BRÜCKENKURS MATHEMATIK

Größe: px
Ab Seite anzeigen:

Download "BRÜCKENKURS MATHEMATIK"

Transkript

1 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig BRÜCKENKURS MATHEMATIK ELEMENTE DER DIFFERENTIAL- UND INTEGRALRECHNUNG Schwerpukte: Begriff der Aleitug Aleitugsregel Uestimmtes Itegrl Bestimmtes Itegrl Itegrtiosregel Aweduge Prof. Dr. hil. M. Ludwig TU Dresde Istitut für Wisseschftliches Reche Septemer 4

2 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig Elemete der Differetil- ud Itegrlrechug. Elemete der Differetilrechug.. Begriff des Differetilquotiete f :, Df D f wird i Umgeug vo f D zgl. ihrer "Veräderug" utersucht. Beispiele:. Eie gerdliige Bewegug eies Mssepuktes sei durch eie Fuktio s s t ud seie Geschwidigkeit durch st v t t eschriee. Bei Äderug der Fuktio st i eiem Zeititervll t t t legt der Mssepukt de Weg sst tst zurück. Durch Quotieteildug erhält m log zu oe s st ts t t t eie Ausdruck für die mittlere Geschwidigkeit der Bewegug im etrchtete Zeititervll. Um die momete Geschwidigkeit vt im Zeitpukt t zu erhlte, ist es he lieged de Grezwert s st tst lim v t : lim t t t t zu ilde. P : Astieg der Sekte durch zwei Kurvepukte P,f ud P h,f h : f hf t s h etspricht dem mittlere Astieg vo C im Itervll... h. De Astieg vo C im Pukt P erhält m durch de Grezwert. Astieg eier Kurve C f im Pukt,f hf f t lim t s lim, h h h flls dieser eistiert. Die Gerde durch P mit diesem Astieg heißt Tgete die Kurve C im Pukt P.

3 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig Def.. Differetilquotiet Die i eier Umgeug vo defiierte Fuktio f heißt der Stelle differezierr (diff 'r), we der Grezwert f hf y f lim lim h h eistiert. Dieser Grezwert heißt Differetilquotiet oder. Aleitug vo f der Stelle. Adere Bezeichuge: y dy,, d df d Höhere Aleituge etstehe durch mehrmlige Differetitio k k d f f, f,, f zw. k d Folgeruge. f sei uf I defiiert I D f. D heißt f uf I diff 'r, we f diff 'r für jede iere Pukt vo I ist. dy f Schreiweise: f,, d, woei I d d. f heißt (kurz) diff 'r, we f uf Df diff 'r ist.. Differetitio elemetrer Fuktioe (Differetitiosregel) Die Grudfuktioe sid i ihre Defiitiosgeiete diff 'r.,,,. isesodere :,, \,, speziell: e e,. l,, ; si cos, ; cos si, ;.. Differetitiosregel für rithmetisch verküpfte Grudfuktioe f,g seie uf eiem Itervll I diff 'r, d f g, rf r, fg ud f g mit g sid uf I diff 'r. Dei gilt:

4 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig fg fg rf rf, r fg f gf g Produktregel f gfgf, g Quotieteregel g g Beispiel c d c d c f,f c d c d c d.4. Ketteregel f sei uf eiem Itervll I ud g sei uf eiem Itervll J diff 'r, d ist f uf I diff 'r, flls f I J. Dei gilt fghh (Ketteregel). df df dz f g, h f gh : d dz d Beispiele: cos z. f, z cos ; fz df dz z cos f lsil si dz d z l f, u f ; z u lu Bemerkug: z z. dz du f z f du d u f g h Stz Die elemetre Fuktioe sid (i ihre Defiitiosgeiete is uf eizele Pukte) diff 'r. Ihre Aleituge sid wieder elemetre Fuktioe..5 Aweduge der Differetilrechug.5. Vollstädige Kurvediskussio, Etremwertufge Gegee: f: Df Gesucht: Lokles ud gloles Verhlte der Fuktio [vgl. Vorlesug ud Semir zu reelle Fuktioe]. Dzu sid zu estimme:. Defiitiosereich, Werteereich [vgl. reelle Fuktioe]. Nullstelle [vgl. reelle Fuktioe]. Pole [vgl. reelle Fuktioe] 4. Lücke [vgl. reelle Fuktioe] 4

5 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig 5. symptotisches Verhlte, vgl. reelle Fuktioe,, Pol 6. reltive Etrem 7. Wedepukte 8. Mootoieeigeschfte 9. Krümmugseigeschfte (kove, kokv) zu 6. Bestimmug reltiver Etrem Es sei f:df ud zudem f so oft differezierr, wie eötigt. Die Aleituge seie stetig. Notwedige Bedigug für reltive Etremwert f ist der Stelle differezierr ud f Hireichede Bedigug für reltive Etremwert f f f k k ud f, d ht f ei eie reltive Etremwert ud zwr ei reltives k Mimum f, flls k k,,. Miimum f Spezilfll f ud f, d ht f ei eie reltive Etremwert ud zwr ei reltives Mimum f, flls Miimum f zu 7. Bestimmug vo Wedepukte Notwedige Bedigug für Wedepukt f ist der Stelle zweiml differezierr ud f Hireichede Bedigug für Wedepukt f f f k k ud f, d ht f ei eie Wedepukt k,,. Spezilfll f ud f, d ht f ei eie Wedepukt zu 8. Mootoieeigeschfte f ist streg mooto wchsed f im etreffede Itervll. flled f ist s mooto wchsed f im etreffede Itervll. flled Eie Äderug der Mootoie erfolgt i Etrem ud Pole gerder Ordug. 5

6 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig zu 9. Krümmugseigeschfte f ist streg (vo ute) kove f im etreffedem Itervll. kokv f ist (vo ute) kove f im etreffedem Itervll. kokv Eie Äderug der Krümmug erfolgt i Wedepukte ud Pole ugerder Ordug. P Beispiel: f Q. Defiitiosereich: Df \, ; Werteereich: Wf. Nullstelle:! (-fch), weil Q!. Pole: ud P,P 4. Lücke: keie; Bemerkug: Flls f ei eie Lücke esitzt, d weiterreche mit Erstzfuktio. 5. Asymptotisches Verhlte: ; [vgl. Polyomdivisio] Asymptote: ya lim f lim y, lim f lim y, weil A Asymptotisches Verhlte de Pole: : lim, lim : lim, lim Bemerkug: Berechug k wie folgt durchgeführt werde: z.b. A : lim lim lim 6. Reltive Etrem: 4! f ; f zweifch ud, f ; 6

7 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig zweifch : f Wedepukt? : f Miimum mit f : f Mimum mit f 7. Wedepukte: f ; f 4 4 f 4 (zweifch) ist Wedepukt mit f. 8. Mootoie streg mooto steiged streg mooto flled mooto flled )* )* Flls Itervll ei geteilt wird, ist Fuktio streg mooto flled. 9. Krümmugseigeschfte (kove, kokv) streg kokv, d f streg kove, d f streg kokv, d f streg kove, d f Speziell: Die Bestimmug der reltive Etremwerte eötigt m zur Lösug vo Etremwertufge 7

8 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig.5. Geometrische Aweduge Gleichug der Tgete y de Grphe der Fuktio f durch de Pukt,f : y f f f f f oder y m f f mit Astieg m f, der der. Aleitug der Fuktio ud Asolutglied f f. Beispiel: Tgete die Fuktio f si im Pukt fcosfm Tgete: y f der Stelle etspricht,, d.h. ud f. Itegrtio. Ds uestimmte Itegrl Iterprettio: Umkehr der Aleitug der Differetilrechug.. Defiitio des uestimmte Itegrls Es sei f: Df, Df ud I Df ei offees Itervll. d F heißt Stmmfuktio vo f uf I, we F f für I. d Bemerkug: We F irged eie Stmmfuktio vo f ist, d erhält m durch Additio eier elieige Kostte c zu F lle Stmmfuktioe vo f. Def.. Uestimmtes Itegrl Ist Firgedeie Stmmfuktio vo Itegrl vo f uf I ud wird mit f d ezeichet, d.h. f F c eie elieige (Itegrtios-)Kostte ist. Nch Def.. gilt lso: d d f d d d Fc f f uf I, so heißt die Summe ds uestimmte ud Die Umkehr ist is uf c eideutig. d c, woei d f d d F Fc. d f 8

9 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig.. Techik des Itegrieres Uterschied zwische Differetitio ud Itegrtio: Jede elemetre Fuktio ist diff'r [Stz s.o.], er icht jede elemetre Fuktio ist itegrierr (z.b. si ist icht itegrierr) Gruditegrle s. Tfelwerke Itegrtiosregel folge us Diff'regel ; z.b. f g d f d g d Beispiel: r f d r f d, r d d d d C Itegrtiostechike Prtielle Itegrtio f g d f g f g d Beispiel: si d cos cos d cos d si si d si cos si d cos si cos C f g si f g cos f g cos f g si Sustitutio Es sei f mit g t gegee. Aus d g f d f g t g t dt t dt folgt!! Uedigt uf Eieideutigkeit vo g chte; sost, flls otwedig, Gesmtitegrl i Teilitegrle zerlege. 9

10 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig Beispiel: dt d 4 4t dt t C t dt Sustitutio: t, 4d dt d 4 Wichtige Soderfälle: f d l f c f f fd f c ; Sustitutio: f t df dt R gze rtiole Fuktio R d c. Ds estimmte Itegrl Gesucht sei der Flächeihlt A, de eie Fuktio eischließt. Zerlegug z vo, durch edlich viele Pukte Mß für Feiheit der Zerlegug: z i,, i i mit i Zwischesumme: S f,, i Es gilt: Folge vo Teilsumme Sk A i i i i i i m i i f im Itervll, mit der -Achse für z k. Bestimmug vo A mit Hilfe der Oer- ud Utersumme: Beispiel: f, elieig Oersumme: O i i i i 6 i i i i Utersumme: U 6 lim O limu

11 Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig Def.. Bestimmtes Itegrl f heißt üer, itegrierr (eigetlich Riem-itegrierr), we für jede Zerlegug zk vo, mit lim zk ud für jede Whl der etsprechede Zwischepukte die k Folge S k der Zwischesumme stets gege de gleiche Wert kovergiert. Dieser Wert heißt d estimmtes (eigetliches Riem-) Itegrl vo f üer,. Bezeichug: f d d f Also: f d: lim f Festleguge: Geometrische Deutug: i i f d ; Itervll, mit der -Achse. i i f d f d für f d vorzeicheehfteter Flächeihlt vo f im Huptstz der Differetil- ud Itegrlrechug, Berechug estimmter Itegrle f stetig uf,, F sei eie Stmmfuktio vo f uf d f F F.,, d gilt Beispiel: direkt: I d dt t t dt dd ; Greze: t t Sustitutio: t dt t flsch, d t i icht eieideutig t t I dt i eieideutig dt t er: dt d d ; Greze: t t t t t dt t t dt t t t t t

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK BRÜCKENKURS MATHEMATIK ELEMENTE DER DIFFERENTIAL- UND INTEGRALRECHNUNG Schwerpute: Begri der Aleitug Aleitugsregel Uestimmtes Itegrl Bestimmtes Itegrl Itegrtiosregel Aweduge Pro. Dr. hil. M. Ludwig TU

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. 4. Differentialrechnung für Funktionen einer reellen Veränderlichen. wird in Umgebung von x0 D f

Mathematik für VIW - Prof. Dr. M. Ludwig. 4. Differentialrechnung für Funktionen einer reellen Veränderlichen. wird in Umgebung von x0 D f 4. Dieretilrechug ür Fuktioe eier reelle Veräderliche 4. Begri des Dieretilquotiete :D, D wird i Umgebug vo D bzgl. ihrer "Veräderug" utersucht. De. 4. Dieretilquotiet Die i eier Umgebug vo deiierte Fuktio

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Mathematik. 1. Folgen und Reihen Definition und Eigenschaften a 1 a 2 a 3 a

Mathematik. 1. Folgen und Reihen Definition und Eigenschaften a 1 a 2 a 3 a Mthemtik. Folge ud Reihe.. Defiitio ud Eigeschfte 4 7... 4... 4... Defiitio.: Uter eier Folge vo Zhle verstehe wir eie A..,,... heiße Glieder der Folge < >=,,,... Beispiele: ) < > mit =,, 4, 8, 6,... 4

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend Wiederholug Alysis Stetige Zufllsgröße F sei Stmmfuktio zu f f d= F F = f Bestimmtes Itegrl f ( d ) = F F Ueigetliche Itegrle f () tdt= F lim F f() t F = f() t dt ist mooto wchsed f () tdt= lim F F A=F()-F()

Mehr

21 OM: Von der Änderung zum Bestand - Integralrechnung ga

21 OM: Von der Änderung zum Bestand - Integralrechnung ga 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga I diesem Olie-Mteril werde die Frge geklärt, wie weit der Formlismus ei der Etwicklug des Itegrls uszuführe ist ud wie eie schuliche Begrüdug des Huptstzes

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse mthphys-olie WURZELFUNKTIONEN Grphe der -te Wurzelfuktio.5.5.5 0.5 0 0.5.5.5.5.5 5 5.5 6 6.5 7 7.5 8 = = = mthphys-olie Wurzelfuktioe Ihltsverzeichis Kpitel Ihlt Seite Die Wurzel ud Wurzelgesetze Die eifche

Mehr

mathphys-online INTEGRALRECHNUNG

mathphys-online INTEGRALRECHNUNG mthphys-olie INTEGRALRECHNUNG mthphys-olie Itegrlrechug Ihltsverzeichis Kpitel Ihlt Seite Itegrtio gzrtioler Fuktioe. Die Flächemßzhlfuktio. Die Stmmfuktio Flächeerechuge 7. Fläche zwische Grph der Fuktio

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetrlübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mthemtik Mthemtik für Physiker (Alysis ) MA9 Witersem. 7/8 Lösugsbltt http://www-m5.m.tum.de/allgemeies/ma9 7W (9..8) Z..

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

Die Idee des bestimmten Integrals wird anhand der folgenden Aufgabe vorgestellt, bei der das Resultat bereits von vorne herein bekannt ist.

Die Idee des bestimmten Integrals wird anhand der folgenden Aufgabe vorgestellt, bei der das Resultat bereits von vorne herein bekannt ist. . Defiitio des estimmte Itegrals Die Idee des estimmte Itegrals wird ahad der folgede Aufgae vorgestellt, ei der das Resultat ereits vo vore herei ekat ist. Aufgae: Bestimme de Ihalt des vo der Gerade

Mehr

Glossar zum Brückenkurs "Mathematik für Wirtschaftswissenschaftler" 1

Glossar zum Brückenkurs Mathematik für Wirtschaftswissenschaftler 1 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" GLOSSAR Abbildug Eie eideutige Zuordug f zwische zwei Mege X ud Y heißt Abbildug oder Fuktio us X i Y. M schreibt: f: X Y. f heißt Abbildug

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

A8 Integralrechnung. A8 Integralrechnung. A8.1 Stammfunktionen; Berechnung bestimmter Integrale mit Hilfe von Stammfunktionen

A8 Integralrechnung. A8 Integralrechnung. A8.1 Stammfunktionen; Berechnung bestimmter Integrale mit Hilfe von Stammfunktionen A8. Stmmfuktioe; Berechug estimmter Itegrle mit Hilfe vo Stmmfuktioe Ds Grudprolem ei der Itegrlrechug Erierug: Ds Huptprolem der Differetilrechug ist die Bestimmug der Steigug der Tgete eie Kurve i eiem

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n Mthemti für VIW - Prof. Dr. M. Ludwig 6. Zhlefolge ud Reihe 6. Zhlefolge 6.. Grudbegriffe Def. 6. Eie (reelle Zhlefolge ist eie uedliche Mege vo (reelle Zhle,,,, i eier bestimmte Reihefolge geordet sid.

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

Zusammenfassung Analysis für Elektrotechniker an der HSR

Zusammenfassung Analysis für Elektrotechniker an der HSR Vo Adres Rutishuser & Ptric Bührer Zusmmefssug Alysis für Elektrotechiker der HSR Nch der Vorlesug vo Prof. Dr. Berhrd Zgrgge Urheerrechte ei Adres Rutishuser ud Ptric Bührer 0.05.007 ZUSAMMENFASSUNG ANE

Mehr

Zusammenfassung der Sätze und Definitionen zur von Prof. Wirths im WS 97/98 gehaltenen Vorlesung Analysis für Informatiker I September 1998

Zusammenfassung der Sätze und Definitionen zur von Prof. Wirths im WS 97/98 gehaltenen Vorlesung Analysis für Informatiker I September 1998 Zusmmefssug der Säte ud iitioe ur vo Prof. Wirths im WS 97/98 gehltee Vorlesug Alysis für Iformtier I Septemer 998 vo Crste F. Buschm mil@crste-uschm.com Ihlt Die geordete Körper IR ud Q 3 Relle Folge

Mehr

MATHEMATIK F 1 MEG Sek II > Formeln. Formelsammlung. Mathematik. Sekundarstufe II. --- Grundlagen & Analysis ---

MATHEMATIK F 1 MEG Sek II > Formeln. Formelsammlung. Mathematik. Sekundarstufe II. --- Grundlagen & Analysis --- MATHEMATIK F 1 MEG Sek II > Formel Formelsmmlug Mthemtik Sekudrstufe II --- Grudlge & Alysis --- MATHEMATIK F 2 MEG Sek II > Formel Ihltsverzeichis Zhlereiche & Itervlle...3 Termumformuge...3 Bruchrechug...3

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

Expertentipps für die Prüfung:

Expertentipps für die Prüfung: Epertetipps für die Prüfug: Alle Aufgbestelluge im Überblick! Wertvolle Hiweise uf Stolperflle! Elegte Rechetipps! Übersicht ller wichtige Formel! Mthemtik Bde-Württemberg Ihlt:. Pflichtteilufgbe........................................

Mehr

KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG

KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG Grudlegede Ketisse der Itegrlrechug sid für Forstleute icht weiger wichtig ls die Grudlge der Differetilrechug. Bektlich wird die Wchstumsfuktio eier forstliche

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Á 6. Integration. 6.1 Integrale. Materialien zur Vorlesung Elementare Analysis, Wintersemester 2003 / 4

Á 6. Integration. 6.1 Integrale. Materialien zur Vorlesung Elementare Analysis, Wintersemester 2003 / 4 Á 6. Itegrtio Mterilie zur Vorlesug Elemetre Alysis, Witersemester / 4 6. Itegrle Wie k der Flächeihlt eies Kreises erechet werde? Ds wr eie Frgestellug zu Begi dieser Vorlesug. Die Kreisgleichug für eie

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend FerUNI Hage WS 00/0 Differetialrechug für Fkt. Eier Variable Ziel: Maß für lokale Äderuge eier Fuktio Bei Etscheiduge sid of icht die absolute Koste iteressat, soder vielmehr die Veräderug, die eie Produktio

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen Prof. Dr. Wolfgg Koe Mthemtik, WS 8.. 6. Itegrlrechug "Sius mius Itegrl, Cosius hilft lleml..." [Studiosus Aoymus] 6.. Wrum Iformtiker Itegrlrechug ruche Die Itegrtio ist ls Umkehrug der Differetitio us

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

VI. Integralrechnung. VI.1. Treppenfunktionen. 124 VI. Integralrechnung 5. Oktober 2006

VI. Integralrechnung. VI.1. Treppenfunktionen. 124 VI. Integralrechnung 5. Oktober 2006 24 VI. Itegrlrechug 5. Oktoer 26 VI. Itegrlrechug Nchdem wir im letzte Kpitel die Differetilrechug keegelert he, mit dere Hilfe es möglich ist, die Äderugsrte eier Fuktio durch dere Aleitug zu eschreie,

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

3. Anwendungen der Differentialrechnung

3. Anwendungen der Differentialrechnung Talorsche Formel ud Mittelwertsatz 4 Aweduge der Differetialrechug Talorsche Formel ud Mittelwertsatz Die Gleichug der Tagete = f ( ( a die Kurve = f( im Pukt (, liefert eie grobe Näherug für die Fuktio

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Fachhochschule Isny. Skriptum

Fachhochschule Isny. Skriptum Fchhochschule Is Nturwisseschftlich Techische Akdemie NTA Prof. Dr. Grüler ggmh Skriptum zum Brückekurs Mthemtik der Dozete Dr.-Ig. DIETRICH KUHN ud Dipl.-Ig. HARALD SORBER für die Fchereiche Chemie, Phsik

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

Systems Engineering Angewandte Informatik SS Konvergenz von Folgen und Reihen, Potenzreihen, stetige Funktionen

Systems Engineering Angewandte Informatik SS Konvergenz von Folgen und Reihen, Potenzreihen, stetige Funktionen Systems Egieerig Agewdte Iformti SS 6 Mthemtische Grudlge II Alysis ei Prof. Dr. Lutz. Kovergez vo Folge ud Reihe, Potezreihe, stetige Futioe Eie Zhlefolge etsteht, we m jeder türliche Zhl N eie reelle

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

12. Integralrechnung. 12.A Das Riemann-Integral. 12. Integralrechnung 131

12. Integralrechnung. 12.A Das Riemann-Integral. 12. Integralrechnung 131 2. Itegrlrechug 3 2. Itegrlrechug Als Abschluss der Alysis i eier Veräderliche wolle wir ch der Differetitio u och die Itegrtio betrchte. D die Itegrlrechug über R sehr verschiede vo der über C ist, werde

Mehr

30 OM: Von der Änderung zum Bestand - Integralrechnung ea

30 OM: Von der Änderung zum Bestand - Integralrechnung ea 0 OM: Vo der Äderug zum Bestd - Itegrlrechug ea I diesem Olie-Mteril werde die Frge geklärt, wie weit der Formlismus bei der Etwicklug des Itegrls uszuführe ist ud wie eie schuliche Begrüdug des Huptstzes

Mehr

Mathematische Formelsammlung

Mathematische Formelsammlung Alysis 1. Folge ud Grezwerte 1.1. Defiitio: Mthemtische Formelsmmlug Eie Fuktio mit N * ={1; 2;3 ;...} ls Defiitiosereich heißt Folge. 1.2. Defiitio: Eie Folge heißt mooto steiged, we für lle Folgeglieder

Mehr

Teil 1: Fortsetzung des Studiums von Funktionen in einer reellen Variablen (Integration und Taylorreihen)

Teil 1: Fortsetzung des Studiums von Funktionen in einer reellen Variablen (Integration und Taylorreihen) Alysis 2 Teil : Fortsetzug des Studiums vo Fuktioe i eier reelle Vrible (Itegrtio ud Tylorreihe) Prof. Dr. Siegfried Echterhoff SS 29 getext vo Juli Wolters Vorlesug SS 29 Alysis 2 Abbildugsverzeichis

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2 0. Kovergez vo Folge ud Reihe Der i de Aschitte geometrische Folge ud Reihe eigeführte Grezwertegriff ist für die Alysis (Ifiitesimlrechug) grudleged. Im Folgede werde Grezwerte ei elieige Folge ud Fuktioe

Mehr

2 Differentialrechnung und Anwendungen

2 Differentialrechnung und Anwendungen Differetialrechug ud Aweduge Differetialrechug ud Aweduge Der Begriff des Differetialquotiete hat sich i zahlreiche Aweduge ierhalb ud außerhalb der Mathematik als äußerst fruchtbar erwiese. Bestimmug

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

Formelheft bfi ('11/'12/ 13)

Formelheft bfi ('11/'12/ 13) Formelheft fi ('/'/ ) zuletzt ktulisiert:.. Kp. Poteze S. Poteze, IR + ; r, s IR; k Z; m, IN 0 ; - k k k r s r+s r : s r-s ( r ) s r s ( ) r r r r r r k k m km m m k,, c IR ( + )² ² + + ² ( )² ² + ² (

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Didaktik der Mathematik der Sek II Umkehrfuktioe Ableitugsregel für Umkehrfuktioe (Umkehrregel) Beispiele für die Awedug der Umkehrregel Stetigkeit ud Differezierbarkeit Neuma/Roder Umkehrfuktio Fuktio

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgg Koe Mthemtik, WS07 0.0.07. Zhlefolge.. Wozu IformtikerIe Folge bruche Kovergez vo Folge ist die Grudlge der Alysis (Differetil- ud Itegrlrechug) Trszedete Gleichuge wie x l x 50 k m äherugsweise

Mehr

Ober- und Untersummen

Ober- und Untersummen Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Oer- ud Utersumme Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Oer- ud Utersumme mit ud uedlich viele Streife siehe uch S. 5 im Buch. Oer- ud Utersumme

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Zusammengesetzte Funktionen

Zusammengesetzte Funktionen Nr7-2204 Zusmmegesetzte Fuktioe Aus Fuktioe g ud h werde eue Fuktioe gebildet: ) f = gh, mit f() = g() h() ; Summe b) f = g-h, mit f() = g() - h() ; Differez c) f = g h, mit f() = g() h() ; Produkt d)

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Istitut für Techologie KIT) WS 0/3 Istitut für Aalysis 030 Prof Dr Tobias Lamm Dr Patrick Breuig Höhere Mathematik I für die Fachrichtug Physik 8 Übugsblatt Aufgabe Bereche Sie die Ableituge

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Ihlte de Mittelstufe Lösugsfomel fü qudtische Gleichuge c / 4c Poteze m m s s s s s s Logithme logc log logc log log logc c log log Sthlesätze

Mehr

14. EINFÜHRUNG IN DIE INTEGRALRECHNUNG

14. EINFÜHRUNG IN DIE INTEGRALRECHNUNG Itegrlrechug. EINFÜHRUNG IN DIE INTEGRALRECHNUNG.. Prolemstellug () Stmmfuktioe Im Kpitel Differetilrechug wurde festgestellt, dß es eie Zusmmehg zwische zurückgelegtem Weg, Geschwidigkeit ud Beschleuigug

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Integralrechnung. Inhaltsverzeichnis. A. Mentzendorff Geändert: Januar 2009

Integralrechnung. Inhaltsverzeichnis. A. Mentzendorff Geändert: Januar 2009 A. Metzedorff Geädert: Jur 29 Itegrlrechug Ihltsverzeichis Ds bestimmte Itegrl ls Flächeihlt 2. Physiklische Beispiele zur Eiführug...................... 2.2 Itegrlschreibweise. Itegrle bei liere Fuktioe.............

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

11. Übungsblatt zur Vorlesung Mathematik I für Informatik

11. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 9/./3. Jauar Gruppeübug Aufgabe G Itegratio) Bereche

Mehr

MATTHIAS HEINLEIN. 1. Einleitung

MATTHIAS HEINLEIN. 1. Einleitung SEMINRRBEIT: HUPTSTZ DER DIFFERENTIL- UND INTEGRLRECHNUNG MTTHIS HEINLEIN. Eileitug Oftmls wird ds Itegrl i de fägervorlesuge uf zweierlei Weise eigeführt. D ist zum eie ds formle Itegriere, lso ds uffide

Mehr

Grundlagen Mathematik 9. Jahrgangsstufe

Grundlagen Mathematik 9. Jahrgangsstufe Grudlge Mthetik 9. Jhrggsstufe ALGEBRA. Uter der (Qudrt-)Wurzel Zhl, die qudriert ergit : der positive Zhl versteht diejeige positive heißt dei der Rdikd.. Rtiole Zhle Q = lle Brüche zw. edliche oder uedlich

Mehr

Lösungen zum Aufgabenblatt 9

Lösungen zum Aufgabenblatt 9 Lösuge zum Aufgbebltt 9 Aufgbe Es gilt ( ) x ( ( + x) ) ( + x) x Zwei Polyome sid geu d gleich, we lle ihre Koeffiziete gleich sid. Wir betrchte die Koeffiziete für x. Der x -Koeffiziet der vordere Summe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen Pro. Dr. Wolgg Koe Mthemtik, WS6 9..7 7. Itegrlrechug "Sius mius Itegrl, Cosius hilt lleml..." [Studiosus Aoymus] 7.. Wrum Iormtiker Itegrlrechug ruche Die Itegrtio ist ls Umkehrug der Dieretitio us sich

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

Aufgabe 8.24 Bestimme das Minimum und das Maximum der stetigen Funktion

Aufgabe 8.24 Bestimme das Minimum und das Maximum der stetigen Funktion 58 II. ANALYSIS Aufgabe 8.24 Bestimme das Miimum ud das Maximum der stetige Fuktio f : [ 2,2] R : x 1 2x x 2. Aufgabe 8.25 Überprüfe, ob die folgede Fuktioe f eie Umkehrfuktio besitze ud bestimme diese

Mehr

Musterlösungen zur Klausur Analysis I Verständnisteil

Musterlösungen zur Klausur Analysis I Verständnisteil WS 2008/2009 Prof. Dr. Scheider Musterlösuge zur Klausur Aalysis I Verstädisteil 04.02.2009. a A ist ach Defiitio abzählbar, falls A edlich ist, oder falls carda = cardn gilt. b Ei Pukt x A ist ei ierer

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Technische Physiker II

Technische Physiker II Dteverrbeitug für Techische Physiker II Iterpoltio Guss-Itegrtio Nullstellesuche Apssugsprobleme Itegrtio ti gesucht: Aäherug ds bestimmte Itegrl b i f( x dx w f( E ( i i bisher: Polyome geriger Ordug

Mehr