21 OM: Von der Änderung zum Bestand - Integralrechnung ga

Größe: px
Ab Seite anzeigen:

Download "21 OM: Von der Änderung zum Bestand - Integralrechnung ga"

Transkript

1 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga I diesem Olie-Mteril werde die Frge geklärt, wie weit der Formlismus ei der Etwicklug des Itegrls uszuführe ist ud wie eie schuliche Begrüdug des Huptstzes der Differetil- ud Itegrlrechug für Kurse uf grudlegedem Aforderugsiveu erfolge k. Um ds Verstädis zu sicher, wird eie trgfähige Grudvorstellug vom Itegrlegriff etwickelt. Dei soll vo Schproleme us Kotexte wie Zu- ud Aluf sowie Geschwidigkeit ud Weg usgegge ud die Erfhrug mit Grezprozesse erweitert werde. Ds Itegrl wird ls us Äderugsrte ud Afgsestd (re-)kostruierter Bestd gedeutet, der üer die Additio vo Produkte u.. zum Flächeihlt führt. Ahd der grfische Drstellug vo Äderug ud Bestd werde die Zusmmehäge etdeckt ud erklärt. Ds Itegrl k ls Bestd ud uter estimmte Bediguge ls Flächeihlt iterpretiert werde. Der Bezug zur Differetilrechug wird durch de Huptstz der Differetil- ud Itegrlrechug i der Form f(x) dx F() F() mit F f formuliert. Bei der (Re-)Kostruktio vo Bestäde köe Vorgäge etrchtet werde, die sich mithilfe kostter oder stückweise lierer Fuktioe eschreie lsse. Auf i diesem Zusmmehg gemchte Etdeckuge ufued köe Stmmfuktioe defiiert ud die Aussge des Huptstzes der Differetil- ud Itegrlrechug schließlich erkt, formuliert ud egrüdet werde. Ei Beispiel eies us Äderugsrte ud Afgsestd (re-)kostruierte Bestdes k folgede Aufge iete: Aufge 1: Die Messstelle eier Ölpipelie zeigt zu jedem Zeitpukt die momete Durchflussrte. Sie wird mit Hilfe eies im Rohr efestigte Propellers estimmt. Ds Bild rechts zeigt ei dzugehöriges Messdigrmm. ) Ermittel Sie die Gesmtölmege, die i dem drgestellte Zeitrum durch die Pipelie fließt. ) Bereche Sie die gesmte Ölmege, die ch jeder Stude durch die Pipelie geflosse ist, ud stelle Sie diese Werte im utere Digrmm grphisch dr. c) Ermittel Sie eie Gleichug eier Fuktio D, die de Durchfluss i de erste 5 Stude eschreit. d) Etwickel Sie die Fuktiosterme für de Durchfluss i de Zeiträume 5 is Stude ud is 1 Stude. Berücksichtige Sie dei, dss sich der Durchfluss icht sprughft äder k. 1

2 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga Eie Lösugsskizze wäre etw: ) Berechug der Gesmtölmege m m 60 m m 5h 0 h 0 h 5h 0 650m h h h h ) Berechug der gesmte Ölmege, die ch jeder Stude durch die Pipelie geflosse ist: Zeit i Stude Durchflussmege i m c) Eie Durchflussfuktio ist D(t) 0 t für 0 t 5. d) Eie Durchflussfuktio ist D (t) 10 t 0 t 50 für 5 t. Eie Durchflussfuktio ist D (t) 0 t 90 für t 1. Der Grph der Fuktioe ist im Bild oe drgestellt. 1 Die i diesem Zusmmehg uftretede Frge ch der Stetigkeit der Fuktioe solle schuugsgeleitet egrüdet werde. Um ds Itegrl ls Grezwert vo Produktsumme zu eschreie, ist es sivoll, die (Re-)Kostruktio uch Beispiele zu etrchte, ei dee die Berdug icht stückweise lier ist. Für eie grudsätzliche Klärug der Vorgehesweise reicht eie Beschräkug uf i dem etrchtete Itervll mooto steigede Fuktioe mit icht egtive Fuktioswerte us.

3 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga Aufge : Gegee ist die Fuktio f mit f(x) x. Sie stellt eie Äderugsrtefuktio dr. Betrchtet wird der Grph der Fuktio im Itervll [0 ;1]. Schätze Sie de Flächeihlt mithilfe sogeter Oersumme durch Uterteilug i,, 16 Rechtecke. i. Rechtecke ii. Rechtecke iii. 16 Rechtecke iv. Fläche uter f Für die Berechug der Flächeihlte ergit sich: Rechtecke: 0,5 0,0 0,5 0,16 0,5 0,6 0,5 1 0,675 Rechtecke: 51 0, Rechtecke: 17 0, Alog köe uch die Werte für die Utersumme ermittelt werde: i. Rechtecke ii. Rechtecke iii. 16 Rechtecke iv. Fläche uter f Eie Verschulichug der Berechug mithilfe etsprecheder Werkzeuge uterstützt die Argumettio ud diet der Illustrtio eier mögliche Vorgehesweise im ga:

4 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga Aschulich ist klr, dss diese Oersumme ei immer weiterer Verfeierug der Uterteilug gege de gesuchte Flächeihlt uter dem Grphe vo f kovergiere. Die isherige Erfhruge köe verllgemeiert werde: Aufge : Gegee ist die Fuktio f mit f(x) x. Bestimme de Flächeihlt uter dem Grphe vo f im Itervll [0 ;] für ei elieiges 0. Begrüde Sie die ufgeführte Terme. Für die Fuktio f mit S f(x) x im Itervll [0 ; ] edeutet dies: 1 S (1 ) TIPP: S S 6 1 Für ergit sich: lim S 1 6 Die Formel für die Summe der erste Qudrtzhle k etweder eiem Tfelwerk oder eiem CAS-Recher etomme oder mitgeteilt werde. Mit S x f x1 f x f x f x1 f x für wird die Itegrlschreiweise erläutert: lim S x dx. 0

5 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga Die Frge, w ud wie weit die Grezprozesse formlisiert werde, k icht puschl etwortet werde. Zur formle Beschreiug k die Limes-Schreiweise oder die Pfeil- Schreiweise verwedet werde. Dei immt die Limes-Schreiweise eher de Grezwert ls Ergeis eies Grezprozesses i de Fokus ud die Pfeil-Schreiweise legt de Fokus uf de Grezprozess selst. Die Schreiweise sollte de Argumettiosweise der Schülerie ud Schüler gepsst werde ud diese sivoll verdeutliche. Die formle Beschreiug wird icht eötigt, um de Grezwert zu verstehe. Ds schuliche Verstädis, ds die Schülerie ud Schüler i frühere Schuljhrgäge erwere (z.b. we Terme zu Puktmuster ufgestellt werde), wird hier weiter gefestigt. Die Utersuchuge führe schließlich zur Defiitio der Stmmfuktio ud zum Huptstz der Differetil- ud Itegrlrechug: Gegee ist eie Fuktio f. Eie Fuktio F heißt Stmmfuktio vo f, we gilt: F (x) f(x). Ds heißt: Die Aleitug der Stmmfuktio ist die gegeee Fuktio f. Huptstz der Differetil- ud Itegrlrechug (1. Teil): Ist f eie uf [ ; ] stetige Fuktio, so ist die durch differezierr mit: F (x) f(x). x F (x) f(t) dt defiierte Stmmfuktio Huptstz der Differetil- ud Itegrlrechug (. Teil): Jede üer [ ; ] itegrierre Fuktio f, die dort eie Stmmfuktio esitzt, erfüllt f(t) dt F() F(). Für Kurse uf grudlegedem Aforderugsiveu gilt es, diese zweite Teil des Stzes chzuweise. Im Folgede wird eie Beweismöglichkeit drgestellt. Dei wird der Fll etrchtet, dss der Grph vo f oerhl der x-achse liegt. 5

6 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga Es hdelt sich um die (Re-)Kostruktio vo Fuktioe. Ds Ausggsprolem esteht dri, dss f ud F() gegee sid ud F() gesucht wird. Wir versuche eie schrittweise Aäherug F(). Gegee ist die Fuktio f mit ihrer Fuktiosgleichug f(x) ud dem zugehörige Grphe. Im Schzusmmehg eschreit f eie Bestdsäderug. Des Weitere ist der Bestd F zum Zeitpukt, lso F() gegee. Um de Bestd zum Zeitpukt äherugsweise zu estimme, werde die Bestäde zwische ud sukzessive ergäzt. F F f f f f F F f f f f 6

7 1 OM: Vo der Äderug zum Bestd - Itegrlrechug ga Eie essere Aäherug erhält m durch eie feiere Uterteilug ei der sukzessive Aäherug (vgl. Oer- ud Utersumme ei der Defiitio des Itegrls). F F f f f f 7 F F f f f f 7 Oder llgemei ei eier Eiteilug i Teile: F F f f f f ( 1) F F f f f f ( 1) 1 F F f i i0 Für große Werte für gilt 1 i0 f i f(x) dx ud dmit ud somit F F() f(x)dx. F F() f(x)dx Bei diese Üerleguge ist die Grudvorstellug des Itegrls ls Grezwert vo Produktsumme trged. Die (Re-)Kostruktio der Fuktio F etspricht somit der Bildug vo Flächeihlte. 7

30 OM: Von der Änderung zum Bestand - Integralrechnung ea

30 OM: Von der Änderung zum Bestand - Integralrechnung ea 0 OM: Vo der Äderug zum Bestd - Itegrlrechug ea I diesem Olie-Mteril werde die Frge geklärt, wie weit der Formlismus bei der Etwicklug des Itegrls uszuführe ist ud wie eie schuliche Begrüdug des Huptstzes

Mehr

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse mthphys-olie WURZELFUNKTIONEN Grphe der -te Wurzelfuktio.5.5.5 0.5 0 0.5.5.5.5.5 5 5.5 6 6.5 7 7.5 8 = = = mthphys-olie Wurzelfuktioe Ihltsverzeichis Kpitel Ihlt Seite Die Wurzel ud Wurzelgesetze Die eifche

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig BRÜCKENKURS MATHEMATIK ELEMENTE DER DIFFERENTIAL- UND INTEGRALRECHNUNG Schwerpukte: Begriff der Aleitug Aleitugsregel Uestimmtes

Mehr

mathphys-online INTEGRALRECHNUNG

mathphys-online INTEGRALRECHNUNG mthphys-olie INTEGRALRECHNUNG mthphys-olie Itegrlrechug Ihltsverzeichis Kpitel Ihlt Seite Itegrtio gzrtioler Fuktioe. Die Flächemßzhlfuktio. Die Stmmfuktio Flächeerechuge 7. Fläche zwische Grph der Fuktio

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Die Idee des bestimmten Integrals wird anhand der folgenden Aufgabe vorgestellt, bei der das Resultat bereits von vorne herein bekannt ist.

Die Idee des bestimmten Integrals wird anhand der folgenden Aufgabe vorgestellt, bei der das Resultat bereits von vorne herein bekannt ist. . Defiitio des estimmte Itegrals Die Idee des estimmte Itegrals wird ahad der folgede Aufgae vorgestellt, ei der das Resultat ereits vo vore herei ekat ist. Aufgae: Bestimme de Ihalt des vo der Gerade

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

A8 Integralrechnung. A8 Integralrechnung. A8.1 Stammfunktionen; Berechnung bestimmter Integrale mit Hilfe von Stammfunktionen

A8 Integralrechnung. A8 Integralrechnung. A8.1 Stammfunktionen; Berechnung bestimmter Integrale mit Hilfe von Stammfunktionen A8. Stmmfuktioe; Berechug estimmter Itegrle mit Hilfe vo Stmmfuktioe Ds Grudprolem ei der Itegrlrechug Erierug: Ds Huptprolem der Differetilrechug ist die Bestimmug der Steigug der Tgete eie Kurve i eiem

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK BRÜCKENKURS MATHEMATIK ELEMENTE DER DIFFERENTIAL- UND INTEGRALRECHNUNG Schwerpute: Begri der Aleitug Aleitugsregel Uestimmtes Itegrl Bestimmtes Itegrl Itegrtiosregel Aweduge Pro. Dr. hil. M. Ludwig TU

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Numerisches Integrieren

Numerisches Integrieren Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend Wiederholug Alysis Stetige Zufllsgröße F sei Stmmfuktio zu f f d= F F = f Bestimmtes Itegrl f ( d ) = F F Ueigetliche Itegrle f () tdt= F lim F f() t F = f() t dt ist mooto wchsed f () tdt= lim F F A=F()-F()

Mehr

45.1 Die Streifenmethode Archimedes wollte ja den Inhalt der Fläche unter der Normalparabel zwischen 0 und 1 berechnen. Dazu zerschnitt er

45.1 Die Streifenmethode Archimedes wollte ja den Inhalt der Fläche unter der Normalparabel zwischen 0 und 1 berechnen. Dazu zerschnitt er 5 Vertiefug des Itegrlegriffs Die Wurzel der Flächeerechug liege i der Atike. Archimedes vo yrkus (87 v.chr. v. Chr.) eschäftigte sich sehr usführlich mit der Flächeerechug des Kreises. Er versuchte dei

Mehr

Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen

Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen Die Berechug des Flächeihlts krummliig egrezter Fläche Eiführug i die Itegrlrechug Teil : Die Fläche zwische der Normlprel y = x ud der x-achse im Bereich 0 x Die Fläche sieht us wie ei Dreieck, ei dem

Mehr

MATTHIAS HEINLEIN. 1. Einleitung

MATTHIAS HEINLEIN. 1. Einleitung SEMINRRBEIT: HUPTSTZ DER DIFFERENTIL- UND INTEGRLRECHNUNG MTTHIS HEINLEIN. Eileitug Oftmls wird ds Itegrl i de fägervorlesuge uf zweierlei Weise eigeführt. D ist zum eie ds formle Itegriere, lso ds uffide

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG

KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG KAPITEL 6: GRUNDLAGEN DER INTEGRALRECHNUNG Grudlegede Ketisse der Itegrlrechug sid für Forstleute icht weiger wichtig ls die Grudlge der Differetilrechug. Bektlich wird die Wchstumsfuktio eier forstliche

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Á 6. Integration. 6.1 Integrale. Materialien zur Vorlesung Elementare Analysis, Wintersemester 2003 / 4

Á 6. Integration. 6.1 Integrale. Materialien zur Vorlesung Elementare Analysis, Wintersemester 2003 / 4 Á 6. Itegrtio Mterilie zur Vorlesug Elemetre Alysis, Witersemester / 4 6. Itegrle Wie k der Flächeihlt eies Kreises erechet werde? Ds wr eie Frgestellug zu Begi dieser Vorlesug. Die Kreisgleichug für eie

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Expertentipps für die Prüfung:

Expertentipps für die Prüfung: Epertetipps für die Prüfug: Alle Aufgbestelluge im Überblick! Wertvolle Hiweise uf Stolperflle! Elegte Rechetipps! Übersicht ller wichtige Formel! Mthemtik Bde-Württemberg Ihlt:. Pflichtteilufgbe........................................

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetrlübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mthemtik Mthemtik für Physiker (Alysis ) MA9 Witersem. 7/8 Lösugsbltt http://www-m5.m.tum.de/allgemeies/ma9 7W (9..8) Z..

Mehr

Mathematik. 1. Folgen und Reihen Definition und Eigenschaften a 1 a 2 a 3 a

Mathematik. 1. Folgen und Reihen Definition und Eigenschaften a 1 a 2 a 3 a Mthemtik. Folge ud Reihe.. Defiitio ud Eigeschfte 4 7... 4... 4... Defiitio.: Uter eier Folge vo Zhle verstehe wir eie A..,,... heiße Glieder der Folge < >=,,,... Beispiele: ) < > mit =,, 4, 8, 6,... 4

Mehr

multipliziert und der Ausdruck dann in Real- und Imaginärteil aufgespaltet: Zur Berechnung der Phase werden Zähler und Nenner zunächst mit 1 F F

multipliziert und der Ausdruck dann in Real- und Imaginärteil aufgespaltet: Zur Berechnung der Phase werden Zähler und Nenner zunächst mit 1 F F 8 requezgg lierer Sstee 9 t t t e e e Jede Differetitio etspricht lso eier Multipliktio it! Setze wir diese ere i die Differetilgleichug 87 ei, so erhlte wir ür de requezgg ergit sich lso 88 Beispiel:

Mehr

9. Jahrgangsstufe Mathematik Unterrichtsskript

9. Jahrgangsstufe Mathematik Unterrichtsskript . Jhrggsstufe Mthetik Uterrichtsskript. Die ioische Forel Beispiel: Auftrg: Bereche die Gestfläche der oe stehede Figur uf zwei verschiedee Arte!. Möglichkeit. Möglichkeit: Teilflächeerechug Mit Zhleeispiel

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Thema: Integralrechnung (Grundlagen und Flächenberechnungen)

Thema: Integralrechnung (Grundlagen und Flächenberechnungen) Q GK Mathematik-Vh Vorereitug zur. Kursareit am..7 Thema: Itegralrechug Grudlage ud Flächeerechuge Checkliste Was ich alles köe soll Ich kee de Begri des krummliige Trapezes ud weiß, dass sei Flächeihalt

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt.

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt. Fachbereich Iformatik Sommersemester 8 Prof. Dr. Peter Becker Höhere Aalysis Lösuge zu Aufgabeblatt 6 Aufgabe (Fourierreihe) 3+5 Pukte Die Fuktio f sei auf (, π] defiiert durch f(x) x ud wird π-periodisch

Mehr

Grenzwertberechnungen

Grenzwertberechnungen Katosschule Solothur Grezwertberechuge Grezwertberechuge Grezwertberechuge bei Folge ud Reihe Folge sid Fuktioe; die Begriffe beschräkt ud mooto trete daher auch bei Folge auf. Isbesodere habe sie eie

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Numerische Methoden zur Lösung bestimmter Integralen

Numerische Methoden zur Lösung bestimmter Integralen Prof. Dr.-Ig. Dirk Rbe, FB Tecik Mtemtik I A Numerisce Metode zur Lösug bestimmter Itegrle D es oft scwierig oder sogr umöglic ist, die Stmmfuktio durc eie bekte Fuktio uszudrücke, ist es oft sivoll/eifcer

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7. Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergit. x x für 0 9 9 * : Wurzelexpoet, N ud : Rdikd, 0 x: Wurzel(wer t) Poteziere: Bsis ud Expoet sid gegee,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier: Uterrichtsmaterialie i digitaler ud i gedruckter Form Auszug aus: Vo Kurve ud Fläche Das komplette Material fide Sie hier: School-Scout.de Das bestimmte Itegral ach Riema Eizelstude 69 Klasse 11 ud 12

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen Prof. Dr. Wolfgg Koe Mthemtik, WS 8.. 6. Itegrlrechug "Sius mius Itegrl, Cosius hilft lleml..." [Studiosus Aoymus] 6.. Wrum Iformtiker Itegrlrechug ruche Die Itegrtio ist ls Umkehrug der Differetitio us

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6. Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme

Mehr

12. Integralrechnung. 12.A Das Riemann-Integral. 12. Integralrechnung 131

12. Integralrechnung. 12.A Das Riemann-Integral. 12. Integralrechnung 131 2. Itegrlrechug 3 2. Itegrlrechug Als Abschluss der Alysis i eier Veräderliche wolle wir ch der Differetitio u och die Itegrtio betrchte. D die Itegrlrechug über R sehr verschiede vo der über C ist, werde

Mehr

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 14 Potenzieren und Radizieren 1 1

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 14 Potenzieren und Radizieren 1 1 Mthemtik Grudlge Poteziere ud Rdiziere Mthemtik Grudlge für Idustriemeister Semirstude S-Std. (45 mi) Nr. Modul Theorie Üuge 4 Poteziere ud Rdiziere Ihlt 4 Poteziere ud Rdiziere... 4. Poteziere... 4..

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Agewdte Mthemtik ud Progrmmierug Eiführug i ds Kozept der objektorietierte Aweduge zu mthemtische Reches WS 2012/13 Ihlt Wiederholug (Eigeschfte vo Folge zusmmegefsst) Zhlereihe Kovergez vo Reihe Beweis

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Ausbau der Funktionentheorie

Ausbau der Funktionentheorie Skript zum Ausbu der Fuktioetheorie I Skript zum Ausbu der Fuktioetheorie I Ausbu der Fuktioetheorie Potezfuktioe (PF) Bisher hbe wir us mit liere Fuktioe ud dere jeweiligem chrkteristische Verluf bzw

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Theme Logik ud Megelehre Zhlesysteme ud Arithmetik Gleichuge ud Ugleichuge Li. Gleichugssysteme ud spez. Aweduge Geometrie ud Trigoometrie Vektore i der Ebee ud Puktemege Fuktioe eier Veräderliche Zhlefolge

Mehr

4.5 Integralrechnung

4.5 Integralrechnung .5 Itegrlrechug Ihltsverzeichis 1 Checkliste Eiführugsufgbe Die Lösug des Problems.1 Utersumme.......................................... Ds Summezeiche...................................... Die Berechug

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Didaktik der Mathematik der Sekundarstufe II Anwendungen des bestimmten Integrals

Didaktik der Mathematik der Sekundarstufe II Anwendungen des bestimmten Integrals Didaktik der Mathematik der Sekudarstufe II Aweduge des bestimmte Itegrals Fläche zwische zwei Graphe Mittelwert eier Fuktio Volume eies Rotatioskörpers Läge vo Kurve, die Graphe vo Fuktioe sid (Bogeläge

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

Technische Physiker II

Technische Physiker II Dteverrbeitug für Techische Physiker II Iterpoltio Guss-Itegrtio Nullstellesuche Apssugsprobleme Itegrtio ti gesucht: Aäherug ds bestimmte Itegrl b i f( x dx w f( E ( i i bisher: Polyome geriger Ordug

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

VI. Integralrechnung. VI.1. Treppenfunktionen. 124 VI. Integralrechnung 5. Oktober 2006

VI. Integralrechnung. VI.1. Treppenfunktionen. 124 VI. Integralrechnung 5. Oktober 2006 24 VI. Itegrlrechug 5. Oktoer 26 VI. Itegrlrechug Nchdem wir im letzte Kpitel die Differetilrechug keegelert he, mit dere Hilfe es möglich ist, die Äderugsrte eier Fuktio durch dere Aleitug zu eschreie,

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2 0. Kovergez vo Folge ud Reihe Der i de Aschitte geometrische Folge ud Reihe eigeführte Grezwertegriff ist für die Alysis (Ifiitesimlrechug) grudleged. Im Folgede werde Grezwerte ei elieige Folge ud Fuktioe

Mehr

Also definieren wir: Die Definition ist damit unabhängig vom Kürzen oder Erweitern des Exponenten.

Also definieren wir: Die Definition ist damit unabhängig vom Kürzen oder Erweitern des Exponenten. 7. Poteze mit rtiole Expoete Eiführedes Beispiel: Wir versuche ls Potez vo zu schreie. Bei dieser Erweiterug solle die isherige Potezgesetze gültig leie. x mit poteziert x x ( ) ( ) log 8 Also defiiere

Mehr

Ober- und Untersummen

Ober- und Untersummen Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Oer- ud Utersumme Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Oer- ud Utersumme mit ud uedlich viele Streife siehe uch S. 5 im Buch. Oer- ud Utersumme

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Integralrechnung brauchen Pro. Dr. Wolgg Koe Mthemtik, WS6 9..7 7. Itegrlrechug "Sius mius Itegrl, Cosius hilt lleml..." [Studiosus Aoymus] 7.. Wrum Iormtiker Itegrlrechug ruche Die Itegrtio ist ls Umkehrug der Dieretitio us sich

Mehr