ist 4 = 1. Unter jedem Zustnd steht seine Gewinnwhrscheinlichkeit. Die 1. Mittelwertsregel liefert y = y x = x 6 + y 3 mit den Lösungen y = 1, x = 1. D.h. im Strt ist die Gewinnwhrscheinlichkeit, Resümee In diesem Vortrg wurden drei Pfdregeln und deren Anwendungen erläutert und drus die Mittelwertsregeln bgeleitet. Ds Beispiel der Lplce-Münze ht uns gezeigt, dss viele Probleme, die ls bsorbierende Mrkov-Ketten gesehen werden, durch Mittelwertsregeln einfcher gelöst werden können. Für mich lg die Schwierigkeit des Vortrgs bei der Übersetzung der relistischen Probleme in nschuliche Grphen. Es ist klr, dss Mrkow-Ketten sowieso ein schwieriges Them ist. Wer Zeit und Interesse dfür ht, mehr über ds Them zu studieren, empfehle ich ihm ds Buch "Whrscheinlichkeitsrechnung und Sttistik"von A. Engel. Litertur [1] Arthur Engel: Whrscheinlichkeitsrechnung und Sttistik (Bnd 2). Klett Verlg, [2] Alle Abbildungen direkt übernommen bzw. ngepsst nch Ideen us [1] und [2] 12

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt (Ω, P) ein diskreter Whrscheinlichkeitsrum,

Mehr

Wie beschreibt man Prozesse? Wie beschreibt man Prozesse? Nicht nur eine Matrix, sondern viele Matrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1

Wie beschreibt man Prozesse? Wie beschreibt man Prozesse? Nicht nur eine Matrix, sondern viele Matrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1 25.11.2014 Nicht nur eine Mtrix, sondern viele Mtrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1 015 0,15 0,75 075 01 0,1 Wie beschreibt mn Prozesse? Mkov-Modell Modell Mrkov- Prozess Mrkov-Kette ber keine Mtrize und

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

III. Optimale Portfolioselektion

III. Optimale Portfolioselektion III. Optimle Portfolioselektion Schon bei der Bewertung meriknischer Optionen hben wir gesehen, dss Optimierungsprobleme in der Finnzmthemtik eine wichtige Rolle spielen. Ein weiteres Optimierungsproblem

Mehr

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist. 7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

( ) Gegeben sind die in IR definierten Funktionen f, g und h durch

( ) Gegeben sind die in IR definierten Funktionen f, g und h durch Hilfsmittelfreie Aufgben us dem Mthemtik-Pool zum Abitur 015 T. Wrncke m301 Abi015_M_Pool1_A1 Anlysis Gegeben sind die in IR definierten Funktionen f, g und h durch ( ) f = + 1, ( ) 3 g = + 1 und ( ) 4

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht Formle Systeme, Automten, Prozesse Übersicht 2 2.1 Reguläre Ausdrücke 2.2 Endliche Automten 2.3 Nichtdeterministische endliche Automten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.7 Berechnung

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

1.2 Eigenschaften der reellen Zahlen

1.2 Eigenschaften der reellen Zahlen 12 Kpitel 1 Mthemtisches Hndwerkszeug 12 Eigenschften der reellen Zhlen Alle Rechenregeln der Grundrechenrten der reellen Zhlen lssen sich uf einige wenige Rechengesetze zurückführen, die in der folgenden

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

6.4 Die Cauchysche Integralformel

6.4 Die Cauchysche Integralformel Die Cuchysche Integrlformel 6.4 39 Abb 6 Integrtionswege im Fresnelintegrl r ir 2 r 6.4 Die Cuchysche Integrlformel Aus dem Cuchyschen Integrlst folgt eine fundmentle Formel für die Drstellung einer holomorphen

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Schriftliche Reifeprüfung aus Mathematik

Schriftliche Reifeprüfung aus Mathematik Schriftliche Reifeprüfung us Mthemtik 1) Linere Optimierung Ein Händler für Bürortikel füllt für den Schulnfng sein Lger mit Tschenrechnern des Typs Advnced und des Typs Bsic uf. Typ A kostet ihn im Einkuf

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2

Diskrete Energien. Lösung: (a) λ 1 = 2a, λ 2 = a = 2a 2, λ 3 = 2a 3, λ n = 2a n. = π a n, p n = k n = h 2a n. k n = 2π λ n. W n = p2 n 2m = h2 Diskrete Energien 1. 8 entdeckten Mrc Fries und Andrew Steele uf einem Meteoriten sogennnte Crbon Whiskers, lnggestreckte Nnostrukturen us Kohlenstoff, von denen ngenommen wird, dss sie im Rum um junge

Mehr

1.5. Abbildung. DEFINITION injektiv, surjektiv, bijektiv Eine Abbildung f ist injektiv, falls es zu jedem y Y höchstens ein x X gibt mit

1.5. Abbildung. DEFINITION injektiv, surjektiv, bijektiv Eine Abbildung f ist injektiv, falls es zu jedem y Y höchstens ein x X gibt mit CHAPTER. MENGEN UND R ELATIONEN.5. ABBILDUNG.5. Abbildung Eine Abbildung (oder Funktion ist eine Reltion f über X Y mit der Eigenschft: für jedes x us X gibt es genu ein y Y mit (x,y f. Die übliche Schreibweise

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Minimalität des Myhill-Nerode Automaten

Minimalität des Myhill-Nerode Automaten inimlität des yhill-nerode Automten Wir wollen zeigen, dss der im Beweis zum yhill-nerode Stz konstruierte DEA für die reguläre Sprche L immer der DEA mit den wenigsten Zuständen für L ist. Sei 0 der konstruierte

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

Mathematik Name: Vorbereitung KA2 K1 Punkte:

Mathematik Name: Vorbereitung KA2 K1 Punkte: Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert Die Veröffentlichung dieser Lösung geschieht ohne inhltliche Prüfung durch die Bezirksregierung Düsseldorf und den Mthe-Treff. Die Lösung stmmt nicht vom Originlutor der Aufgbe, sondern von einem Leser

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Lineren Algebr Lösungen Wintersemester 9/ Universität Heidelberg Mthemtisches Institut Lösungen Bltt Dr. D. Vogel Michel Mier Aufgbe 44. b 4 b b 4 ( )b Fll : = ( )b 4 b ( ) b ( ) ( )(b ) b

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Lösungen zum Ergänzungsblatt 4

Lösungen zum Ergänzungsblatt 4 en zum Ergänzungsltt 4 Letzte Änderung: 23. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Vorereitungsufgen Vorereitungsufge 1 Sei M = ({p, q, r}, {, }, δ, p, {q, r}) ein DEA mit folgender

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr

2. Klausur zu,,algorithmische Mathematik II

2. Klausur zu,,algorithmische Mathematik II Institut für ngewndte Mthemtik Sommersemester 2009 Andres Eberle, Mrtin Slowik 2. Klusur zu,,algorithmische Mthemtik II Bitte diese Felder in Druckschrift usfüllen Nme: Mtrikelnr.: Vornme: Studiengng:

Mehr

2.6 Unendliche Reihen

2.6 Unendliche Reihen 2.6 Unendliche Reihen In normierten Räumen steht ds wichtige Werkzeug der Bildung von unendlichen Reihen zur Verfügung. Mn denke in diesem Zusmmenhng drn, dss mn in der Anlysis Potenz- und Fourierreihen

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ.

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ. 24 UNEIGENTLICHE INTEGRALE 146 für lle t [, b] und lle x D mit x x < δ. Für lle x D mit x x < δ gilt lso = F (x) F (x ) b f(x, t) dt b b f(x, t) dt + f(x, t) f(x, t) dt + ɛ 3(b ) (b ) + ɛ 3 + ɛ 3 = ɛ.

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten (II) 28.04.2016 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-koblenz.de 1 Übersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof Dr H Brenner Osnbrück SS 2017 Grundkurs Mthemtik II Vorlesung 33 Die Zhlenräume Die Addition von zwei Pfeilen und b, ein typisches Beispiel für Vektoren Es sei K ein Körper und n N Dnn ist die Produktmenge

Mehr

Algebraische Topologie WS 2016/17 Lösungen der Woche 9

Algebraische Topologie WS 2016/17 Lösungen der Woche 9 6.132 - Algebrische Topologie WS 2016/17 Lösungen der Woche 9 Mrtin Frnklnd 5.1.2017 Aufgbe 1. Es sei X ein Rum und X = α U α eine disjunkte Vereinigung offener Teilmengen U α X. Zeigen Sie, dss X ds Koprodukt

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

LS 04.M2 Aufgaben. Geometrie

LS 04.M2 Aufgaben. Geometrie 8 LS 04.M2 Aufgben Wie groß ist? (Die Zeichnung ist eine Skizze. Messen hilft lso nicht weiter.) Stellt eure Überlegungen übersichtlich uf einem DIN-A4-Bltt dr. Wie groß ist? (Die Zeichnung ist eine Skizze.

Mehr